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ABSTRACT

Sorting input objects is an important step in many machine learning pipelines.
However, the sorting operator is non-differentiable with respect to its inputs,
which prohibits end-to-end gradient-based optimization. In this work, we propose
NeuralSort, a general-purpose continuous relaxation of the output of the sorting
operator from permutation matrices to the set of unimodal row-stochastic matri-
ces, where every row sums to one and has a distinct argmax. This relaxation
permits straight-through optimization of any computational graph involve a sort-
ing operation. Further, we use this relaxation to enable gradient-based stochastic
optimization over the combinatorially large space of permutations by deriving a
reparameterized gradient estimator for the Plackett-Luce family of distributions
over permutations. We demonstrate the usefulness of our framework on three tasks
that require learning semantic orderings of high-dimensional objects, including a
fully differentiable, parameterized extension of the k-nearest neighbors algorithm.

1 INTRODUCTION

Learning to automatically sort objects is useful in many machine learning applications, such as top-
k multi-class classification (Berrada et al., 2018), ranking documents for information retrieval (Liu
et al., 2009), and multi-object target tracking in computer vision (Bar-Shalom & Li, 1995). Such al-
gorithms typically require learning informative representations of complex, high-dimensional data,
such as images, before sorting and subsequent downstream processing. For instance, the k-nearest
neighbors image classification algorithm, which orders the neighbors based on distances in the
canonical pixel basis, can be highly suboptimal for classification (Weinberger et al., 2006). Deep
neural networks can instead be used to learn representations, but these representations cannot be
optimized end-to-end for a downstream sorting-based objective, since the sorting operator is not
differentiable with respect to its input.

In this work, we seek to remedy this shortcoming by proposing NeuralSort, a continuous relaxation
to the sorting operator that is differentiable almost everywhere with respect to the inputs. The output
of any sorting algorithm can be viewed as a permutation matrix, which is a square matrix with
entries in {0, 1} such that every row and every column sums to 1. Instead of a permutation matrix,
NeuralSort returns a unimodal row-stochastic matrix. A unimodal row-stochastic matrix is defined
as a square matrix with positive real entries, where each row sums to 1 and has a distinct argmax.
All permutation matrices are unimodal row-stochastic matrices. NeuralSort has a temperature knob
that controls the degree of approximation, such that in the limit of zero temperature, we recover a
permutation matrix that sorts the inputs. Even for a non-zero temperature, we can efficiently project
any unimodal matrix to the desired permutation matrix via a simple row-wise argmax operation.
Hence, NeuralSort is also suitable for efficient straight-through gradient optimization (Bengio et al.,
2013), which requires “exact” permutation matrices to evaluate learning objectives.

As the second primary contribution, we consider the use of NeuralSort for stochastic optimization
over permutations. In many cases, such as latent variable models, the permutations may be latent
but directly influence observed behavior, e.g., utility and choice models are often expressed as dis-
tributions over permutations which govern the observed decisions of agents (Regenwetter et al.,
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2006; Chierichetti et al., 2018). By learning distributions over unobserved permutations, we can ac-
count for the uncertainty in these permutations in a principled manner. However, the challenge with
stochastic optimization over discrete distributions lies in gradient estimation with respect to the dis-
tribution parameters. Vanilla REINFORCE estimators are impractical for most cases, or necessitate
custom control variates for low-variance gradient estimation (Glasserman, 2013).

In this regard, we consider the Plackett-Luce (PL) family of distributions over permutations (Plack-
ett, 1975; Luce, 1959). A common modeling choice for ranking models, the PL distribution is
parameterized by n scores, with its support defined over the symmetric group consisting of n! per-
mutations. We derive a reparameterizable sampler for stochastic optimization with respect to this
distribution, based on Gumbel perturbations to the n (log-)scores. However, the reparameterized
sampler requires sorting these perturbed scores, and hence the gradients of a downstream learning
objective with respect to the scores are not defined. By using NeuralSort instead, we can approximate
the objective and obtain well-defined reparameterized gradient estimates for stochastic optimization.

Finally, we apply NeuralSort to tasks that require us to learn semantic orderings of complex, high-
dimensional input data. First, we consider sorting images of handwritten digits, where the goal is
to learn to sort images by their unobserved labels. Our second task extends the first one to quantile
regression, where we want to estimate the median (50-th percentile) of a set of handwritten numbers.
In addition to identifying the index of the median image in the sequence, we need to learn to map
the inferred median digit to its scalar representation. In the third task, we propose an algorithm that
learns a basis representation for the k-nearest neighbors (kNN) classifier in an end-to-end proce-
dure. Because the choice of the k nearest neighbors requires a non-differentiable sorting, we use
NeuralSort to obtain an approximate, differentiable surrogate. On all tasks, we observe significant
empirical improvements due to NeuralSort over the relevant baselines and competing relaxations to
permutation matrices.

2 PRELIMINARIES

An n-dimensional permutation z = [z1, z2, . . . , zn]
T is a list of unique indices {1, 2, . . . , n}. Every

permutation z is associated with a permutation matrix Pz ∈ {0, 1}n×n with entries given as:

Pz[i, j] =

{
1 if j = zi
0 otherwise.

Let Zn denote the set of all n! possible permutations in the symmetric group. We define the
sort : Rn → Zn operator as a mapping of n real-valued inputs to a permutation correspond-
ing to a descending ordering of these inputs. E.g., if the input vector s = [9, 1, 5, 2]T , then
sort(s) = [1, 3, 4, 2]T since the largest element is at the first index, second largest element is
at the third index and so on. In case of ties, elements are assigned indices in the order they appear.
We can obtain the sorted vector simply via Psort(s)s.

2.1 PLACKETT-LUCE DISTRIBUTIONS

The family of Plackett-Luce distributions over permutations is best described via a generative pro-
cess: Consider a sequence of n items, each associated with a canonical index i = 1, 2, . . . , n. A
common assumption in ranking models is that the underlying generating process for any observed
permutation of n items satisfies Luce’s choice axiom (Luce, 1959). Mathematically, this axiom de-
fines the ‘choice’ probability of an item with index i as: q(i) ∝ si where si > 0 is interpreted as the
score of item with index i. The normalization constant is given by Z =

∑
i∈{1,2,...,n} si.

If we choose the n items one at a time (without replacement) based on these choice probabilities,
we obtain a discrete distribution over all possible permutations. This distribution is referred to as
the Plackett-Luce (PL) distribution, and its probability mass function for any z ∈ Zn is given by:

q(z|s) = sz1
Z

sz2
Z − sz1

· · · szn

Z −
∑n−1
i=1 szi

(1)

where s = {s1, s2, . . . , sn} is the vector of scores parameterizing this distribution (Plackett, 1975).
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Figure 1: Stochastic computation graphs with a deterministic node z corresponding to the output of
a sort operator applied to the scores s.

2.2 STOCHASTIC COMPUTATION GRAPHS

The abstraction of stochastic computation graphs (SCG) compactly specifies the forward value and
the backward gradient computation for computational circuits. An SCG is a directed acyclic graph
that consists of three kinds of nodes: input nodes which specify external inputs (including param-
eters), deterministic nodes which are deterministic functions of their parents, and stochastic nodes
which are distributed conditionally on their parents. See Schulman et al. (2015) for a review.

To define gradients of an objective function with respect to any node in the graph, the chain rule
necessitates that the gradients with respect to the intermediate nodes are well-defined. This is not
the case for the sort operator. In Section 3, we propose to extend stochastic computation graphs
with nodes corresponding to a relaxation of the deterministic sort operator. In Section 4, we
further use this relaxation to extend computation graphs to include stochastic nodes corresponding
to distributions over permutations. The proofs of all theoretical results in this work are deferred to
Appendix B.

3 NEURALSORT: THE RELAXED SORTING OPERATOR

Our goal is to optimize training objectives involving a sort operator with gradient-based methods.
Consider the optimization of objectives written in the following form:

L(θ, s) = f(Pz; θ) (2)
where z = sort(s).

