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ABSTRACT

Convolutional Neural Networks (CNNs) filter the input data using a series of spa-
tial convolution operators with compactly supported stencils and point-wise non-
linearities. Commonly, the convolution operators couple features from all chan-
nels. For wide networks, this leads to immense computational cost in the training
of and prediction with CNNs. In this paper, we present novel ways to parameter-
ize the convolution more efficiently, aiming to decrease the number of parameters
in CNNs and their computational complexity. We propose new architectures that
use a sparser coupling between the channels and thereby reduce both the number
of trainable weights and the computational cost of the CNN. Our architectures
arise as new types of residual neural network (ResNet) that can be seen as dis-
cretizations of a Partial Differential Equations (PDEs) and thus have predictable
theoretical properties. Our first architecture involves a convolution operator with
a special sparsity structure, and is applicable to a large class of CNNs. Next, we
present an architecture that can be seen as a discretization of a diffusion reac-
tion PDE, and use it with three different convolution operators. We outline in our
experiments that the proposed architectures, although considerably reducing the
number of trainable weights, yield comparable accuracy to existing CNNs that are
fully coupled in the channel dimension.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) (LeCun et al., 1990) are among the most effective machine
learning approaches for processing structured high-dimensional input data and are indispensable in,
e.g., in recognition tasks involving speech (Raina et al., 2009) and image data (Krizhevsky et al.,
2012). The essential idea behind CNNs is to replace some or all of the affine linear transformations in
a neural network by convolution operators that are typically parameterized using small-dimensional
stencils. This has a number of benefits including the increase of computational efficiency of the
network due to the sparse connections between features, and a considerable reduction in the number
of weights since stencils are shared across the whole feature map (Goodfellow et al., 2016).

In practical applications of CNNs, the features can be grouped into channels whose number is as-
sociated with the width of the network. This gives one several opportunities to define interactions
between the different channels. Perhaps, the most common approach in CNNs is to fully couple
features across channels (Gu et al., 2018; Goodfellow et al., 2016; Krizhevsky et al., 2012). Fol-
lowing this approach, the number of convolution operators at a layer is proportional to the prod-
uct of the number of input and output channels. Given that performing convolutions is often the
computationally most expensive part in training of and prediction with CNNs and the number of
channels is large in many applications, this scaling can be problematic for wide architectures or
high-dimensional data. Another disadvantage of this type of architecture is the number of weights.
Indeed, for deep neural networks, the number of weights that are associated with a wide network
can easily reach millions and beyond. This makes the deployment of such networks challenging,
especially on devices with limited memory.

In this paper, we propose four novel ways to parameterize CNNs more efficiently, based on ideas
from Partial Differential Equations (PDEs). Our goal is to dramatically reduce the number of weights
in the networks and the computational costs of training and evaluating the CNNs. One ides, sim-
ilar to Howard et al. (2017), is to use spatial convolutions for each channel individually and add
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Table 1: Cost comparison of different convolution layers for an image with n pixels, stencil of size
m×m, and c input and output channels. RD denotes a reaction-diffusion architecture.

no. of weights computational costs
fully-coupled O(m2 · c2) O(n ·m2 · c2)

RD explicit O(m2 · c+ c2) O(n(m2 · c+ c2))
RD implicit O(m2 · c+ c2) O(n(log(n) · c+ c2))

RD circulant O(m2 · c+ c2) O((nc) log(cn))

1 × 1 convolutions to impose coupling between them. Our architectures are motivated by the in-
terpretation of residual neural networks (ResNets) (He et al., 2016a;b) as time-dependent nonlinear
PDEs (Ruthotto & Haber, 2018). More specifically, we consider a simple Reaction-Diffusion (RD)
model, that can model highly nonlinear processes. We derive new architectures by discretizing this
continuous model, using 1×1 convolutions as a reaction term, together with cheap forms of a spatial
convolution, that are similar to a depth-wise convolution in the number of parameters and cost. This
spatial convolution acts similarly to a linear diffusion term that smooths the feature channels. Since
the networks we propose originate in continuous models they have distinct theoretical properties
that can be predicted using the standard theory of ODEs and PDEs (Ascher & Petzold, 1998).

