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ABSTRACT

Deep generative modeling using flows has gained popularity owing to the tractable
exact log-likelihood estimation with efficient training and synthesis process. How-
ever, flow models suffer from the challenge of having high dimensional latent
space, same in dimension as the input space. An effective solution to the above
challenge as proposed by Dinh et al. (2016) is a multi-scale architecture, which is
based on iterative early factorization of a part of the total dimensions at regular
intervals. Prior works on generative flows involving a multi-scale architecture
perform the dimension factorization based on a static masking. We propose a
novel multi-scale architecture that performs data dependent factorization to decide
which dimensions should pass through more flow layers. To facilitate the same,
we introduce a heuristic based on the contribution of each dimension to the total
log-likelihood which encodes the importance of the dimensions. Our proposed
heuristic is readily obtained as part of the flow training process, enabling versa-
tile implementation of our likelihood contribution based multi-scale architecture
for generic flow models. We present such implementations for several state-of-
the-art flow models and demonstrate improvements in log-likelihood score and
sampling quality on standard image benchmarks. We also conduct ablation studies
to compare proposed method with other options for dimension factorization.

1 INTRODUCTION

Deep Generative Modeling aims to learn the embedded distributions and representations in input (es-
pecially unlabelled) data, requiring no/minimal human labelling effort. Learning without knowledge
of labels (unsupervised learning) is of increasing importance because of the abundance of unlabelled
data and the rich inherent patterns they posses. The representations learnt can then be utilized in a
number of downstream tasks such as semi-supervised learning (Kingma et al., 2014; Odena, 2016),
synthetic data augmentation and adversarial training (Cisse et al., 2017), text analysis and model
based control etc. The repository of deep generative modeling majorly includes Likelihood based
models such as autoregressive models (Oord et al., 2016b; Graves, 2013), latent variable models
(Kingma & Welling, 2013), flow based models (Dinh et al., 2014; 2016; Kingma & Dhariwal, 2018)
and implicit models such as generative adversarial networks (GANs) (Goodfellow et al., 2014).
Autoregressive models (Salimans et al., 2017; Oord et al., 2016b;a; Chen et al., 2017) achieve excep-
tional log-likelihood score on many standard datasets, indicative of their power to model the inherent
distribution. But, they suffer from slow sampling process, making them unacceptable to adopt in real
world applications. Latent variable models such as variational autoencoders (Kingma & Welling,
2013) tend to better capture the global feature representation in data, but do not offer an exact density
estimate. Implicit generative models such as GANs which optimize a generator and a discriminator in
a min-max fashion have recently become popular for their ability to synthesize realistic data (Karras
et al., 2018; Engel et al., 2019). But, GANs do not offer a latent space suitable for further downstream
tasks, nor do they perform density estimation.

Flow based generative models (Dinh et al., 2016; Kingma & Dhariwal, 2018) perform exact density
estimation with fast inference and sampling, due to their parallelizability. They also provide an
information rich latent space suitable for many applications. However, the dimension of latent space
for flow based generative models is same as the high-dimensional input space, by virtue of bijectivity
nature of flows. This poses a bottleneck for flow models to scale with increasing input dimensions due
to computational complexity. An effective solution to the above challenge is a multi-scale architecture,

1



Under review as a conference paper at ICLR 2020

introduced by Dinh et al. (2016), which performs iterative early gaussianization of a part of the total
dimensions at regular intervals of flow layers. This not only makes the model computational and
memory efficient but also aids in distributing the loss function throughout the network for better
training. Many prior works including Kingma & Dhariwal (2018); Atanov et al. (2019); Durkan
et al. (2019); Kumar et al. (2019) implement multi-scale architecture in their flow models, but use
static masking methods for factorization of dimensions. We propose a multi-scale architecture which
performs data dependent factorization to decide which dimensions should pass through more flow
layers. For the decision making, we introduce a heuristic based on the amount of total log-likelihood
contributed by each dimension, which in turn signifies their individual importance. We lay the ground
rules for quantitative estimation and qualitative sampling to be satisfied by an ideal factorization
method for a multi-scale architecture. Since in the proposed architecture, the heuristic is obtained as
part of the flow training process, it can be universally applied to generic flow models. We present
such implementations for flow models based on affine/additive coupling and ordinary differential
equation (ODE) and achieve quantitative and qualitative improvements. We also perform ablation
studies to confirm the novelty of our method. Summing up, the contributions of our research are,

Contributions:

1. A log-determinant based heuristic which entails the contribution by each dimensions towards
the total log-likelihood in a multi-scale architecture.