Here, s ∈ Rn denotes a vector of n real-valued scores, z is the permutation that (deterministically)
sorts the scores s, and f(·) is an arbitrary function of interest assumed to be differentiable w.r.t a set
of parameters θ and z. For example, in a ranking application, these scores could correspond to the
inferred relevances of n webpages and f(·) could be a ranking loss. Figure 1 shows the stochastic
computation graph corresponding to the objective in Eq. 2. We note that this could represent part of
a more complex computation graph, which we skip for ease of presentation while maintaining the
generality of the scope of this work.

While the gradient of the above objective w.r.t. θ is well-defined and can be computed via standard
backpropogation, the gradient w.r.t. the scores s is not defined since the sort operator is not
differentiable w.r.t. s. Our solution is to derive a relaxation to the sort operator that leads to
a surrogate objective with well-defined gradients. In particular, we seek to use such a relaxation
to replace the permutation matrix Pz in Eq. 2 with an approximation P̂z such that the surrogate
objective f(P̂z; θ) is differentiable w.r.t. the scores s.

The general recipe to relax non-differentiable operators with discrete codomains N is to consider
differentiable alternatives that map the input to a larger continuous codomain M with desirable
properties. For gradient-based optimization, we are interested in two key properties:

1. The relaxation is continuous everywhere and differentiable (almost-)everywhere with re-
spect to elements in the input domain.

2. There exists a computationally efficient projection fromM back to N .

Relaxations satisfying the first requirement are amenable to automatic differentiation for optimizing
stochastic computational graphs. The second requirement is useful for evaluating metrics and losses
that necessarily require a discrete output akin to the one obtained from the original, non-relaxed
operator. E.g., in straight-through gradient estimation (Bengio et al., 2013; Jang et al., 2017), the
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Figure 2: Center: Venn Diagram relationships between permutation matrices (P), doubly-stochastic
matrices (D), unimodal row stochastic matrices (U), and row stochastic matrices (R). Left: A
doubly-stochastic matrix that is not unimodal. Right: A unimodal matrix that is not doubly-
stochastic.

non-relaxed operator is used for evaluating the learning objective in the forward pass and the relaxed
operator is used in the backward pass for gradient estimation.

The canonical example is the 0/1 loss used for binary classification. While the 0/1 loss is discon-
tinuous w.r.t. its inputs (real-valued predictions from a model), surrogates such as the logistic and
hinge losses are continuous everywhere and differentiable almost-everywhere (property 1), and can
give hard binary predictions via thresholding (property 2).

Note: For brevity, we assume that the argmax operator is applied over a set of elements with
a unique maximizer and hence, the operator has well-defined semantics. With some additional
bookkeeping for resolving ties, the results in this section hold even if the elements to be sorted are
not unique. See Appendix C.

Unimodal Row Stochastic Matrices. The sort operator maps the input vector to a permuta-
tion, or equivalently a permutation matrix. Our relaxation to sort is motivated by the geometric
structure of permutation matrices. The set of permutation matrices is a subset of doubly-stochastic
matrices, i.e., a non-negative matrix such that the every row and column sums to one. If we remove
the requirement that every column should sum to one, we obtain a larger set of row stochastic ma-
trices. In this work, we propose a relaxation to sort that maps inputs to an alternate subset of row
stochastic matrices, which we refer to as the unimodal row stochastic matrices.
Definition 1 (Unimodal Row Stochastic Matrices). An n× n matrix is Unimodal Row Stochastic if
it satisfies the following conditions:

1. Non-negativity: U [i, j] ≥ 0 ∀i, j ∈ {1, 2, . . . , n}.

2. Row Affinity:
∑n
j=1 U [i, j] = 1 ∀i ∈ {1, 2, . . . , n}.

3. Argmax Permutation: Let u denote an n-dimensional vector with entries such that ui =
argmaxj U [i, j] ∀i ∈ {1, 2, . . . , n}. Then, u ∈ Zn, i.e., it is a valid permuation.

We denote Un as the set of n× n unimodal row stochastic matrices.

All row stochastic matrices satisfy the first two conditions. The third condition is useful for gradient
based optimization involving sorting-based losses. The condition provides a straightforward mech-
anism for extracting a permutation from a unimodal row stochastic matrix via a row-wise argmax
operation. Figure 2 shows the relationships between the different subsets of square matrices.

NeuralSort. Our relaxation to the sort operator is based on a standard identity for evaluating the
sum of the k largest elements in any input vector.
Lemma 2. [Lemma 1 in Ogryczak & Tamir (2003)] For an input vector s = [s1, s2, . . . , sn]

T that
is sorted as s[1] ≥ s[2] ≥ . . . ≥ s[n], we have the sum of the k-largest elements given as:

k∑
i=1

s[i] = min
λ∈{s1,s2,...,sn}

λk +

n∑
i=1

max(si − λ, 0). (3)

The identity in Lemma 2 outputs the sum of the top-k elements. The k-th largest element itself can
be recovered by taking the difference of the sum of top-k elements and the top-(k − 1) elements.
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Figure 3: Stochastic computation graphs with stochastic nodes corresponding to permutations.
Squares denote deterministic nodes and circles denote stochastic nodes.

Corollary 3. Let s = [s1, s2, . . . , sn]
T be a real-valued vector of length n. LetAs denote the matrix

of absolute pairwise differences of the elements of s such that As[i, j] = |si − sj |. The permutation
matrix Psort(s) corresponding to sort(s) is given by:

Psort(s)[i, j] =

{
1 if j = argmax[(n+ 1− 2i)s−As1]

0 otherwise
(4)

where 1 denotes the column vector of all ones.

E.g., if we set i = b(n + 1)/2c then the non-zero entry in the i-th row Psort(s)[i, :] corresponds
to the element with the minimum sum of (absolute) distance to the other elements. As desired, this
corresponds to the median element. The relaxation requires O(n2) operations to compute As, as
opposed to the O(n log n) overall complexity for the best known sorting algorithms. In practice
however, it is highly parallelizable and can be implemented efficiently on GPU hardware.

The argmax operator is non-differentiable which prohibits the direct use of Corollary 3 for gradi-
ent computation. Instead, we propose to replace the argmax operator with softmax to obtain a
continuous relaxation P̂sort(s)(τ). In particular, the i-th row of P̂sort(s)(τ) is given by:

P̂sort(s)[i, :](τ) = softmax [((n+ 1− 2i)s−As1)/τ ] (5)

where τ > 0 is a temperature parameter. Our relaxation is continuous everywhere and differentiable
almost everywhere with respect to the elements of s. Furthermore, we have the following result.

Theorem 4. Let P̂sort(s) denote the continuous relaxation to the permutation matrix Psort(s) for
an arbitrary input vector s and temperature τ defined in Eq. 5. Then, we have:

1. Unimodality: ∀τ > 0, P̂sort(s) is a unimodal row stochastic matrix. Further, let u denote
the permutation obtained by applying argmax row-wise to P̂sort(s). Then, u = sort(s).

2. Limiting behavior: If we assume that the entries of s are drawn independently from a dis-
tribution that is absolutely continuous w.r.t. the Lebesgue measure in R, then the following
convergence holds almost surely:

lim
τ→0+

P̂sort(s)[i, :](τ) = Psort(s)[i, :] ∀i ∈ {1, 2, . . . , n}. (6)

Unimodality allows for efficient projection of the relaxed permutation matrix P̂sort(s) to the hard
matrix Psort(s) via a row-wise argmax, e.g., for straight-through gradients. For analyzing limiting
behavior, independent draws ensure that the elements of s are distinct almost surely. The temperature
τ controls the degree of smoothness of our approximation. At one extreme, the approximation
becomes tighter as the temperature is reduced. In practice however, the trade-off is in the variance
of these estimates, which is typically lower for larger temperatures.