Our first approach is designed to be employed in any existing CNN layer with equal number of input
and output channels. We simply replace the traditional fully coupled convolution with a linear sum
of depth-wise and 1 × 1 convolution, like a mask that can be placed on a traditional convolution
in any existing CNN. Our second “explicit” RD architecture applies the operators separately with
a non-linear activation function operating only following the 1 × 1 convolution, as the non-linear
reaction part of the diffusion reaction equation. The third architecture is more unique. To improve
the stability of the forward propagation and increase the spatial coupling of the features, we propose
a semi-implicit scheme for the forward propagation through the network. Unlike traditional CNN
operators, the semi-implicit scheme applies an inverse of the depth-wise (block diagonal) convolu-
tion preceded by a non-linear step involving the 1 × 1 convolution. This way, the scheme couples
all the pixels in the image in one layer, even though we are using a depth-wise 3 × 3 convolution.
The inverse of the convolution operator can be efficiently computed using Fast Fourier Transforms
(FFT) and over the channels and kernels.

The last idea is to replace the depth-wise convolution structure with a circulant connectivity between
the channels. This is motivated by the interpretation of the features as tensors and follows the defi-
nition of an efficient tensor product in (Kernfeld et al., 2015) whose associated tensor singular value
decomposition has been successfully used for image classification in (Newman et al., 2017). The
circulant structure renders the number of trainable convolution stencils proportional to the width of
the layer. Using periodic boundary conditions in the other feature dimensions, this convolution can
be computed efficiently by extending the FFT-based convolutions in (Mathieu et al., 2013; Vasilache
et al., 2014) along the channel dimension, which reduces the cost from O(c2) to O(c log c) where c
is the number of channels.

Table 1 compares the number of weights and the computational complexity associated with the
forward propagation through a layer for the standard and reduced architectures. In the table we
assume that the explicit RD architecture is directly computed without using FFT, but the FFT-based
implementation, which is necessary for the implicit scheme, can also be used for the explicit one.

Our architectures pursue a similar goal than the recently proposed MobileNet architectures that are
also based on a mix of 1 × 1 and “depth-wise” convolutions (Howard et al., 2017; Sandler et al.,
2018). The MobileNet architecture involves with significantly less parameters, and in particular
avoids the fully coupled convolutions, except for 1 × 1 convolutions which are cheaper in both
computational cost and number of parameters. What sets our work apart from these architectures is
that our architectures can be seen as discretization of PDEs, which allows to control their stability
and offers new ways for their analysis.

The remainder of the paper is organized as follows. We first describe the mathematical formula-
tion of the supervised classification problem with deep residual neural networks used in this paper.
Subsequently, we propose the novel parameterizations of CNNs, describe their efficient implemen-
tation, and their computational costs. We perform experiments using the CIFAR10, CIFAR 100, and
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STL10 datasets and demonstrate that the performance of the new architectures, despite a consider-
able reduction in the number of trainable weights, is comparable to residual neural networks using
fully-coupled convolutions. Finally, we summarize and conclude the paper.

2 MATHEMATICAL FORMULATION

In this section, we introduce our main notation and briefly describe the mathematical formulation
of the supervised classification problem used in this paper, which is based on (Goodfellow et al.,
2016). For brevity we restrict the discussions to images although techniques derived here can also
be used for other structured data types such as speech or video data.