2. A multi-scale architecture based on the above heuristic performing data-dependent splitting
of dimensions, implemented for several classes of flow models.

3. Quantitative and qualitative analysis of above implementations and an ablation study

To the best of our knowledge, we are the first to propose a data-dependent splitting of dimensions in
a multi-scale architecture.

2 BACKGROUND

In this section, we illustrate the functioning of flow based generative models and the multiscale
architecture as introduced by Dinh et al. (2016).

2.1 FLOW-BASED GENERATIVE MODELS

Let x be a high-dimensional random vector with unknown true distribution p(x). The following
formulation is directly applicable to continous data, and with some pre-processing steps such as
dequantization (Uria et al., 2013; Salimans et al., 2017; Ho et al., 2019) to discrete data. Let z be
the latent variable with a known standard distribution p(z), such as a standard multivariate gaussian.
Using an i.i.d. dataset D, the target is to model pθ(x) with parameters θ. A flow, fθ is defined to be
an invertible transformation that maps observed data x to the latent variable z. A flow is invertible,
so the inverse function T maps z to x, i.e.

z = fθ(x) = T −1(x) and x = T (z) = f−1θ (z) (1)
The log-likelihood can be expressed as,

log (pθ(x)) = log(p(z)) + log

(∣∣∣∣det(∂fθ(x)∂xT

)∣∣∣∣) (2)

where
∂fθ(x)

∂xT
is the Jacobian of fθ at x.

The invertibile nature of flow allows it to be capable of being composed of other flows of compatible
dimensions. In practice, flows are constructed by composing a series of component flows. Let the
flow fθ be composed of K component flows, i.e. fθ = fθK ◦ fθK−1

◦ · · · ◦ fθ1 and the intermediate
variables be denoted by yK ,yK−1, · · · ,y0 = x. Then the log-likelihood of the composed flow is,

log (pθ(x)) = log(p(z)) + log

(∣∣∣∣det(∂(fθK ◦ fθK−1
◦ · · · ◦ fθ1(x))

∂xT

)∣∣∣∣) (3)

= log(p(z))︸ ︷︷ ︸
Log-latent density

+

K∑
i=1

log |det(∂yi/∂yTi−1)|︸ ︷︷ ︸
Log-det

(4)
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which follows from the fact that det(A ·B) = det(A) ·det(B). In our work, we refer the first term in
Equation 4 as log-latent-density and the second term as log-determinant (log-det). The reverse path,
from z to x can be written as a composition of inverse flows, x = f−1θ (z) = f−1θ1 ◦ f

−1
θ2
◦ · · · ◦ f−1θK (z).

Confirming with the properties of a flow as mentioned above, different types of flows can be
constructed (Kingma & Dhariwal, 2018; Dinh et al., 2016; 2014; Behrmann et al., 2018).

2.2 MULTI-SCALE ARCHITECTURE

Multi-scale architecture is a design choice for latent space dimensionality reduction of flow models,
in which part of the dimensions are factored out/early gaussianized at regular intervals, and the other
part is exposed to more flow layers. The process is called dimension factorization. In the problem
setting as introduced in Section 2.1, the factoring operation can be mathematically expressed as,

y0 = x (5)
zl+1,yl+1 = fθl+1

(yl), l ∈ {0, 1, · · · ,K − 2} (6)

zK = fθK (yK−1) (7)
z = (z1, z2, · · · , zK) (8)

The factoring of dimensions at early layers has the benefit of distributing the loss function throughout
the network (Dinh et al., 2016) and optimizing the amount of computation and memory used by the
model. We consider the multi-scale architecture for flow based generative models as introduced by
Dinh et al. (2016) (and later used by state-of-the-art flow models such as Glow(Kingma & Dhariwal,
2018)) as the base of our research work.