4 STOCHASTIC OPTIMIZATION OVER PERMUTATIONS

In many scenarios, we would like the ability to express our uncertainty in inferring a permutation
e.g., latent variable models with latent nodes corresponding to permutations. Random variables
that assume values corresponding to permutations can be represented via stochastic nodes in the
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stochastic computation graph. For optimizing the parameters of such a graph, consider the following
class of objectives:

L(θ, s) = Eq(z|s) [f(Pz; θ)] (7)
where θ and s denote sets of parameters, Pz is the permutation matrix corresponding to the permu-
tation z, q(·) is a parameterized distribution over the elements of the symmetric group Zn, and f(·)
is an arbitrary function of interest assumed to be differentiable in θ and z. The SCG is shown in
Figure 3a. In contrast to the SCG considered in the previous section (Figure 1), here we are dealing
with a distribution over permutations as opposed to a single (deterministically computed) one.

While such objectives are typically intractable to evaluate exactly since they require summing over
a combinatorially large set, we can obtain unbiased estimates efficiently via Monte Carlo. Monte
Carlo estimates of gradients w.r.t. θ can be derived simply via linearity of expectation. However,
the gradient estimates w.r.t. s cannot be obtained directly since the sampling distribution depends
on s. The REINFORCE gradient estimator (Glynn, 1990; Williams, 1992; Fu, 2006) uses the fact
that∇sq(z|s) = q(z|s)∇s log q(z|s) to derive the following Monte Carlo gradient estimates:

∇sL(θ, s) = Eq(z|s) [f(Pz; θ)∇s log q(z|s)] + Eq(z|s) [∇sf(Pz; θ)] . (8)

4.1 REPARAMETERIZED GRADIENT ESTIMATORS FOR PL DISTRIBUTIONS

REINFORCE gradient estimators typically suffer from high variance (Schulman et al., 2015;
Glasserman, 2013). Reparameterized samplers provide an alternate gradient estimator by express-
ing samples from a distribution as a deterministic function of its parameters and a fixed source
of randomness (Kingma & Welling, 2014; Rezende et al., 2014; Titsias & Lázaro-Gredilla, 2014).
Since the randomness is from a fixed distribution, Monte Carlo gradient estimates can be derived by
pushing the gradient operator inside the expectation (via linearity). In this section, we will derive a
reparameterized sampler and gradient estimator for the Plackett-Luce (PL) family of distributions.

Let the score si for an item i ∈ {1, 2, . . . , n} be an unobserved random variable drawn from some
underlying score distribution (Thurstone, 1927). Now for each item, we draw a score from its
corresponding score distribution. Next, we generate a permutation by applying the deterministic
sort operator to these n randomly sampled scores. Interestingly, prior work has shown that the
resulting distribution over permutations corresponds to a PL distribution if and only if the scores are
sampled independently from Gumbel distributions with identical scales.
Proposition 5. [adapted from Yellott Jr (1977)] Let s be a vector of scores for the n items. For each
item i, sample gi ∼ Gumbel(0, β) independently with zero mean and a fixed scale β. Let s̃ denote
the vector of Gumbel perturbed log-scores with entries such that s̃i = β log si + gi. Then:

q(s̃z1 ≥ · · · ≥ s̃zn) =
sz1
Z

sz2
Z − sz1

· · · szn

Z −
∑n−1
i=1 szi

. (9)

For ease of presentation, we assume β = 1 in the rest of this work. Proposition 5 provides a method
for sampling from PL distributions with parameters s by adding Gumbel perturbations to the log-
scores and applying the sort operator to the perturbed log-scores. This procedure can be seen as a
reparameterization trick that expresses a sample from the PL distribution as a deterministic function
of the scores and a fixed source of randomness (Figure 3b). Letting g denote the vector of i.i.d.
Gumbel perturbations, we can express the objective in Eq. 7 as:

L(θ, s) = Eg

[
f(Psort(log s+g); θ)

]
. (10)

While the reparameterized sampler removes the dependence of the expectation on the parameters
s, it introduces a sort operator in the computation graph such that the overall objective is non-
differentiable in s. In order to obtain a differentiable surrogate, we approximate the objective based
on the NeuralSort relaxation to the sort operator:

Eg

[
f(Psort(log s+g); θ)

]
≈ Eg

[
f(P̂sort(log s+g); θ)

]
:= L̂(θ, s). (11)

Accordingly, we get the following reparameterized gradient estimates for the approximation:

∇sL̂(θ, s) = Eg

[
∇sf(P̂sort(log s+g); θ)

]
(12)

which can be estimated efficiently via Monte Carlo because the expectation is with respect to a
distribution that does not depend on s.
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5 DISCUSSION AND RELATED WORK

The problem of learning to rank documents based on relevance has been studied extensively in the
context of information retrieval. In particular, listwise approaches learn functions that map objects
to scores. Much of this work concerns the PL distribution: the RankNet algorithm (Burges et al.,
2005) can be interpreted as maximizing the PL likelihood of pairwise comparisons between items,
while the ListMLE ranking algorithm in Xia et al. (2008) extends this with a loss that maximizes
the PL likelihood of ground-truth permutations directly. The differentiable pairwise approaches to
ranking, such as Rigutini et al. (2011), learn to approximate the comparator between pairs of objects.
Our work considers a generalized setting where sorting based operators can be inserted anywhere in
computation graphs to extend traditional pipelines e.g., kNN.

Prior works have proposed relaxations of permutation matrices to the Birkhoff polytope, which is
defined as the convex hull of the set of permutation matrices a.k.a. the set of doubly-stochastic
matrices. A doubly-stochastic matrix is a permutation matrix iff it is orthogonal and continuous
relaxations based on these matrices have been used previously for solving NP-complete problems
such as seriation and graph matching (Fogel et al., 2013; Fiori et al., 2013; Lim & Wright, 2014).
Adams & Zemel (2011) proposed the use of the Sinkhorn operator to map any square matrix to
the Birkhoff polytope. They interpret the resulting doubly-stochastic matrix as the marginals of a
distribution over permutations. Mena et al. (2018) propose an alternate method where the square
matrix defines a latent distribution over the doubly-stochastic matrices themselves. These distribu-
tions can be sampled from by adding elementwise Gumbel perturbations. Linderman et al. (2018)
propose a rounding procedure that uses the Sinkhorn operator to directly sample matrices near the
Birkhoff polytope. Unlike Mena et al. (2018), the resulting distribution over matrices has a tractable
density. In practice, however, the approach of Mena et al. (2018) performs better and will be the
main baseline we will be comparing against in our experiments in Section 6.

As discussed in Section 3, NeuralSort maps permutation matrices to the set of unimodal row-
stochastic matrices. For the stochastic setting, the PL distribution permits efficient sampling, exact
and tractable density estimation, making it an attractive choice for several applications, e.g., varia-
tional inference over latent permutations. Our reparameterizable sampler, while also making use of
the Gumbel distribution, is based on a result unique to the PL distribution (Proposition 5).

The use of the Gumbel distribution for defining continuous relaxations to discrete distributions was
first proposed concurrently by Jang et al. (2017) and Maddison et al. (2017) for categorical variables,
referred to as Gumbel-Softmax. The number of possible permutations grow factorially with the
dimension, and thus any distribution over n-dimensional permutations can be equivalently seen as a
distribution over n! categories. Gumbel-softmax does not scale to a combinatorially large number of
categories (Kim et al., 2016; Mussmann et al., 2017), necessitating the use of alternate relaxations,
such as the one considered in this work.

6 EXPERIMENTS

We refer to the two approaches proposed in Sections 3, 4 as Deterministic NeuralSort and Stochastic
NeuralSort, respectively. For additional hyperparameter details and analysis, see Appendix D.

6.1 SORTING HANDWRITTEN NUMBERS

Dataset. We first create the large-MNIST dataset, which extends the MNIST dataset of handwrit-
ten digits. The dataset consists of multi-digit images, each a concatenation of 4 randomly selected
individual images from MNIST, e.g., is one such image in this dataset. Each image is asso-
ciated with a real-valued label, which corresponds to its concatenated MNIST labels, e.g., the label
of is 1810. Using the large-MNIST dataset, we finally create a dataset of sequences. Every
sequence is this dataset consists of n randomly sampled large-MNIST images.