Given a set of training data consisting of image-label pairs, {(y(k), c(k))}sk=1 ⊂ Rnf × Rnc and
a residual neural network (ResNets) (He et al., 2016a;b), our goal is to find network parameters
θ ∈ Rn and weights of a linear classifier defined by W, µ ∈ Rnc such that

c(k) ≈ S(Wy(k)(θ) + µ), for all k = 1, 2, . . . , s,

where S is a softmax hypothesis function and y(k)(θ) denotes the output features of the neural
network applied to the kth image. As common, we model the learning problem as an optimization
problem aiming at minimizing a regularized empirical loss function

min
θ,W,µ

1

s

s∑
k=1

L(S(Wy(k)(θ) + µ), c(k)) +R(θ,W, µ),

where in this paper L is the cross entropy and R is a smooth and convex regularization function.
Solving the optimization problem is not the main focus of the paper, and we employ standard variants
of the stochastic gradient descent algorithm (see the original work of Robbins & Monro (1951) and
the survey of (Bottou et al., 2016)).

As common in other deep learning approaches, the performance of the image classification hinges
upon designing an effective the neural network, i.e., the relation between the input feature y(k) and
its filtered version y(k)(θ). The goal in training is to find a θ that transforms the features in a way
that simplifies the classification problem. In this paper, we restrict the discussion to convolutional
ResNets, which have been very successful for image classification tasks. As pointed out by re-
cent works (Haber & Ruthotto, 2017; Chang et al., 2017; Haber et al., 2017; E, 2017; Chaudhari
et al., 2017; Ruthotto & Haber, 2018) there is a connection between ResNets and partial differential
equations (PDEs), which allows one to analyze the stability of a convolution ResNet architecture.

We consider a standard ResNet as a baseline architecture. For a generic example y0, the jth “time
step” of the network reads

yj+1 = yj + F(θj ,yj), for all j = 0, 1, . . . , N − 1, (1)

where θj are the weights associated with the jth step. This step can be seen as a discretization of the
initial value problem

∂ty(t) = F(θ(t),y(t)), y(0) = y0, t ∈ [0, T ]. (2)

In a simple ResNet, the nonlinear term in equation 1 and equation 2 usually reads

F(θ,y) = K(θ(2))>σ(N (K(θ(1))y)), (3)

where σ(x) = max{x, 0} denotes a element-wise rectified linear unit (ReLU) activation function,
the weight vector is partitioned into θ(1) and θ(2) that parameterizes the two linear operators K(θ(1))
and K(θ(1)), andN denotes a normalization layer that may have parameters as well (omitted here).

In CNNs the linear operator K in equation 3 is defined by combining spatial convolution operators,
which gives a rich set of modeling options by, e.g., specifying boundary conditions, padding, strides,
and dilation (Goodfellow et al., 2016). Our focus in this work is the coupling between different fea-
ture channels. Assuming that the input feature y can be grouped into c channels, the most common
choice is to use full coupling in across the channels. As an example, let y consist of four channels
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and the number of output channels be four as well. Then, the operator K(θ) is a four by four block
matrix consisting of convolution matrices C parametrized by the different stencils that comprise θ

K(θ) =


C
(
θ(1)
)

C
(
θ(2)
)

C
(
θ(3)
)

C
(
θ(4)
)

C
(
θ(5)
)

C
(
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)

C
(
θ(7)
)

C
(
θ(8)
)

C
(
θ(9)
)

C
(
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)
C
(
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)
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(
θ(12)

)
C
(
θ(13)

)
C
(
θ(14)

)
C
(
θ(15)

)
C
(
θ(16)

)
 . (4)

Hence, applying a convolution operator going from cin to cout channels requiresO(cin ·cout) convo-
lutions. Since practical implementations of convolutional ResNets often use hundreds of channels,
this coupling pattern leads to large computational costs and to millions of parameters. Hence, we
define more efficient coupling strategies in the next section.

3 LOW-COST PARAMETERIZATIONS OF CONVOLUTION OPERATORS

In this section, we present novel ways to parameterize the convolution operators in CNNs more effi-
ciently. The first convolution operator is a simple sum of a depth-wise and 1× 1 convolution, which
can be thought of as a masked version of equation 4. The next two networks are discretizations of a
new type of ResNet that are inspired by reaction-diffusion PDEs, where depth-wise spatial convolu-
tion operator is used as a diffusion process. The last approach imposes a block circulant structure on
the diffusion operator in the reaction-diffusion PDE. We also provide detailed instructions on how
to implement the proposed architectures efficiently.