3 LIKELIHOOD CONTRIBUTION BASED MULTISCALE ARCHITECTURE

In a multi-scale architecture, it is apparent that the network will better learn the distribution of
variables getting exposed to more layers of flow as compared to the ones which get factored at
a finer scale (earlier layer). The method of dimension splitting proposed by prior works such as
(Dinh et al., 2016; Kingma & Dhariwal, 2018; Behrmann et al., 2018) are static in nature and do not
distinguish between importance of different dimensions. In this section, we introduce a heuristic to
estimate the contribution of each dimension towards the total log-likelihood, and introduce a method
which can use the heuristic to decide the dimensions to be factored at an earlier layer, eventually
achieving preferrential splitting in multiscale architecture. Our approach builds an efficient multiscale
architecture which factors the dimensions at each flow layer in a way such that the local variance in
the input space is well captured as the flow progresses and the log-likelihood is maximized. We also
describe how our multi-scale architecture can be implemented over several standard flow models.

Recall from Equation 4 that the log-likelihood is composed of two terms, the log-latent-density term
and the log-det term. The log-latent-density term depends on the choice of latent distribution whereas
the log-det term depends on the modeling of the flow layers. So, careful design of flow layers can
lead to maximized log-determinant, eventually maximizing the likelihood. The total log-det term
is nothing but the sum of log-det terms contributed by each dimension. Let the dimension of the
input space x be s× s× c, where s is the image height/width and c is the number of channels for
image inputs. For the following formulation, let us assume no dimensions were gaussianized early so
that we have access to log-det term for all dimensions at each flow layer, and the dimension at all
intermediate layer remains same (i.e. s× s× c). We apply a flow (fθ) with K component flows to
x, z pair, so that z = fθ(x) = fθK ◦ fθK−1

◦ · · · ◦ fθ1(x). The intermediate variables are denoted by
yK ,yK−1, · · · ,y0 with yK = z (since no early gaussianization was done) and y0 = x. The log-det
term at layer l, L(l)

d , is given by,

[L
(l)
d ]scaler =

l∑
i=1

log |det(∂yi/∂yTi−1)| (9)

The log-det of the jacobian term encompasses contribution by all the s × s × c dimensions. We
decompose it to obtain the individual contribution by variables (dimensions) towards the total log-det
(∼ total log-likelihood). The log-det term can be viewed (with slight abuse of notations) as a s×s× c
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Figure 1: Likelihood contribution based squeezing operation for RealNVP: (On left) The tensor
[L

(l)
d ]s×s×c representing log-det of variables in a flow layer. (On right) It is squeezed to s

2 ×
s
2 × 4c

with local max and min pooling operation. The black (respectively white) marked pixels represent
dimensions having more (respectively less) log-det locally.

tensor corresponding to each of the dimensions, summed over the flow layers till l,

[L
(l)
d ]s×s×c =

l∑
i=1

[d
(α,β,γ)
i−1 ]s×s×c, where α, β ∈ {0, · · · , s} and γ ∈ {0, · · · , c} (10)

s.t.
∑
α,β,γ

d
(α,β,γ)
i−1 = log |det(∂yi/∂yTi−1)| (11)

The entries in [L
(l)
d ]s×s×c having higher value correspond to the variables which contribute more

towards the total log-likelihood, hence are more valuable for better flow formulation. So, we can use
the likelihood contribution (in the form of log-det term) by each dimension as a heuristic for deciding
which variables should be gaussianized early in a multi-scale architecture. Ideally, at each flow layer,
the variables with more log-det term should be exposed to more layer of flow and the ones having
less log-det term should be factored out. In this manner, selectively more power can be provided to
variables which capture meaningful representation (and are more valuable from log-det perspective)
to be expressive by being exposed to multiple flow layers. This formulation leads to enhanced density
estimation performance. Additionally, for many datasets such as images, the spatial nature should be
taken into account while deciding dimensions for early gaussianization. Summarily, at every flow
layer, an ideal factorization method should,

1. (Quantitative) For efficient density estimation: Early gaussianize the variables having less
log-det and expose the ones having more log-det to more flow layers

2. (Qualitative) For qualitative reconstruction: Capture the local variance over the flow layers,
i.e. the dimensions being exposed to more flow layers should contain representative pixel
variables from throughout the whole image.