Setup. Given a dataset of sequences of large-MNIST images, our goal is to learn to predict the
permutation that sorts the labels of the sequence of images, given a training set of ground-truth
permutations. Figure 4 (Task 1) illustrates this task on an example sequence of n = 5 large-MNIST
images. This task is a challenging extension of the one considered by Mena et al. (2018) in sorting
scalars, since it involves learning the semantics of high-dimensional objects prior to sorting. A
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s1
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z = NeuralSort(s)

Task 1: Sorting
Loss([3, 5, 1, 4, 2]T , z)

ŷ = CNN(x̂) Task 2: Median Regression
Loss(2960, ŷ)

x̂ = xz[3]

Figure 4: Sorting and quantile regression. The model is trained to sort sequences of n = 5 large-
MNIST images x1,x2, . . . ,x5 (Task 1) and regress the median value (Task 2). In the above
example, the ground-truth permutation that sorts the input sequence from largest to smallest is
[3, 5, 1, 4, 2]T , 9803 being the largest and 1270 the smallest. Blue illustrates the true median image
x1 with ground-truth sorted index 3 and value 2960.

Table 1: Average sorting accuracy on the test set. First value is proportion of permutations correctly
identified; value in parentheses is the proportion of individual element ranks correctly identified.

Algorithm n = 3 n = 5 n = 7 n = 9 n = 15

Vanilla RS 0.467 (0.801) 0.093 (0.603) 0.009 (0.492) 0. (0.113) 0. (0.067)
Sinkhorn 0.462 (0.561) 0.038 (0.293) 0.001 (0.197) 0. (0.143) 0. (0.078)

Gumbel-Sinkhorn 0.484 (0.575) 0.033 (0.295) 0.001 (0.189) 0. (0.146) 0. (0.078)

Deterministic NeuralSort 0.930 (0.951) 0.837 (0.927) 0.738 (0.909) 0.649 (0.896) 0.386 (0.857)
Stochastic NeuralSort 0.927 (0.950) 0.835 (0.926) 0.741 (0.909) 0.646 (0.895) 0.418 (0.862)

good model needs to learn to dissect the individual digits in an image, rank these digits, and finally,
compose such rankings based on the digit positions within an image. The available supervision, in
the form of the ground-truth permutation, is very weak compared to a classification setting that gives
direct access to the image labels.

Baselines. All baselines use a CNN that is shared across all images in a sequence to map each
large-MNIST image to a feature space. The vanilla row-stochastic (RS) baseline concatenates the
CNN representations for n images into a single vector that is fed into a multilayer perceptron that
outputs nmulticlass predictions of the image probabilities for each rank. The Sinkhorn and Gumbel-
Sinkhorn baselines, as discussed in Section 5, use the Sinkhorn operator to map the stacked CNN
representations for the n objects into a doubly-stochastic matrix. For all methods, we minimized the
cross-entropy loss between the predicted matrix and the ground-truth permutation matrix.

Results. Following Mena et al. (2018), our evaluation metric is the the proportion of correctly pre-
dicted permutations on a test set of sequences. Additionally, we evaluate the proportion of individual
elements ranked correctly. Table 1 demonstrates that the approaches based on the proposed sorting
relaxation significantly outperform the baseline approaches for all n considered. The performance
of the deterministic and stochastic variants are comparable. The vanilla RS baseline performs well
in ranking individual elements, but is not good at recovering the overall square matrix.

We believe the poor performance of the Sinkhorn baselines is partly because these methods were
designed and evaluated for matchings. Like the output of sort, matchings can also be represented
as permutation matrices. However, distributions over matchings need not satisfy Luce’s choice
axiom or imply a total ordering, which could explain the poor performance on the tasks considered.

6.2 QUANTILE REGRESSION

Setup. In this experiment, we extend the sorting task to regression. Again, each sequence contains
n large-MNIST images, and the regression target for each sequence is the 50-th quantile (i.e., the
median) of the n labels of the images in the sequence. Figure 4 (Task 2) illustrates this task on
an example sequence of n = 5 large-MNIST images, where the goal is to output the third largest
label. The design of this task highlights two key challenges since it explicitly requires learning
both a suitable representation for sorting high-dimensional inputs and a secondary function that
approximates the label itself (regression). Again, the supervision available in the form of the label
of only a single image at an arbitrary and unknown location in the sequence is weak.

8
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Table 2: Test mean squared error (×10−4) and R2 values (in parenthesis) for quantile regression.

Algorithm n = 5 n = 9 n = 15

Constant (Simulated) 356.79 (0.00) 227.31 (0.00) 146.94 ( 0.00)
Vanilla NN 1004.70 (0.85) 699.15 (0.82) 562.97 (0.79)
Sinkhorn 343.60 (0.25) 231.87 (0.19) 156.27 (0.04)

Gumbel-Sinkhorn 344.28 (0.25) 232.56 (0.23) 157.34 (0.06)

Deterministic NeuralSort 45.50 (0.95) 34.98 (0.94) 34.78 (0.92)
Stochastic NeuralSort 33.80 (0.94) 31.43 (0.93) 29.34 (0.90)

x0

x1

x2

· · ·

xn

ei = hφ(xi) e2

e1

e0

· · ·

en

s1 = −‖e1−e0‖2

s2 = −‖e2−e0‖2

· · ·

sn = −‖en−e0‖2

z = NeuralSort(s) `kNN(Pz, y0, y1, y2, . . . , yn)

y0

top-k

Figure 5: Differentiable kNN. The model is trained such that the representations ei for the training
points {x1, . . . ,xn} that have the same label y0 as x0 are closer to e0 (included in top-k) than others.

Baselines. In addition to Sinkhorn and Gumbel-Sinkhorn, we design two more baselines. The
Constant baseline always returns the median of the full range of possible outputs, ignoring the input
sequence. This corresponds to 4999.5 since we are sampling large-MNIST images uniformly in the
range of four-digit numbers. The vanilla neural net (NN) baseline directly maps the input sequence
of images to a real-valued prediction for the median.

Results. Our evaluation metric is the mean squared error (MSE) and R2 on a test set of sequences.
Results for n = {5, 9, 15} images are shown in Table 2. The Vanilla NN baseline while incurring
a large MSE, is competitive on the R2 metric. The other baselines give comparable performance
on the MSE metric. The proposed NeuralSort approaches outperform the competing methods on
both the metrics considered. The stochastic NeuralSort approach is the consistent best performer on
MSE, while the deterministic NeuralSort is slightly better on the R2 metric.

6.3 END-TO-END, DIFFERENTIABLE k-NEAREST NEIGHBORS

Setup. In this experiment, we design a fully differentiable, end-to-end k-nearest neighbors (kNN)
classifier. Unlike a standard kNN classifier which computes distances between points in a predefined
space, we learn a representation of the data points before evaluating the k-nearest neighbors.

We are given access to a datasetD of (x, y) pairs of standard input data and their class labels respec-
tively. The differentiable kNN algorithm consists of two hyperparameters: the number of training
neighbors n, the number of top candidates k, and the sorting temperature τ . Every sequence of items
here consists of a query point x and a randomly sampled subset of n candidate nearest neighbors
from the training set, say {x1,x2, . . . ,xn}. In principle, we could use the entire training set (ex-
cluding the query point) as candidate points, but this can hurt the learning both computationally and
statistically. The query points are randomly sampled from the train/validation/test sets as appropri-
ate but the nearest neighbors are always sampled from the training set. The loss function optimizes
for a representation space hφ(·) (e.g., CNN) such that the top-k candidate points with the minimum
Euclidean distance to the query point in the representation space have the same label as the query
point. Note that at test time, once the representation space hφ is learned, we can use the entire
training set as the set of candidate points, akin to a standard kNN classifier. Figure 5 illustrates the
proposed algorithm.