3.1 THE DEPTH-WISE AND 1× 1 CONVOLUTIONS

Most of our new architectures are defined using two types of operators. One is the depth-wise
(block diagonal) operator which operates on each channel separately. Omitting the step index j, the
operator in matrix form is given by

Kdw(θ) =


C
(
θ(1)
)

C
(
θ(2)
)

C
(
θ(3)
)

C
(
θ(4)
)
 . (5)

Another building block is the fully-coupled 1×1 convolution operator that couples different channels
but introduces no spatial filtering. For θ ∈ R16, we denote such an operator as

M(θ) =

 θ1 θ5 θ9 θ13
θ2 θ6 θ10 θ14
θ3 θ7 θ11 θ15
θ4 θ8 θ12 θ16

⊗ I, (6)

where ⊗ denotes the Kronecker product, and I is an identity matrix. Note that M(θ) models a reac-
tion between the features in different channels at a given pixel, but introduces no spatial coupling. In
MobileNets (Howard et al., 2017), the operators equation 5 and equation 6 are used interchangeably
in separate neural network layers, which also include non-linear activation and batch-normalization
for each layer separately. We note that the depth-wise convolution is related to the “2D-filter” struc-
turally sparse convolutions in (Wen et al., 2016). There, however, the authors allow the kernels to
be all over the matrix and not only on the diagonal, and choose them via group `1 penalty.

Our first idea to simplify the coupled convolution in equation 4, is to combine the diagonal and
off-diagonal weights into one operator that is multiplied as a standard matrix:

Klm(θ
(1), θ(2)) = Kdw(θ

(1)) +M(θ(2)). (7)

This is a masked version of the original convolution equation 4, with the mask leaving just the block
diagonal and 1× 1 convolution terms (note that the diagonal part of M(θ(2)) can be ignored as the
same coefficients appear also in Kdw(θ

(1))). This type of convolution can be used instead of the
standard operators in CNNs, as long as the number of input and output channels are equal.
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3.2 NETWORKS BASED ON THE REACTION-DIFFUSION EQUATION

As an alternative to the architecture in equations 1-3 we introduce a new class of CNNs based on
the reaction-diffusion like equation

∂ty(t) = −Kdw

(
θ(1)
)>

Kdw

(
θ(1)
)
y(t) + σ

(
N
(
M
(
θ(2)
)
y(t)

))
, y(0) = y0. (8)

Such equations have been used to model highly nonlinear processes such as pattern formation in
complex chemical, biological and social systems. They typically lead to interesting patterns which
suggests that they are highly expressive. Therefore, using such models for learning is very intriguing
and a natural extension for standard ResNets.

3.2.1 EXPLICIT REACTION DIFFUSION CNN.

In the simplest, “explicit”, discretization of the RD equation we use a ResNet structure of

yj+1 = yj + h

(
−Kdw

(
θ
(1)
j

)>
Kdw

(
θ
(1)
j

)
yj + σ

(
N (M(θ

(2)
j )yj)

))
, (9)

where the time step h > 0 is chosen sufficiently small. The first symmetric and positive (semi)
definite convolution operates as a diffusion on each channel separately, while the second term—the
1 × 1 convolution— models a reaction between the features in different channels at a given pixel,
without introducing spatial coupling.

Both types of linear operators in equation 9 can be implemented efficiently. The fully coupled part
in M is identical to the standard 1×1 convolution, and can be computed by a single call to a matrix-
matrix multiplication BLAS routine (gemm) without any need to manipulate or copy the data. For
2D convolutions with filter size m the cost of this operation is a factor m2 cheaper. The depth-wise
operator Kdw can be computed directly by applying standard convolutions on each of the channels.
However, it can also be computed using FFT. Similar as above, each operator C in equation 5 can
be evaluated by

C̃y = F−12

(
(F2(C̃e1))� (F2y)

)
, (10)

where F2 and F−12 are the 2D FFT and inverse FFT, respectively, and e1 is the first standard basis
vector. The cost of this computation scales linearly with the number of channels compared with the
number of channels square of the standard fully connected convolution. The convolution is applied
using the batched 2D FFT routines in the library cufft.