Keeping the above requirements in mind, variants of hybrid techniques for factorization can be
implemented for different types of flow models which involve a multi-scale architecture, to improve
their density estimation and qualitative performance. The key requirement is availability of log-det
contributions per dimension, which can be fulfilled by decomposition of the log-det of the jacobian.
We refer to the method as Likelihood Contribution based Multi-scale Architecture (LCMA). The
steps of LCMA implementation for flow models is summarized in Algorithm 1. Note that in step 2 of
dimension factorization phase in algorithm 1, we group the dimensions having more/less log-det
locally and then perform splitting. This preserves the local spatial variation of the image in both parts
of the factorization, leveraging both enhanced density estimation as well as qualitative reconstruction.
Another important observation is since the factorization of dimensions does not occur during the
training time, and before the actual training starts, the decision of dimensions which get factored
at each flow layer is fixed, the change of variables formula can be applied. This allows the use of
non-invertible operations (e.g. max and min pooling) for efficient factorization with log-det heuristic.

Step 1 of dimension factorization phase requires computation of individual contribution of dimensions
([L(l)

d ]s×s×c) towards the total log-likelihood, which can vary depending on the original design of flow
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Algorithm 1: LCMA implementation for generative flow models
Pre-Training Phase: Pre-train a network with no multiscale architecture (no dimensionality

reduction) to obtain the log-det term at every flow layer.
Dimension Factorization: In this phase, the dimensions to be factored at each flow layer is decided

based on the log-det term at that layer

1. The individual contribution of dimensions towards likelihood ([L(l)
d ]s×s×c) is computed

specifically for corresponding flow models (Refer Section 3.1 and Section 3.2).

2. Convert [L(l)
d ]s×s×c into a s

2 ×
s
2 × 4c shaped tensor using local max and min-pooling (=

−max-pooling(−input)) operations (Figure 1) at each flow layer.
3. Among the 4c channels, one half contains the dimensions having more log-det term

compared with its neighbourhood pixel (Black marked in Fig. 1), while the other half
contains the dimensions having less log-det (White marked in Fig. 1).

4. Split the tensor along the channel dimension to two parts.
5. Forward the corresponding dimensions contributing more towards likelihood into more flow

layers and early gaussianize the ones contributing less.
6. Repeat steps 1-5 for all the layers with dimensions passed to that layer till the latent space.

Training Phase: The decision of dimensions to be factored at each layer as performed in previous
step remains fixed. Finally, the flow model with proposed LCMA is trained.

models. Some flow models offer direct decomposition of jacobian into per-dimension components,
whereas for others, an indirect estimation method has to be adopted. We now describe such methods
to obtain such individual likelihood contribution of dimensions for flow models based on affine
coupling (RealNVP (Dinh et al., 2016) and Glow (Kingma & Dhariwal, 2018)), and flow models
involving ordinary differential equation (ODE) based density estimators (i-ResNet (Behrmann et al.,
2018)), all of which involve a multiscale architecture.

3.1 ESTIMATION OF PER-DIMENSION LIKELIHOOD CONTRIBUTION FOR AFFINE COUPLING
BASED FLOW MODELS

RealNVP (Dinh et al., 2016): For RealNVP with afffine coupling layers, the logarithm of individual
diagonal elements of jacobian, summed over layers till layer l provides the per-dimensional likelihood
contribution components at layer l.

Glow (Kingma & Dhariwal, 2018): Unlike RealNVP where the log-det terms for each dimension can
be expressed as log of corresponding diagonal element of jacobian, Glow contains 1× 1 convolution
blocks having non-diagonal log-det term for channel dimensions, for a s× s× c tensor h given by,

log

∣∣∣∣det(dconv2D(h;W)

dh

)∣∣∣∣ = s · s · log |det(W)| (12)

It remains to decompose the log |det(W)| to individual contribution by each channel. As a suitable
candidate, singular values of W correspond to the contribution from each channel dimension, so
their log value is the individual log-det contribution. So the individual log-det term for channels are
obtained by,

|det(W)| =
∏
i

σi(W)⇔ log |det(W)| =
∑
i

log(σi(W)) (13)

where σi(W) are the singular values of the weight matrix W. For affine blocks in Glow, same
method as RealNVP is adopted.