Formally, for any datapoint x, let z denote a permutation of the n candidate points. The uniformly-
weighted kNN loss, denoted as `kNN(·), can be written as follows:

`kNN(P̂z, y, y1, y2, . . . , yn) = −
1

k

k∑
j=1

n∑
i=1

1(yi = y)P̂z[i, j] (13)

9
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Table 3: Average test kNN classification accuracies from n neighbors for best value of k.

Algorithm MNIST Fashion-MNIST CIFAR-10

kNN 97.2% 85.8% 35.4%
kNN+PCA 97.6% 85.9% 40.9%
kNN+AE 97.6% 87.5% 44.2%

kNN + Deterministic NeuralSort 99.5% 93.5% 90.7%
kNN + Stochastic NeuralSort 99.4% 93.4% 89.5%

CNN (w/o kNN) 99.4% 93.4% 95.1%

where {y1, y2, . . . , yn} are the labels for the candidate points. Note that when P̂z is an exact per-
mutation matrix (i.e., temperature τ → 0), this expression is exactly the negative of the fraction of
k nearest neighbors that have the same label as x.

Using Eq. 13, the training objectives for Deterministic and Stochastic NeuralSort are given as:

Deterministic: min
φ

1

|D|
∑

(x,y)∈D

`kNN(P̂sort(s), y, y1, . . . , yn) (14)

Stochastic: min
φ

1

|D|
∑

(x,y)∈D

Ez∼q(z|s)

[
`kNN(P̂z, y, y1, y2, . . . , yn)

]
(15)

where each entry of s is given as sj = −‖hφ(x)− hφ(xj)‖22.

Datasets. We consider three benchmark datasetes: MNIST dataset of handwritten digits, Fashion-
MNIST dataset of fashion apparel, and the CIFAR-10 dataset of natural images (no data augmenta-
tion) with the canonical splits for training and testing.

Baselines. We consider kNN baselines that operate in three standard representation spaces: the
canonical pixel basis, the basis specified by the top 50 principal components (PCA), an autonen-
coder (AE). Additionally, we experimented with k = 1, 3, 5, 9 nearest neighbors and across two
distance metrics: uniform weighting of all k-nearest neighbors and weighting nearest neighbors by
the inverse of their distance. For completeness, we trained a CNN with the same architecture as the
one used for NeuralSort (except the final layer) using the cross-entropy loss.

Results. We report the classification accuracies on the standard test sets in Table 3. On both datasets,
the differentiable kNN classifier outperforms all the baseline kNN variants including the convolu-
tional autoencoder approach. The performance is much closer to the accuracy of a standard CNN.

7 CONCLUSION

In this paper, we proposed NeuralSort, a continuous relaxation of the sorting operator to the set of
unimodal row-stochastic matrices. Our relaxation facilitates gradient estimation on any computation
graph involving a sort operator. Further, we derived a reparameterized gradient estimator for the
Plackett-Luce distribution for efficient stochastic optimization over permutations. On three illustra-
tive tasks including a fully differentiable k-nearest neighbors, our proposed relaxations outperform
prior work in end-to-end learning of semantic orderings of high-dimensional objects.

In the future, we would like to explore alternate relaxations to sorting as well as applications that
extend widely-used algorithms such as beam search (Goyal et al., 2018). Both deterministic and
stochastic NeuralSort are easy to implement. We provide reference implementations in Tensor-
flow (Abadi et al., 2016) and PyTorch (Paszke et al., 2017) in Appendix A. The full codebase for
this work is open-sourced at https://github.com/ermongroup/neuralsort.
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APPENDICES

A SORTING OPERATOR

A.1 TENSORFLOW

Sorting Relaxation for Deterministic NeuralSort:

import tensorflow as tf

def deterministic_NeuralSort(s, tau):
"""
s: input elements to be sorted. Shape: batch_size x n x 1
tau: temperature for relaxation. Scalar.
"""

n = tf.shape(s)[1]
one = tf.ones((n, 1), dtype = tf.float32)

A_s = tf.abs(s - tf.transpose(s, perm=[0, 2, 1]))
B = tf.matmul(A_s, tf.matmul(one, tf.transpose(one)))
scaling = tf.cast(n + 1 - 2 * (tf.range(n) + 1), dtype = tf.float32)
C = tf.matmul(s, tf.expand_dims(scaling, 0))

P_max = tf.transpose(C-B, perm=[0, 2, 1])
P_hat = tf.nn.softmax(P_max / tau, -1)

return P_hat

Reparameterized Sampler for Stochastic NeuralSort:

def sample_gumbel(samples_shape, eps = 1e-10):

U = tf.random_uniform(samples_shape, minval=0, maxval=1)
return -tf.log(-tf.log(U + eps) + eps)

def stochastic_NeuralSort(s, n_samples, tau):
"""
s: parameters of the PL distribution. Shape: batch_size x n x 1.
n_samples: number of samples from the PL distribution. Scalar.
tau: temperature for the relaxation. Scalar.
"""

batch_size = tf.shape(s)[0]
n = tf.shape(s)[1]
log_s_perturb = s + sample_gumbel([n_samples, batch_size, n, 1])
log_s_perturb = tf.reshape(log_s_perturb, [n_samples * batch_size, n,

1])

P_hat = deterministic_NeuralSort(log_s_perturb, tau)
P_hat = tf.reshape(P_hat, [n_samples, batch_size, n, n])

return P_hat
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A.2 PYTORCH

Sorting Relaxation for Deterministic NeuralSort:

import torch

def deterministic_NeuralSort(s, tau):
"""
s: input elements to be sorted. Shape: batch_size x n x 1
tau: temperature for relaxation. Scalar.
"""

n = s.size()[1]
one = torch.ones((n, 1), dtype = torch.float32)

A_s = torch.abs(s - s.permute(0, 2, 1))
B = torch.matmul(A_s, torch.matmul(one, torch.transpose(one, 0, 1)))
scaling = (n + 1 - 2 * (torch.arange(n) + 1)).type(torch.float32)
C = torch.matmul(s, scaling.unsqueeze(0))

P_max = (C-B).permute(0, 2, 1)
sm = torch.nn.Softmax(-1)
P_hat = sm(P_max / tau)

return P_hat

Reparamterized Sampler for Stochastic NeuralSort:

def sample_gumbel(samples_shape, eps = 1e-10):

U = torch.rand(samples_shape)
return -torch.log(-torch.log(U + eps) + eps)

def stochastic_NeuralSort(s, n_samples, tau):
"""
s: parameters of the PL distribution. Shape: batch_size x n x 1.
n_samples: number of samples from the PL distribution. Scalar.
tau: temperature for the relaxation. Scalar.
"""

batch_size = s.size()[0]
n = s.size()[1]
log_s_perturb = torch.log(s) + sample_gumbel([n_samples, batch_size, n,

1])
log_s_perturb = log_s_perturb.view(n_samples * batch_size, n, 1)

P_hat = deterministic_NeuralSort(log_s_perturb, tau)
P_hat = P_hat.view(n_samples, batch_size, n, n)

return P_hat
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B PROOFS OF THEORETICAL RESULTS

B.1 LEMMA 2

Proof. For any value of λ, the following inequalities hold:

k∑
i=1

s[i] = λk +

k∑
i=1

(s[i] − λ)

≤ λk +
k∑
i=1

max(s[i] − λ, 0)

≤ λk +
n∑
i=1

max(si − λ, 0).

Furthermore, for λ = s[k]:

λk +

n∑
i=1

max(si − λ, 0) = s[k]k +

n∑
i=1

max(si − s[k], 0)

= s[k]k +

k∑
i=1

(s[i] − s[k])

=

k∑
i=1

s[i].

This finishes the proof.

B.2 COROLLARY 3

Proof. We first consider at exactly what values of λ the sum in Lemma 2 is minimized. For simplic-
ity we will only prove the case where all values of s are distinct.