3.2.2 IMPLICIT REACTION DIFFUSION CNN.

Our second type of CNN may be seen as an “implicit” version of the previous convolutional layer,
which is known to be a stable way to discretize the forward propagation equation 8. Here, we use a
semi-implicit time-stepping

yj+1 =
(
I+ hKdw(θ

(1)
j )>Kdw(θ

(1)
j )
)−1 (

yj + hσ(N (M(θ
(2)
j )yj))

)
. (11)

The better stability of the implicit equation stems from the unconditionally bounded spectral radius
of the first operator, specifically

ρ
((

I+ hKdw(θ)
>Kdw(θ)

)−1)
< 1, ∀θ.

Since this matrix is part of the Jacobian of the forward step (with respect to the input), the stability
properties of the implicit forward propagation (Ruthotto & Haber, 2018) are better than those of
its explicit counterpart. This behaviour is well known in the context of time-dependent PDEs. In
addition, the implicit step has another advantage. It yields a global coupling between pixels in only
one application, which allows features in one side of the image to impact features in other side.
The coupling decays away from the center of the convolution and is strongly related to the Green’s
Function of the associated convolution.

We exploit the special structure of Kdw to efficiently solve the linear system in equation 11 using
O(c ·n log(n)) operations. While, in general, inverting a K×K matrix inversion requires aO(K3)

5



Under review as a conference paper at ICLR 2019

operation, the depth-wise kernel Kdw is block diagonal and therefore, the inverse is computed by
solving each of the c blocks individually and in parallel. Since each diagonal block is a convolution,
its inverse can be computed efficiently using a 2D FFT when assuming periodic boundary conditions.
To this end we use the formula

(hC>C+ I)−1y = F−12

(
(h|F2Ce1|2 + 1)−1 � (F2y)

)
.

The FFT operations are essentially identical to the ones in equation 10, and hence have similar cost.

3.2.3 BLOCK CIRCULANT CONVOLUTION AS THE DIFFUSION.

Another way to increase the computational efficiency of CNNs is based on the interpretation of the
image data as a 3D tensor whose third dimension represents the channels. Following the notion of
the tensor product in (Kernfeld et al., 2015), we define using the block circulant operator

Kcirc(θ) =
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 . (12)

Using the associated tensor SVD has shown promising results (Newman et al., 2017) on the MNIST
data set. We assume periodic boundary conditions (potentially requiring padding). Under this as-
sumption, a matrix-vector product between the block circulant matrix with circulant blocks, Kcirc

and a feature vector, can be done using a Fast Fourier Transform (FFT), i.e.,

Kcircy = F−13 ((F3(Kcirce1))� (F3y)).

Here, F3 is a 3D Fast Fourier Transform (FFT), F−13 is its inverse (see, e.g., (Hansen et al., 2006)
for details). The computational complexity of this product in proportional to (nc) log(nc) where n
is the number of pixels, compared to the order of m2nc2 of the fully coupled convolution. It also
requires much less parameters. While standard convolution requiresm2·c2 variables our convolution
requires only m2 · c variables that we save in a 3D array.

4 EXPERIMENTS

We experimentally compare the architectures proposed in this paper to the ResNet and MobileNet
architectures using the CIFAR-10, CIFAR100 (Krizhevsky & Hinton, 2009) and STL-10 (Coates
et al., 2011) data sets. Our primary focus is on showing that similar accuracy can be achieved using
a considerably smaller number of weights in the networks. All our experiments are performed with
the PyTorch software (Paszke et al., 2017).

