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Gradient Descent with Early Stopping is Provably Robust
to Label Noise for Overparameterized Neural Networks
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Abstract
This paper is focused on investigating and de-
mystifying an intriguing robustness phenomena
in over-parameterized neural network training. In
particular we provide empirical and theoretical
evidence that first order methods such as gradient
descent are provably robust to noise/corruption
on a constant fraction of the labels despite over-
parameterization under a rich dataset model. In
particular: i) First, we show that in the first few
iterations where the updates are still in the vicinity
of the initialization these algorithms only fit to the
correct labels essentially ignoring the noisy labels.
ii) Secondly, we prove that to start to overfit to
the noisy labels these algorithms must stray rather
far from from the initial model which can only
occur after many more iterations. Together, these
show that gradient descent with early stopping is
provably robust to label noise and shed light on
empirical robustness of deep networks as well as
commonly adopted early-stopping heuristics.

1. Introduction
1.1. Motivation

This paper focuses on an intriguing phenomena: overpa-
rameterized neural networks are surprisingly robust to label
noise when first order methods with early stopping is used
to train them. To observe this phenomena consider Figure
1 where we perform experiments on the MNIST data set.
Here, we corrupt a fraction of the labels of the training data
by assigning their label uniformly at random. We then fit
a four layer model via stochastic gradient descent and plot
various performance metrics in Figures 1a and 1b. Figure
1a (blue curve) shows that indeed with a sufficiently large
number of iterations the neural network does in fact per-
fectly fit the corrupted training data. However, Figure 1a
also shows that such a model does not generalize to the test
data (yellow curve) and the accuracy with respect to the
ground truth labels degrades (orange curve). These plots
clearly demonstrate that the model overfits with many itera-
tions. In Figure 1b we repeat the same experiment but this

time stop the updates after a few iterations (i.e. use early
stopping). In this case the train accuracy degrades linearly
(blue curve). However, perhaps unexpected, the test ac-
curacy (yellow curve) remains high even with a significant
amount of corruption. This suggests that with early stopping
the model does not overfit and generalizes to new test data.
Even more surprising, the train accuracy (orange curve) with
respect to the ground truth labels continues to stay around
%100 even when %50 of the labels are corrupted. That
is, with early stopping overparameterized neural networks
even correct the corrupted labels! These plots collectively
demonstrate that overparameterized neural networks when
combined with early stopping have unique generalization
and robustness capabilities. As we detail further in Section
D this phenomena holds (albeit less pronounced) for richer
data models and architectures.

This paper aims to demonstrate and begin to demystify the
surprising robustness of overparameterized neural networks
when early stopping is used. We show that gradient descent
is indeed provably robust to noise/corruption on a constant
fraction of the labels in such overparametrized learning sce-
narios. In particular, under a fairly expressive dataset model
and focusing on one-hidden layer networks, we show that af-
ter a few iterations (a.k.a. early stopping), gradient descent
finds a model (i) that is within a small neighborhood of the
point of initialization and (ii) only fits to the correct labels
essentially ignoring the noisy labels. We complement these
findings by proving that if the network is trained to overfit
to the noisy labels, then the solution found by gradient de-
scent must stray rather far from the initial model. Together,
these results highlight the key features of a solution that
generalizes well vs a solution that fits well.

1.2. Models

We now describe the dataset model used in our theoretical
results. In this model we assume that the input samples
x1,x2, . . . ,xn ∈ Rd come from K clusters which are lo-
cated on the unit Euclidian ball in Rd. We also assume our
data set consists of K̄ ≤K classes where each class can be
composed of multiple clusters. We consider a deterministic
data set with n samples with roughly balanced clusters each

1
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(a) Trained model after many iterations
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(b) Trained model with early stopping

Figure 1. In these experiments we use a 4 layer neural network con-
sisting of two convolution layers followed by two fully-connected
layers to train a data set of 50,000 samples from MNIST with
various amounts of random corruption on the labels. In this archi-
tecture the convolutional layers have width 64 and 128 kernels,
and the fully-connected layers have 256 and 10 outputs, respec-
tively. Overall, there are 4.8 million trainable parameters. We
depict the training accuracy both w.r.t. the corrupted and uncor-
rupted training labels as well as the (uncorrupted) test accuracy.
(a) Shows the performance after 200 epochs of Adadelta where
near perfect fitting to the corrupted data is achieved. (b) Shows
the performance with early stopping. We observe that with early
stopping the trained neural network is robust to label corruption.

consisting on the order of n/K samples.1 Finally, while
we allow for multiple classes, in our theoretical model we
assume the labels are scalars and take values in [−1,1] in-
terval. We formally define our dataset model below and
provide an illustration in Figure 2.