The equality
∑k
i=1 s[i] = λk +

∑n
i=1 max(si − λ, 0) holds only when s[k] ≤ λ ≤ s[k+1]. By

Lemma 2, these values of λ also minimize the RHS of the equality.

Symmetrically, if one considers the score vector t = −s, then λ(n− k+1)+
∑n
i=1 max(ti−λ, 0)

is minimized at t[n−k+1] ≤ λ ≤ t[n−k+2].

Replacing λ by −λ and using the definition of t implies that λ(k − 1− n) +
∑n
i=1 max(λ− si, 0)

is minimized at s[k−1] ≤ λ ≤ s[k].

It follows that:

s[k] = argmin
λ∈s

(
λk +

n∑
i=1

max(si − λ, 0)

)
+

(
λ(k − 1− n) +

n∑
i=1

max(λ− si, 0)

)

= argmin
λ∈s

λ(2k − 1− n) +
n∑
i=1

|si − λ|.

Thus, if si = s[k], then i = argmin(2k − 1− n)s+As1. This finishes the proof.

B.3 THEOREM 4

We prove the two properties in the statement of the theorem independently:
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1. Unimodality

Proof. By definition of the softmax function, the entries ef P̂ are positive and sum to 1. To
show that P̂ satisfies the argmax permutation property, . Formally, for any given row i, we
construct the argmax permutation vector u as:

ui = argmax[softmax((n+ 1− 2i)s−As1)]

= argmax[(n+ 1− 2i)s−As1]

= [i]

where the square notation [i] denotes the index of the i-th largest element. The first step
follows from the fact that the softmax function is monotonically increasing and hence, it
preserves the argmax. The second equality directly follows from Corollary 3. By definition,
sort(s) = {[1], [2], . . . , [n]}, finishing the proof.

2. Limiting behavior

Proof. As shown in Gao & Pavel (2017), the softmax function may be equivalently
defined as softmax(z/τ) = argmaxx∈∆n−1〈x, z〉 − τ

∑n
i=1 xi log xi. In particular,

limτ→0 softmax(z/τ) = argmaxx. The distributional assumptions ensure that the el-
ements of s are distinct a.s., so plugging in z = (n + 1 − 2k)s − As1 completes the
proof.

B.4 PROPOSITION 5

This result follows from an earlier result by Yellott Jr (1977). We give the proof sketch below and
refer the reader to Yellott Jr (1977) for more details.

Sketch. Consider random variables {Xi}ni=1 such that Xi ∼ Exp(szi)).

We may prove by induction a generalization of the memoryless property:

q(X1 ≤ · · · ≤ Xn|x ≤ min
i
Xi)

=

∫ ∞
0

q(x ≤ X1 ≤ x+ t|x ≤ min
i
Xi)q(X2 ≤ · · · ≤ Xn|x+ t ≤ min

i≥2
Xi)dt

=

∫ ∞
0

q(0 ≤ X1 ≤ t)q(X2 ≤ · · · ≤ Xn|x+ t ≤ min
i≥2

Xi)dt.

If we assume as inductive hypothesis that q(X2 ≤ · · · ≤ Xn|x+ t ≤ mini≥2Xi) = q(X2 ≤ · · · ≤
Xn|t ≤ mini≥2Xi), we complete the induction as:

q(X1 ≤ · · · ≤ Xn|x ≤ min
i
Xi)

=

∫ ∞
0

q(0 ≤ X1 ≤ t)q(X2 ≤ · · · ≤ Xn|t ≤ min
i≥2

Xi)dt

= q(X1 ≤ X2 ≤ · · · ≤ Xn|0 ≤ min
i
Xi).

It follows from a familiar property of argmin of exponential distributions that:
q(X1 ≤ X2 ≤ · · · ≤ Xn) = q(X1 ≤ min

i
Xi)q(X2 ≤ · · · ≤ Xn|X1 ≤ min

i
Xi)

=
sz1
Z
q(X2 ≤ · · · ≤ Xn|X1 ≤ min

i
Xi)

=
sz1
Z

∫ ∞
0

q(X1 = x)q(X2 ≤ · · · ≤ Xn|x ≤ min
i≥2

Xi)dx

=
sz1
Z
q(X2 ≤ · · · ≤ Xn),
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and by another induction, we have q(X1 ≤ · · · ≤ Xn) =
∏n
i=1

szi
Z−

∑i−1
k=1 szk

.

Finally, following the argument of Balog et al. (2017), we apply the strictly decreasing function
g(x) = −β log x to this identity, which from the definition of the Gumbel distribution implies:

q(s̃z1 ≥ · · · ≥ s̃zn) =
n∏
i=1

szi

Z −
∑i−1
k=1 szk

.

C ARG MAX SEMANTICS FOR TIED MAX ELEMENTS

While applying the argmax operator to a vector with duplicate entries attaining the max value,
we need to define the operator semantics for argmax to handle ties in the context of the proposed
relaxation.

Definition 6. For any vector with ties, let argmax set denote the operator that returns the set of all
indices containing the max element. We define the argmax of the i-th in a matrix M recursively:

1. If there exists an index j ∈ {1, 2, . . . , n} that is a member of argmax set(M [i, :]) and has
not been assigned as an argmax of any row k < i, then the argmax is the smallest such
index.

2. Otherwise, the argmax is the smallest index that is a member of the argmax set(M [i, :]).

This function is efficiently computable with additional bookkeeping.

Lemma 7. For an input vector s with the sort permutation matrix given as Psort(s), we have sj1 =
sj2 if and only if there exists a row i such that P̂ [i, j1] = P̂ [i, j2] for all j1, j2 ∈ {1, 2, . . . , n}.

Proof. From Eq. 5, we have the i-th row of P̂ [i, :] given as:

P̂ [i, :] = softmax [((n+ 1− 2i)s−As1)/τ ]

. Therefore, we have the equations:

P̂ [i, j1] =
exp(((n+ 1− 2i)sj1 − (As1)i)/τ)

Z

= P̂ [i, j2] =
exp(((n+ 1− 2i)sj2 − (As1)i)/τ)

Z

for some fixed normalization constant Z. As the function f(x) = exp(((n+1−2i)x−(As1)i)/τ)
Z is

invertible, both directions of the lemma follow immediately.

Lemma 8. If argmax set(P̂ [i1, :]) and argmax set(P̂ [i2, :]) have a non-zero intersection, then
argmax set(P̂ [i1, :]) = argmax set(P̂ [i2, :]).

Proof. Assume without loss of generality that | argmax set(P̂ [i1, :])| > 1 for some i. Let
j1, j2 be two members of | argmax set(P̂ [i1, :])|. By Lemma 7, sj1 = sj2 , and therefore
P̂ [i2, j1] = P̂ [i2, j2]. Hence if j1 ∈ argmax set(P̂ [i2, :]), then j2 is also an element. A sym-
metric argument implies that if j2 ∈ argmax set(P̂ [i2, :]), then j1 is also an element for arbitrary
j1, j2 ∈ | argmax set(P̂ [i1, :])|. This completes the proof.

Proposition 9. (Argmax Permutation with Ties) For s = [s1, s2, . . . , sn]
T ∈ Rn, the vector z

defined by zi = argmaxj P̂sort(s)[i, j] is such that z ∈ Zn.
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x

θ

y f
Objective: Ey∼p(y|x;θ)[f(y)]

Gradient Estimator: Ey∼p(y|x;θ)

[
∂
∂θ log p(y|x; θ)f(y)

]
Figure 6: A stochastic computation graph for an arbitrary input x, intermediate node y, and a single
parameter θ. Squares denote deterministic nodes and circles denote stochastic nodes.

Proof. From Corollary 3, we know that the row P̂sort(s)[i, :] attains its maximum (perhaps non-
uniquely) at some P̂sort(s)[i, j] where sj = s[i]. Note that s[i] is well-defined even in the case of
ties.