Base Architecture. We use the same base architecture in all our numerical experiments, which
is a slightly modified version of the one described in (Chang et al., 2017). We use three network
sizes, but the overall structure is identical between them. Our goal is to use simple, standard, and
rather small networks, and show that the new architectures can lead to a performance comparable to
a standard ResNet architecture using even less parameters.

Our networks consist of several blocks, that are preceded by an opening layer. This opening layer is
a convolutional layer with a 5 × 5 convolution that increases the number of channels from 3 to 32
or 48, depending on the network. This is followed by a batch normalization, and a ReLu activation.
Then, there are several blocks (three or four), each consisting of a ResNet based part with four steps
that varies between the different experiments except the ReLu activation and batch normalization.
The architectures for the series of steps are:

• ResNet - a step with two fully coupled convolutions as defined in equation 1-equation 3.
• MobileNet - a two layer neural network similar to (Howard et al., 2017)

ŷ = σ(N (Kbd(θ
(1))yj)); yj+1 = σ(N (M(θ(2))ŷ)). (13)

• LinearMix - a ResNet step using equation 7 as operators.
• Explicit / implicit RD - the architectures in equation 9, equation 11 respectively.

6



Under review as a conference paper at ICLR 2019

Table 2: Classification results
CIFAR10 CIFAR100 STL10

Architecture Network val. acc. Network val. acc. Network val. acc.
ResNet A (1.5M) 93.1% B (3.4M) 71.7% A(1.5M) 74.9%
ResNet B (3.5M) 93.0% C (6.3M) 69.9% B(3.5M) 75.3%
MobileNet A (101K) 89.5% B (251K) 65.6% A(101K) 74.9%
MobileNet B (216K) 91.6% C (423K) 61.9% B(216K) 77.2%
LinearMix A (195K) 91.3% B (456K) 67.9% A(195K) 75.6%
LinearMix B (422K) 92.1% C (789K) 69.2% B (422K) 75.6%
Exp. RD A (101K) 88.9% B (250K) 66.1% A (101K) 74.6%
Exp. RD B (216K) 90.6% C (423K) 65.2% B (216K) 75.9%
Imp. RD A (101K) 88.7% B (250K) 64.6% A(101K) 73.8%
Imp. RD B (216K) 90.3% C (423K) 64.9% B(216K) 73.4%
Circ. RD A (101K) 86.0% B (250K) 60.2% A(101K) 69.6%
Circ. RD B (216K) 88.0% C (423K) 60.0% B (216K) 70.5%

• Circular RD - the architectures in equation 9 with Kcirc in equation 12 instead of Kdw.

Each series of steps is followed by a single “connecting” layer that takes the images and concatenate
them the same images multiplied with a depth-wise convolution operator and batch-normalization:

x← N ([x;Kdw(θ)x]).

This doubles the number of channels, and following this we have an average pooling layer with
down-sample the images by a factor of 2 at each dimension. We have also experimented with other
connecting layers, such as a more standard 1 × 1 convolution either followed by pooling or with
strides, leading to similar results. We use three networks that differ in the number of channels:

A : 32− 64− 128 B : 48− 96− 192 C : 32− 64− 128− 256

The last block consists of a pooling layer that averages the image intensities of each channel to a
single pixel and we use a fully-connected linear classifier with softmax and cross entropy loss.

As the number of parameters is typically small, we do not use regularization for training the net-
works. For training the networks we use the ADAM optimizer (Kingma & Ba, 2014), with its default
parameters. We run 300 epochs and reduce the learning rate by a factor or 0.5 every 60 epochs, start-
ing from 0.01. We used a mini-batch size of 100. We also used standard data augmentation, i.e.,
random resizing, cropping and horizontal flipping.

Data Sets: The CIFAR-10 and CIFAR100 datasets (Krizhevsky & Hinton, 2009) consists of
60,000 natural images of size 32×32 with labels assigning each image into one of ten categories (for
CIFAR10) or 100 categories (for CIFAR100). The data are split into 50,000 training and 10,000 test
images. The STL-10 dataset (Coates et al., 2011) contains 13, 000 color-images each of size 96×96
that are divided into 5, 000 training and 8, 000 test images that are split into the ten categories.