Definition 1.1 (Clusterable dataset) Consider a data set
of size n consisting of input/label pairs

1This is for ease of exposition rather than a particular challenge
arising in the analysis.

{(xi, yi)}ni=1 ∈ Rd × R. We assume the input data have unit
Euclidean norm and originate from K clusters with the `th
cluster containing n` data points. We assume the number
of points originating from each cluster is well-balanced
in the sense that clow n

K
≤ n` ≤ cup nK with clow and cup

two numerical constants obeying 0 < clow < cup < 1. We
use {c`}K`=1 ⊂ Rd to denote the cluster centers which are
distinct unit Euclidian norm vectors. We assume the input
data points x that belong to the `-th cluster obey

∥x − c`∥`2 ≤ ε0,

with ε0 > 0 denoting the input noise level.

We assume the labels yi belong to one of K̄ ≤ K
classes. Specifically, we assume yi ∈ {α1, α2, . . . , αK̄}
with {α`}K̄`=1 ∈ [−1,1] denoting the labels associated with
each class. We assume all the elements of the same cluster
belong to the same class and hence have the same label.
However, a class can contain multiple clusters. Finally, we
assume the labels are separated in the sense that

∣αr − αs∣ ≥ δ for r ≠ s, (1.1)

with δ > 0 denoting the class separation.

In the data model above {c`}K`=1 are the K cluster centers
that govern the input distribution. We note that in this model
different clusters can be assigned to the same label. Hence,
this setup is rich enough to model data which is not linearly
separable: e.g. over R2, we can assign cluster centers (0,1)
and (0,−1) to label 1 and cluster centers (1,0) and (−1,0)
to label −1. Note that the maximum number of classes are
dictated by the separation δ. In particular, we can have at
most K̄ ≤ 2

δ
+1 classes. We remark that this model is related

to the setup of (4) which focuses on providing polynomial
guarantees for learning shallow networks. Finally, note that,
we need some sort of separation between the cluster centers
to distinguish them. While Definition 1.1 doesn’t speci-
fies such separation explicitly, Definition 2.1 establishes
a notion of separation in terms of how well a neural net
can distinguish the cluster centers. Next, we introduce our
noisy/corrupted dataset model.

Definition 1.2 ((ρ, ε0, δ) corrupted dataset) Let{(xi, ỹi)}ni=1 be an (ε0, δ) clusterable dataset with
α1, α2, . . . , αK̄ denoting the K̄ possible class labels.
A (ρ, ε0, δ) noisy/corrupted dataset {(xi, yi)}ni=1 is
generated from {(xi, ỹi)}ni=1 as follows. For each cluster
1 ≤ ` ≤ K, at most ρn` of the labels associated with that
cluster (which contains n` points) is assigned to another
label value chosen from {α`}K̄`=1. We shall refer to the
initial labels {ỹi}ni=1 as the ground truth labels.

We note that this definition allows for a fraction ρ of corrup-
tions in each cluster.
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Figure 2. Visualization of the input/label samples and classes according to the clusterable dataset model in Definition 1.1. In the depicted
example there are K = 6 clusters, K̄ = 3 classes. In this example the number of data points is n = 30 with each cluster containing 5 data
points. The labels associated to classes 1, 2, and 3 are α1 = −1, α2 = 0.1, and α3 = 1, respectively so that δ = 0.9. We note that the
placement of points are exaggerated for clarity. In particular, per definition the cluster center and data points all have unit Euclidean norm.
Also, there is no explicit requirements that the cluster centers be separated. The depicted separation is for exposition purposes only.