3.2 ESTIMATION OF PER-DIMENSION LIKELIHOOD CONTRIBUTION FOR FLOW MODELS WITH
ODE BASED DENSITY ESTIMATORS

Recent works on flow models such as Behrmann et al. (2018); Grathwohl et al. (2018); Chen
et al. (2019) employ variants of ODE based density estimators. We introduce method to find per-
dimensional likelihood contribution for i-ResNet (Behrmann et al., 2018), which is a residual network
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with invertibility and efficient jacobian computation properties. i-ResNet is modelled as a flow
F (x), such that z = F (x) = (I + g)(x), where g(x) is the forward propagation function. The
log-likelihood expression is written with the log-det of the jacobian is expressed as a power series,

ln px(x) = ln pz(z) + ln |det JF (x)|, ln |det JF (x)| = tr
(
ln
(
I + Jg(x)

))
=

∞∑
k=1

(−1)k+1
tr(Jkg )

k

where tr denotes the trace. Due to computational constraints, the power series is computed up to a
finite number of iterations with the tr(Jkg ) term stochastically approximated by hutchinson’s trace
estimator, tr(A) = Ep(v)

[
vTAv

]
, E[v] = 0 and Cov(v) = I . The component corresponding to each

dimension that becomes part of the log-det term is the diagonal element of Jkg , so the per-dimension
contribution to the likelihood can be approximated as the diagonal elements of Jkg , summed over
the power series upto a finite number of iterations n. The diagonal elements are obtained with the
hutchinson’s trace estimator without any extra cost, i.e. if v = [v1, v2, · · · , vs×s×c]T ,

∞∑
k=1

(−1)k+1
tr(Jkg )

k
=

∞∑
k=1

(−1)k+1
Ep(v)

[
vTJkg v

]
k

=

∞∑
k=1

(−1)k+1
Ep(v)

[
(vTJkg )v

]
k

In above equation, (vTJkg ) is the vector-jacobian product which is multiplied again with v. The
individual components which are summed when (vTJkg ) is multiplied with v correspond to the
diagonal terms in jacobian, over the expectation Ep(v). So those terms are the contribution by the
individual dimensions, to the log-likelihood and are expressed as [L

(l)
d ]s×s×c for use in step 1 of

dimension factorization step in LCMA implementation for i-ResNet.

4 RELATED WORK

Multi-scale architecture and variants have been successful in a number of prior works in deep
generative modeling. For invertible neural networks, Finzi et al. (2019) use a keepChannel for
selective feed forward of channels analogous to multi-scaling. In the spectrum of generative flow
models, multi-scale architecture has been utilized to achieve the dimensionality reduction and
enhanced training because of the distribution of loss function in the network (Dinh et al., 2016;
Kingma & Dhariwal, 2018). A variant of multiscale architecture has been utilized to capture local
variations in auto-regressive models (Reed et al., 2017). Among GAN(Goodfellow et al., 2014)
models, Denton et al. (2015) use a multiscale variant to generate images in a coarse-to-fine manner.
For multi-scale architectures in generative flow models, our proposed method performs factorization
of dimensions based on their likelihood contribution, which in another sense translates to determining
which dimensions are important from density estimation and qualitative reconstruction point of view.
Keeping this in mind, we discuss prior works on generative flow models which involve multi-scaling
and/or incorporate permutation among dimensions to capture their interactions.