Our classification results are given in Table 2. The results show that our different architectures are
in par and in some cases better than other networks. The theoretical properties of our architectures
can be explained by the standard theory of ODEs and PDEs which makes them more predictable
given small perturbations in the network parameters (for example, truncation errors) or noise in the
data (Ruthotto & Haber, 2018). The architecture used is computationally efficient and the efficiency
increases as the number of channels increases. For many problems where the number of channels is
in the thousands, our approach can yield significant benefits compared with other architectures.

4.1 COMPUTATIONAL PERFORMANCE

In this section we compare the runtime of the forward step of our FFT-based convolutions relatively
to the runtime of the fully coupled convolution in equation 4, which is computed using the cudnn
package version 7.1. This package is used in all of the GPU implementations of CNN frameworks
known to us. Both the circular and depth-wise convolutions are implemented using cufft as noted
above. For the direct depth-wise convolution, we use PyTorch’s implementation using groups.
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Figure 1: Runtime ratio between cudnn’s fully coupled convolution, depth-wise convolution and
our implementation of the depth-wise (explicit or implicit) and circular convolutions. Except the
measured parameter, the default parameters for all tests are: batch size: 64, image size: 642, number
of channels: 256, kernel size 3× 3.

The experiments are run on a Titan Xp GPU. We report the relative computation time

time(Fully coupled using cudnn)
time(Our implementation)

,

so we wish that the ratio is large. We note that the convolutions equation 12 and equation 5 can
also be applied using cudnn by manually forming the convolution kernel (zero-filled, or circularly
replicated), and hence we can use cudnn in cases where the time ratio is smaller than 1.

Our tests are reported in Fig. 1. The presented runtime ratio was calculated based on the total time
of 100 convolutions. The left most graph presents the execution time ratio with respect to the image
size. As expected, the execution time ratio does not depend on the image size in all convolutions,
except for the direct method at small scales, which may be faster due to efficient memory access. The
middle graph presents the execution time ratio with respect to the stencil size. Here, since both of our
implementations apply the FFT on a zero-padded kernel weights, their execution time is independent
of the kernel size, and the time ratio compared to the direct gemm-based cudnn implementation
improves as the kernel grows. The FFT-based implementation is favorable if one wishes to enrich
the depth-wise convolution models with wider stencils. The left-most graph presents the execution
ratio with respect to the number of channels. Here we can clearly see that the execution ratio is
linear in the number of channel, with a ratio of 1 achieved at about 200 channels for the FFT-based
implementations. The direct convolution has a better constant, but the overall complexity is similar.
Clearly, the considered convolutions are more favorable for wide networks.

5 DISCUSSION AND CONCLUSION

We present four new convolution models with the common goal of reducing the number of param-
eters and computational costs of CNNs. To this end, we propose alternative ways to the traditional
full coupling of channels, and thereby obtain architectures that involve fewer expensive convolu-
tions, avoid redundancies in the network parametrization, and thereby can be deployed more widely.
Our work is similar to that of (Howard et al., 2017; Sandler et al., 2018). However, our unique angle
is the close relation of our architectures to continuous models given in terms of PDEs that are well
understood. This highlights stability of our CNNs and paves the way toward more extensive theory.

Our numerical experiments for image classification show that the new architectures can be almost
as effective as more expensive fully coupled CNN architectures. We expect that our architectures
will be able to replace the traditional convolutions in classification of audio and video, and also
in other tasks that are treated with CNNs. It is important to realize that our new architectures
become even more advantageous for 3D or 4D problems, e.g., when analyzing time series of medical
or geophysical images. In these cases, the cost of each convolution is much more expensive and
the computational complexity makes using 3D CNNs difficult. Here, also the number of weights
imposes challenges when using computational hardware with moderate memory.
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