Network model: We will study the ability of neural net-
works to learn this corrupted dataset model. To proceed,
let us introduce our neural network model. We consider
a network with one hidden layer that maps Rd to R. De-
noting the number of hidden nodes by k, this network is
characterized by an activation function φ, input weight ma-
trix W ∈ Rk×d and output weight vector v ∈ Rk. In this
work, we will fix output v to be a unit vector where half
the entries are 1/√k and other half are −1/√k to simplify
exposition.2 We will only optimize over the weight matrix
W which contains most of the network parameters and will
be shown to be sufficient for robust learning. We will also
assume φ has bounded first and second order derivatives,
i.e. ∣φ′(z)∣ , ∣φ′′(z)∣ ≤ Γ for all z. The network’s prediction
at an input sample x is given by

x↦ f(W ,x) = vTφ(Wx), (1.2)

where the activation function φ applies entrywise. Given
a dataset {(xi, yi)}ni=1, we shall train the network via min-
imizing the empirical risk over the training data via a
quadratic loss

L(W ) = 1

2

n∑
i=1

(yi − f(xi,W ))2. (1.3)

In particular, we will run gradient descent with a constant
learning rate η, starting from a random initializationW0 via
the following updates

Wτ+1 =Wτ − η∇L(Wτ). (1.4)
2If the number of hidden units is odd we set one entry of v to

zero.

2. Main results
Throughout, ∥⋅∥ denotes the largest singular value of a given
matrix. The notation O(⋅) denotes that a certain identity
holds up to a fixed numerical constant. Also, c, c0, C, C0

etc. represent numerical constants.

Our main result shows that overparameterized neural net-
works, when trained via gradient descent using early stop-
ping are fairly robust to label noise. The ability of neural
networks to learn from the training data, even without label
corruption, naturally depends on the diversity of the input
training data. Indeed, if two input data are nearly the same
but have different uncorrupted labels reliable learning is
difficult. We will quantify this notion of diversity via a
notion of condition number related to a covariance matrix
involving the activation φ and the cluster centers {c`}K`=1.

Definition 2.1 Define the matrix of cluster centers

C = [c1 . . . cK]T ∈ RK×d.

Let g ∼ N(0,Id). Define the neural net covariance matrix
Σ(C) as

Σ(C) = (CCT )⊙Eg[φ′(Cg)φ′(Cg)T ].
Here⊙ denotes the elementwise product. Also denote the
minimum eigenvalue of Σ(C) by λ(C) and define the con-
dition number associated with the cluster centers C as

κ(C) =
√

d

K

∥C∥
λ(C) .

One can view Σ(C) as an empirical kernel matrix as-
sociated with the network where the kernel is given by
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K(ci,cj) = Σij(C). Note that Σ(C) is trivially rank de-
ficient if there are two cluster centers that are identical. In
this sense, the minimum eigenvalue of Σ(C) will quan-
tify the ability of the neural network to distinguish between
distinct cluster centers. Therefore, one can think of κ(C)
as a condition number associated with the neural network
which characterizes the distinctness/diversity of the cluster
centers. The more distinct the cluster centers, the larger
λ(C) and smaller the condition number κ(C) is. Indeed,
based on results in (5) when the cluster centers are maxi-
mally diverse e.g. uniformly at random from the unit sphere
κ(C) scales like a constant. Throughout we shall assume
that λ(C) is strictly positive (and hence κ(C) < ∞). This
property is empirically verified to hold in earlier works (6)
when φ is a standard activation (e.g. ReLU, softplus). As a
concrete example, for ReLU activation, using results from
(5) one can show if the cluster centers are separated by a
distance ν > 0, then λ(C) ≥ ν

100K2 . We note that varia-
tions of the λ(C) > 0 assumption based on the data points
(i.e. λ(X) > 0 not cluster centers) (5; 7; 8) are utilized to
provide convergence guarantees for DNNs. Also see (9; 10)
for other publications using related definitions. With a quan-
titative characterization of distinctiveness/diversity in place
we are now ready to state our main result. Throughout we
use cΓ,CΓ, etc. to denote constants only depending on Γ.
We note that this Theorem is slightly simplified by ignor-
ing logarithmic terms and precise dependencies on Γ. See
Theorem E.13 for precise statements.