Consider an arbitrary row P̂sort(s)[i, :] and let argmax set(P̂sort(s)[i, :]) = {j1, . . . , jm}. It fol-
lows from Lemma 7 that there are exactly m scores in s that are equal to s[i]: sj1 , . . . , sjm . These
scores corresponds to m values of s[i′] such that s[i′] = s[i], and consequently to m rows P [i′, :] that
are maximized with values s[i′] = s[i] and consequently (by Lemma 8) at indices j1, . . . , jm.

Suppose we now chose an i′ such that s[i′] 6= s[i]. Then P̂ [i′, :] attains its maximum at some
P̂sort(s)[i′, j′] where sj′ = s[i′]. Because sj′ = s[i′] 6= s[i] = sj , Lemma 7 tells us that
P̂ [i′, :] does not attain its maximum at any of j1, . . . , jm. Therefore, only m rows have a non-zero
argmax set intersection with argmax set(P [i, :]).

Because P [i, :] is one of these rows, there can be up to m − 1 such rows above it. Because each
row above only has one argmax assigned via the tie-breaking protocol, it is only possible for up
to m − 1 elements of argmax set(P [i, :]) to have been an argmax of a previous row k < i. As
| argmax set(P [i, :])| = m, there exists at least one element that has not been specified as the
argmax of a previous row (pigeon-hole principle). Thus, the argmax of each row are distinct.
Because each argmax is also an element of {1, . . . , n}, it follows that z ∈ Zn.

D EXPERIMENTAL DETAILS AND ANALYSIS

We used Tensorflow (Abadi et al., 2016) and PyTorch (Paszke et al., 2017) for our experiments.
In Appendix A, we provide “plug-in” snippets for implementing our proposed relaxations in both
Tensorflow and PyTorch. The full codebase for reproducing the experiments can be found at
https://github.com/ermongroup/neuralsort.

For the sorting and quantile regression experiments, we used standard training/validation/test splits
of 50, 000/10, 000/10, 000 images of MNIST for constructing the large-MNIST dataset. We ensure
that only digits in the standard training/validation/test sets of the MNIST dataset are composed
together to generate the corresponding sets of the large-MNIST dataset. For CIFAR-10, we used
a split of 45, 000/5000/10, 000 examples for training/validation/test. With regards to the baselines
considered, we note that the REINFORCE based estimators were empirically observed to be worse
than almost all baselines for all our experiments.

D.1 SORTING HANDWRITTEN NUMBERS

Architectures. We control for the choice of computer vision models by using the same convolu-
tional network architecture for each sorting method. This architecture is as follows:

Conv[Kernel: 5x5, Stride: 1, Output: 140x28x32, Activation: Relu]
→ Pool[Stride: 2, Output: 70x14x32]
→ Conv[Kernel: 5x5, Stride: 1, Output: 70x14x64, Activation: Relu]
→ Pool[Stride: 2, Output: 35x7x64]
→ FC[Units: 64, Activation: Relu]
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(a) Deterministic NeuralSort (n =
5)

(b) Deterministic NeuralSort (n =
9)

(c) Deterministic NeuralSort (n =
15)

(d) Stochastic NeuralSort (n = 5) (e) Stochastic NeuralSort (n = 9) (f) Stochastic NeuralSort (n = 15)

Figure 7: Running average of the log-variance in gradient estimates during training for varying
temperatures τ .

Note that the dimension of a 5-digit large-MNIST image is 140×28. The primary difference between
our methods is how we combine the scores to output a row-stochastic prediction matrix.

For NeuralSort-based methods, we use another fully-connected layer of dimension 1 to map the
image representations to n scalar scores. In the case of Stochastic NeuralSort, we then sample from
the PL distribution by perturbing the scores multiple times with Gumbel noise. Finally, we use the
NeuralSort operator to map the set of n scores (or each set of n perturbed scores) to its corresponding
unimodal row-stochastic matrix.

For Sinkhorn-based methods, we use a fully-connected layer of dimension n to map each image to
an n-dimensional vector. These vectors are then stacked into an n × n matrix. We then either map
this matrix to a corresponding doubly-stochastic matrix (Sinkhorn) or sample directly from a distri-
bution over permutation matrices via Gumbel perturbations (Gumbel-Sinkhorn). We implemented
the Sinkhorn operator based on code snippets obtained from the open source implementation of
Mena et al. (2018) available at https://github.com/google/gumbel sinkhorn.

For the Vanilla RS baseline, we ran each element through a fully-connected n dimensional layer,
concatenated the representations of each element and then fed the results through three fully-
connected n2-unit layers to output multiclass predictions for each rank.

All our methods yield row-stochastic n × n matrices as their final output. Our loss is the row-wise
cross-entropy loss between the true permutation matrix and the row-stochastic output.

Hyperparameters. For this experiment, we used an Adam optimizer with an initial learning rate
of 10−4 and a batch size of 20. Continuous relaxations to sorting also introduce another hyperpa-
rameter: the temperature τ for the Sinkhorn-based and NeuralSort-based approaches. We tuned this
hyperparameter on the set {1, 2, 4, 8, 16} by picking the model with the best validation accuracy
on predicting entire permutations (as opposed to predicting individual maps between elements and
ranks).

Effect of temperature. In Figure 7, we report the log-variance in gradient estimates as a function
of the temperature τ . Similar to the effect of temperature observed for other continuous relaxations
to discrete objects such as Gumbel-softmax (Jang et al., 2017; Maddison et al., 2017), we note that
higher temperatures lead to lower variance in gradient estimates. The element-wise mean squared
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Table 4: Element-wise mean squared difference between unimodal approximations and the projected
hard permutation matrices for the best temperature τ , averaged over the test set.

Algorithm n = 3 n = 5 n = 7 n = 9 n = 15

Deterministic NeuralSort 0.0052 0.0272 0.0339 0.0105 0.0220
Stochastic NeuralSort 0.0095 0.0327 0.0189 0.0111 0.0179

(a) Deterministic NeuralSort (n =
5)

(b) Deterministic NeuralSort (n =
9)

(c) Deterministic NeuralSort (n =
15)

(d) Stochastic NeuralSort (n = 5) (e) Stochastic NeuralSort (n = 9) (f) Stochastic NeuralSort (n = 15)

Figure 8: True vs. predicted medians for quantile regression on the large-MNIST dataset.

difference between unimodal approximations P̂sort(s) and the projected hard permutation matrices
Psort(s) for the best τ on the test set is shown in Table 4.

D.2 QUANTILE REGRESSION

Architectures. Due to resource constraints, we ran the quantile regression experiment on 4-digit
numbers instead of 5-digit numbers. We use the same neural network architecture as previously
used in the sorting experiment.

Conv[Kernel: 5x5, Stride: 1, Output: 112x28x32, Activation: Relu]
→ Pool[Stride: 2, Output: 56x14x32]
→ Conv[Kernel: 5x5, Stride: 1, Output: 56x14x64, Activation: Relu]
→ Pool[Stride: 2, Output: 28x7x64]
→ FC[Units: 64, Activation: Relu]

The vanilla NN baseline for quantile regression was generated by feeding the CNN representations
into a series of three fully-connected layers of ten units each, the last of which mapped to a single-
unit estimate of the median. In the other experiments, one copy of this network was used to estimate
each element’s rank through a method like Gumbel-Sinkhorn or NeuralSort that produces a row-
stochastic matrix, while another copy was used to estimate each element’s value directly. Point
predictions are obtained by multiplying the center row of the matrix with the column vector of
estimated values, and we minimize the `2 loss between these point predictions and the true median,
learning information about ordering and value simultaneously.
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Hyperparameters. We used the Adam optimizer with an initial learning rate of 10−4 and a batch
size of 5. The temperature τ was tuned on the set {1, 2, 4, 8, 16} based on the validation loss.