A number of generative flow models implement a multi-scale architecture, such as Dinh et al. (2016);
Kingma & Dhariwal (2018); Atanov et al. (2019); Izmailov et al. (2019); Durkan et al. (2019);
Kumar et al. (2019); Behrmann et al. (2018) etc. Kingma & Dhariwal (2018) introduce an 1 × 1
convolution layer in between the actnorm and affine coupling layer in their flow architecture. The
1× 1 convolution is a generalization of permutation operation which ensures that each dimension can
affect every other dimension. This can be interpreted as redistributing the contribution of dimensions
to total likelihood among the whole space of dimensions. So Kingma & Dhariwal (2018) treat the
dimensions as equiprobable for factorization in their implementation of multi-scale architecture, and
split the tensor at each flow layer evenly along the channel dimension. We, on the other hand, take
the next step and focus on the individuality of dimensions and their importance from the amount
they contribute towards the total log-likelihood. The log-det score is available via direct/indirect
decomposition of the jacobian obtained as part of computations in a flow training, so we essentially
have a heuristic for free. Since our method focuses individually on the dimensions using a heuristic
which is always available, it can prove to be have more versatility in being compatible with generic
multi-scale architectures. Hoogeboom et al. (2019) extend the concept of 1 × 1 convolutions to
invertible d× d convolutions, but do not discuss about multi-scaling. Dinh et al. (2016) also include
a type of permutation which is equivalent to reversing the ordering of the channels, but is more
restrictive and fixed. Flow models such as Behrmann et al. (2018); Grathwohl et al. (2018); Chen et al.
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(2019) involve ODE based density estimators. They also implement a multi-scale architecture, but
the splitting operation is a static channel wise splitting without considering importance of individual
dimensions or any permutations. Izmailov et al. (2019); Durkan et al. (2019); Kumar et al. (2019);
Atanov et al. (2019) use multi-scale architecture in their flow models, coherent with Dinh et al. (2016);
Kingma & Dhariwal (2018), but perform the factorization of dimensions without any consideration of
the individual contribution of the dimension towards the total log-likelihood. For qualitative sampling
along with efficient density estimation, we also propose that factorization methods should preserve
spatiality of the image in the two splits, motivated by the spatial nature of splitting methods in Kingma
& Dhariwal (2018) (channel-wise splitting) and Dinh et al. (2016) (checkerboard and channel-wise
splitting).

5 EXPERIMENTS

In Section 3, we established that our proposed likelihood contribution based factorization of dimen-
sions can be implemented for flow models involving a multi-scale architecture, in order to improve
their density estimation and qualitative performance. In this section we present the detailed results
of proposed LCMA adopted for the flow model of RealNVP (Dinh et al., 2016) and quantitative
comparisons with Glow (Kingma & Dhariwal, 2018) and i-ResNet (Behrmann et al., 2018). For
direct comparison, all the experimental settings such as data pre-processing, optimizer parameters as
well as flow architectural details (coupling layers, residual blocks) are kept the same, except that the
factorization of dimensions at each flow layer is performed according to the methods described in
Section 3. For ease of access, we also have summarized the experimental details in Appendix A.

For RealNVP, we perform experiments on four benchmarked image datasets: CIFAR-10 (Krizhevsky,
2009), Imagenet (Russakovsky et al., 2014) (downsampled to 32× 32 and 64× 64), and CelebFaces
Attributes (CelebA) (Liu et al., 2015). The scaling in LCMA is performed once for CIFAR-10, thrice
for Imagenet 32 × 32 and 4 times for Imagenet 64 × 64 and CelebA. We compare LCMA with
conventional RealNVP and report the quantitative and qualitative results. For Glow and i-ResNet
with LCMA, we perform experiments on CIFAR-10 and present improvements over baseline bits/dim.
We also perform an ablation studies for LCMA vs. other possible dimension splitting options.

5.1 QUANTITATIVE COMPARISON

The bits/dim scores of RealNVP with conventional multi-scale architecture (as introduced in Dinh
et al. (2016)) and RealNVP with LCMA are given in Table 1. It can be observed that the density
estimation results using LCMA is in all cases better in comparison to the baseline. We observed
that the improvement for CelebA is relatively high as compared to natural image datasets. This
observation was expected as facial features often contain high redundancy and the flow model learns
to put more importance (reflected in terms of high log-det) on selected dimensions that define the
facial features. Our proposed LCMA exposes such dimensions to more flow layers, making them
more expressive and hence the significant improvement in code length (bits/dim) is observed. The
improvement in bits/dim is less for natural image datasets because of the high variance among
features defining them, which has been the challenge with image compression algorithms. Note that
the improvement in density estimation is always relative to the original flow architecture (RealNVP
in our case) over which we use our proposed LCMA, as we do not alter any architecture other than
the dimension factorization method. The quantitative results of LCMA implementation for RealNVP,
Glow and i-ResNet with CIFAR-10 dataset is summarized in Table 2. The density estimation scores
for flows with LCMA outperform the same flow with conventional multi-scale architectures.

Table 1: Improvements in density estimation (in bits/dim) using proposed method for RealNVP

Model CelebA CIFAR-10 ImageNet
32x32

ImageNet
64x64

RealNVP (Dinh et al., 2016) 3.02 3.49 4.28 3.98

RealNVP flow model with Likelihood
Contribution based Multiscale Architecture (ours)

2.71 3.43 4.21 3.92
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Table 2: Density estimation results (in bits/dim) for RealNVP, Glow and i-ResNet with LCMA trained
on CIFAR-10. ∗Model for i-ResNet has not fully converged

Type of multi-scale architecture RealNVP Glow i-ResNet

Conventional Multi-scale Architecture 3.49 3.35 3.45

Likelihood Contribution based Multi-scale Architecture 3.43 3.31 3.40∗

5.2 QUALITATIVE COMPARISON

An ideal dimension factorization method should capture the local variance over series of flow layers,
which helps in qualitative sampling. For LCMA implementation, we introduced local max and min
pooling operations on log-det heuristic to decide which dimensions to be gaussianized early (Section
3). Figure 2(a) shows samples from original datasets, Figure 2(b) shows the samples from trained
RealNVP flow model with conventional multi-scale architecture and Figure 2(c) shows the samples
from RealNVP with LCMA trained on various datasets. The finer facial details such as hair styles,
eye-lining and facial folds in Celeba samples generated from RealNVP with LCMA were perceptually
better than the baseline. The global feature representation observed is similar to that in RealNVP,
as the flow architecture was kept the same. The background for natural images such as Imagenet
32 × 32 and 64 × 64 was constructed at par with the original flow model. As has been observed
in different flow models such as RealNVP and Glow, the latent space holds knowledge about the
feature representation in the data. We performed linear interpolations in latent space to ensure its
efficient construction and generated images, as shown in Figure 3. The interpolations observed were
smooth, with intermediate samples perceptibly resembling synthetic faces, signifying the efficient
construction of latent space. More interpolations are included in Appendix B.

(a) Examples from the dataset (b) Samples from trained RealNVP
(Dinh et al., 2016)

(c) Samples from trained RealNVP
flow model with LCMA

Figure 2: Samples from RealNVP (Dinh et al., 2016) and RealNVP flow model with proposed
likelihood contribution based multiscale architecture (LCMA) trained on different datasets. The
datasets shown in this figure are in order: CIFAR-10, Imagenet(32× 32), Imagenet (64× 64) and
CelebA (without low-temperature sampling). Additional samples are included in Appendix C.
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Figure 3: Smooth linear interpolations in latent space between two images from CelebA dataset
(without low-temperature sampling). The intermediate samples perceptibly resemble synthetic faces.

5.3 ABLATION STUDY

Table 3: Ablation study results for multi-scale architectures with various factorization methods

Evaluations Fixed Random
Permutation

Multiscale architecture
with early gaussianization of

high log-det dimensions

RealNVP
(Dinh et al., 2016)

Multiscale architecture
with early gaussianization of

low log-det dimensions

Quantitative
Evaluation (Bits/dim)

3.05 3.10 3.02 2.71

Qualitative
Evaluation

We performed ablation studies to compare LCMA with other methods for dimension factorization in
a multi-scale architecture. We consider 4 variants for our study, namely fixed random permutation
(Case 1), multiscale architecture with early gaussianization of high log-det dimensions (Case 2),
factorization method with checker-board and channel splitting as introduced in RealNVP (Case 3) and
multiscale architecture with early gaussianization of low log-det dimensions, which is our proposed
LCMA (Case 4). In fixed random permutation, we randomly partition the tensor into two halves, with
no regard to the spatiality or log-det score. In case 2, we do the reverse of LCMA, and gaussianize
the high log-det variables early. The bits/dim score and generated samples for each of the method are
given in Table 3. As expected from an information theoretic perspective, gaussianizing high log-det
variables early provides the worst density estimation, as the model could not capture the high amount
of important information. Comparing the same with fixed random permutation, the latter has better
score as the probability of a high log-det variable being gaussianized early reduces to half, and it
gets further reduced with RealNVP due to channel-wise and checkerboard splitting. LCMA has the
best score among all methods, as the variables carrying more information are exposed to more flow
layers. Fixed random permutation has the worst quality of sampled images, as the spatiality is lost
during factorization. The sample quality improves for Case 2 and RealNVP. The sampled images are
perceptually best for LCMA. Summarizing, LCMA outperforms multi-scale architectures based on
other factorization methods, as it improves density estimation and generates qualitative samples.