Further Analysis. In Figure 8, we show the scatter plots for the true vs. predicted medians on
2000 test points from the large-MNIST dataset as we vary n. For stochastic NeuralSort, we average
the predictions across 5 samples. As we increase n, the distribution of true medians concentrates,
leading to an easier prediction problem (at an absolute scale) and hence, we observe lower MSE for
larger n in Table 2. However, the relatively difficulty of the problem increases with increasing n, as
the model is trying to learn a semantic sorting across a larger set of elements. This is reflected in the
R2 values in Table 2 which show a slight dip as n increases.

D.3 END-TO-END, DIFFERENTIABLE k-NEAREST NEIGHBORS

Architectures. The baseline kNN implementation for the pixel basis, PCA basis and the autoen-
coder basis was done using sklearn. For the autoencoder baselines for kNN, we used the follow-
ing standard architectures.

MNIST and Fashion-MNIST: The dimension of the encoding used for distance computation in
kNN is 50.

FC[Units: 500, Activation: Relu]
→ FC[Units: 500, Activation: Relu]
→ FC[Units: 50, Activation: Relu]
= (embedding)
→ FC[Units: 500, Activation: Relu]
→ FC[Units: 500, Activation: Relu]
→ FC[Units: 784, Activation: Sigmoid]

CIFAR-10: The dimension of the encoding used for distance computation in
kNN is 256. The architecture and training procedure follows the one available at
https://github.com/shibuiwilliam/Keras Autoencoder.

Conv[Kernel: 3x3, Stride: 1, Output: 32x32x64, Activation: Relu]
→ Pool[Stride: 2, Output: 16x16x64]
→ Conv[Kernel: 3x3, Stride: 1, Output: 16x16x32, Normalization: BatchNorm, Activation: Relu]
→ Pool[Stride: 2, Output: 8x8x32]
→ Conv[Stride: 3, Output: 8x8x16, Normalization: BatchNorm, Activation: Relu]
→ MaxPool[Stride: 2, Output: 4x4x16]
= (embedding)
→ Conv[Kernel: 3x3, Stride: 1, Output: 4x4x16, Normalization: BatchNorm, Activation: Relu]
→ UpSampling[Size: 2x2, Output: 8x8x16]
→ Conv[Kernel: 3x3, Stride: 1, Output: 8x8x32, Normalization: BatchNorm, Activation: Relu]
→ UpSampling[Size: 2x2, Output: 16x16x32]
→ Conv[Kernel: 3x3, Output: 16x16x64, Normalization: BatchNorm, Activation: Relu]
→ UpSampling[Size: 2x2, Output: 32x32x64]
→ Conv[Kernel: 3x3, Stride: 1, Output: 32x32x3, Normalization: BatchNorm, Activation: Sigmoid]
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Table 5: Accuracies of Deterministic and Stochastic NeuralSort for differentiable k-nearest neigh-
bors, broken down by k.

Dataset k Deterministic NeuralSort Stochastic NeuralSort

MNIST 1 99.2% 99.1%
3 99.5% 99.3%
5 99.3% 99.4%
9 99.3% 99.4%

Fashion-MNIST 1 92.6% 92.2%
3 93.2% 93.1%
5 93.5% 93.3%
9 93.0% 93.4%

CIFAR-10 1 88.7% 85.1%
3 90.0% 87.8%
5 90.2% 88.0%
9 90.7% 89.5%

For the MNIST experiments with NeuralSort, we used a network similar to the large-MNIST net-
work used in the previous experiments:

Conv[Kernel: 5x5, Stride: 1, Output: 24x24x20, Activation: Relu]
→ Pool[Stride: 2, Output: 12x12x20]
→ Conv[Kernel: 5x5, Stride: 1, Output: 8x8x50, Activation: Relu]
→ Pool[Stride: 2, Output: 4x4x50]
→ FC[Units: 500, Activation: Relu]

For the Fashion-MNIST and CIFAR experiments with NeuralSort, we use the ResNet18 architecture
as described in https://github.com/kuangliu/pytorch-cifar.

Hyperparameters. For this experiment, we used an SGD optimizer with a momentum parameter
of 0.9, with a batch size of 100 queries and 100 neighbor candidates at a time. We chose the
temperature hyperparameter from the set {1, 16, 64}, the constant learning rate from {10−4, 10−5},
and the number of nearest neighbors k from the set {1, 3, 5, 9}. The model with the best evaluation
loss was evaluated on the test set. We suspect that accuracy improvements can be made by a more
expensive hyperparameter search and a more fine-grained learning rate schedule.

Accuracy for different k. In Table 5, we show the performance of Deterministic and Stochastic
NeuralSort for different choice of the hyperparameter k for the differentiable k-nearest neighbors
algorithm.

E LOSS FUNCTIONS

For each of the experiments in this work, we assume we have access to a finite dataset D =
{(x(1),y(1)), (x(2),y(2)), . . .}. Our goal is to learn a predictor for y given x, as in a standard
supervised learning (classification/regression) setting. Below, we state and elucidate the semantics
of the training objective optimized by Deterministic and Stochastic NeuralSort for the sorting and
quantile regression experiments.

E.1 SORTING HANDWRITTEN NUMBERS

We are given a dataset D of sequences of large-MNIST images and the permutations that sort the
sequences. That is, every datapoint in D consists of an input x, which corresponds to a sequence
containing n images, and the desired output label y, which corresponds to the permutation that
sorts this sequence (as per the numerical values of the images in the input sequence). For example,
Figure 4 shows one input sequence of n = 5 images, and the permutation y = [3, 5, 1, 4, 2] that
sorts this sequence.
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For any datapoint x, let `CE(·) denote the average multiclass cross entropy (CE) error between the
rows of the true permutation matrix Py and a permutation matrix Pŷ corresponding to a predicted
permutation, say ŷ.

`CE(Py, Pŷ) =
1

n

n∑
i=1

n∑
j=1

1(Py[i, j] = 1) logPŷ[i, j]

where 1(·) denotes the indicator function. Now, we state the training objective functions for the
Deterministic and Stochastic NeuralSort approaches respectively.

1. Deterministic NeuralSort

min
φ

1

|D|
∑

(x,y)∈D

`CE(Py, P̂sort(s)) (16)

where each entry of s is given as sj = hφ(xj).

2. Stochastic NeuralSort

min
φ

1

|D|
∑

(x,y)∈D

Ez∼q(z|s)

[
`CE(Py, P̂z))

]
(17)

where each entry of s is given as sj = hφ(xj).

To ground this in our experimental setup, the score sj for each large-MNIST image xj in any input
sequence x of n = 5 images is obtained via a CNN hφ() with parameters φ. Note that the CNN
parameters φ are shared across the different images x1,x2, . . . ,xn in the sequence for efficient
learning.

E.2 QUANTILE REGRESSION

In contrast to the previous experiment, here we are given a dataset D of sequences of large-MNIST
images and only the numerical value of the median element for each sequence. For example, the
desired label corresponds to y = 2960 (a real-valued scalar) for the input sequence of n = 5 images
in Figure 4.

For any datapoint x, let `MSE(·) denote the mean-squared error between the true median y and the
prediction, say ŷ.

`MSE(y, ŷ) = ‖y − ŷ‖22

For the NeuralSort approaches, we optimize the following objective functions.

1. Deterministic NeuralSort

min
φ,θ

1

|D|
∑

(x,y)∈D

`MSE(y, gθ(P̂sort(s)x)) (18)

where each entry of s is given as sj = hφ(xj).

2. Stochastic NeuralSort

min
φ,θ

1

|D|
∑

(x,y)∈D

Ez∼q(z|s)

[
`MSE(y, gθ(P̂zx))

]
(19)

where each entry of s is given as sj = hφ(xj).

As before, the score sj for each large-MNIST image xj in any input sequence x of n images is
obtained via a CNN hφ() with parameters φ. Once we have a predicted permutation matrix P̂sort(s)

(or P̂z) for deterministic (or stochastic) approaches, we extract the median image via P̂sort(s)x (or
P̂zx). Finally, we use a neural network gθ(·)with parameters θ to regress this image to a scalar
prediction for the median.
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