6 CONCLUSIONS

We proposed a novel multi-scale architecture for generative flows which employs a data-dependent
splitting based the individual contribution of dimensions to the total log-likelihood. Implementations
of the proposed method for several state-of-the-art flow models such as RealNVP (Dinh et al., 2016),
Glow(Kingma & Dhariwal, 2018) and i-ResNet(Behrmann et al., 2018) were presented. Empirical
studies conducted on benchmark image datasets validate the strength of our proposed method, which
improves log-likelihood scores and is able to generate qualitative samples. Ablation study results
confirm the power of LCMA over other options for dimension factorization.
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A EXPERIMENTAL SETTINGS

For direct comparison with Dinh et al. (2016), data pre-processing, optimizer parameters as
well as flow architectural details (coupling layers, residual blocks) are kept the same, except
that the factorization of dimensions at each flow layer is performed according to the method
described in Section 3. In this section, for the ease of access, we summarize the experimental settings.

Datasets: We perform experiments on four benchmarked image datasets: CIFAR-10 (Krizhevsky,
2009), Imagenet (Russakovsky et al., 2014) (downsampled to 32× 32 and 64× 64), and CelebFaces
Attributes (CelebA) (Liu et al., 2015).

Pre-processing: For CelebA, we take a central crop of 148 × 148 then resize it to 64 × 64. For
dequantization of images (whose values lies in [0, 256]D), the data is transformed to logit(α+ (1−
α)� x

256 ), where α = 0.05. The sample allocation for training and validation were done as per the
official allocation for the datasets.

Flow model architecture: We use affine coupling layers as introduced (Dinh et al., 2016). A layer
of flow is defined as 3 coupling layers with checkerboard splits at s× s resolution, 3 coupling layers
with channel splits at s/2× s/2 resolution, where s is the resolution at the input of that layer. For
datasets having resolution 32, we use 3 such layers and for those having resolution 64, we use 4
layers. The cascade connection of the layers is followed by 4 coupling layers with checkerboard splits
at the final resolution, marking the end of flow composition. For CIFAR-10, each coupling layer uses
8 residual blocks. Other datasets having images of size 32×32 use 4 residual blocks whereas 64×64
ones use 2 residual blocks. More details on architectures will be given in a source code release.

Optimization parameters: We optimize with ADAM optimizer (Kingma & Ba, 2014) with default
hyperparameters and use an L2 regularization on the weight scale parameters with coefficient 5 ·10−5.
A batch size of 64 was used. The computations were performed in NVIDIA Tesla V100 GPUs.

Multiscale Architecture: Scaling is done once for CIFAR-10, thrice for Imagenet 32 × 32 and 4
times for Imagenet 64× 64 and CelebA.

B INTERPOLATIONS AMONG TWO IMAGES FROM CELEBA DATASET

Figure 4 presents more interpolation examples obtained using our model between two images from
CelebA dataset.

Figure 4: Linear interpolations between two CelebA images (without low-temperature sampling)

12



Under review as a conference paper at ICLR 2020

C ADDITIONAL SAMPLES

In this section, we present more samples from RealNVP model with likelihood contribution based
multiscale architecture trained on different datasets.

Figure 5: Samples from model trained on CIFAR-10 dataset

Figure 6: Samples from model trained on Imagenet 32× 32 dataset
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Figure 7: Samples from model trained on Imagenet 64× 64 dataset

Figure 8: Samples from model trained on CelebA dataset without low-temperature sampling
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