Theorem 2.2 (Robust learning with early stopping)
Consider an (s, ε0, δ) clusterable corrupted data set of
input/label pairs {(xi, yi)}ni=1 ∈ Rd × R per Definition
1.2 with cluster centers {c`}K`=1 aggregated as rows of
a matrix C ∈ RK×d. Furthermore, let {ỹi}ni=1 be the
corresponding uncorrupted ground truth labels. Also
consider a one-hidden layer neural network of the
form (1.2) where the activation φ obeys ∣φ(0)∣ ≤ Γ and∣φ′(z)∣, ∣φ′′(z)∣ ≤ Γ for all z and some Γ ≥ 1. Furthermore,
we set half of the entries of v to 1/√k and the other half to−1/√k3 and train only over W . Starting from an initial
weight matrix W0 selected at random with i.i.d. N(0,1)
entries we run Gradient Descent (GD) updates of the form
Wτ+1 = Wτ − η∇L(Wτ) on the least-squares loss (1.3)
with step size η = c̄ΓKn 1

∥C∥2 with c̄Γ. Furthermore, assume
the number of parameters obey

kd ≥ CΓκ
4(C)K4

d
,

with κ(C) the neural net cluster condition number pre
Definition 2.1. Then as long as ε0 ≤ c̃Γ/K2 and
ρ ≤ δ

8
with probability at least 1 − 3/K100, after τ0 =

cΓ
K
d
λ(C)κ2(C) log( 1

ρ
) iterations, the neural network

3If k is odd we set one entry to zero ⌊ k−1
2

⌋ to 1/√k and ⌊ k−1
2

⌋
entries to −1/√k.

f(⋅,Wτ0) found by gradient descent assigns all the input
samples xi to the correct ground truth labels ỹi. That is,

arg min
α`∶1≤`≤K̄

∣f(Wτ ,xi) − α`∣ = ỹi, (2.1)

holds for all 1 ≤ i ≤ n. Furthermore, for all 0 ≤ τ ≤ τ0, the
distance to the initial point obeys

∥Wτ −W0∥F ≤ C̄Γ (√K + K2

∥C∥2
τε0) .

Theorem 2.2 shows that gradient descent with early stopping
has a few intriguing properties:
Robustness. The solution found by gradient descent with
early stopping degrades gracefully as the label corruption
level ρ grows. In particular, as long as ρ ≤ δ/8, the final
model is able to correctly classify all samples including the
corrupted ones. In our setup, intuitively label gap obeys
δ ∼ 1

K̄
, hence, we prove robustness to

Total Number of corrupted labels ≲ n

K̄
.

This result is independent of number of clusters and only de-
pends on number of classes. An interesting future direction
is to improve this result to allow on the order of n corrupted
labels. Such a result maybe possible by using a multi-output
classification neural network.

Early stopping time. We show that gradient descent finds
a model that is robust to outliers after a few iterations. In
particular using the maximum allowed step size, the number
of iterations is of the order of K

d
λ(C)κ2(C) log( 1

ρ
) which

scales with K/d up to condition numbers.

Modest overparameterization. Our result requires mod-
est overparemetrization and apply as soon as the number
of parameters exceed the number of classes to the power
four (kd ≳K4). Interestingly, the amount of overparameter-
ization is essentially independent of the size of the training
data n (ignoring logarithmic terms) and conditioning of the
data points, only depending on the number of clusters and
conditioning of the cluster centers. This can be interpreted
as ensuring that the network has enough capacity to fit the
cluster centers {c`}K`=1 and the associated true labels.

Distance from initialization. Another feature of Theorem
2.2 is that the network weights do not stray far from the
initialization as the distance between the initial model and
the final model (at most) grows with the square root of the
number of clusters (

√
K). This

√
K dependence implies

that the more clusters there are, the updates travel further
away but continue to stay within a certain radius. This
dependence is intuitive as the Rademacher complexity of the
function space is dictated by the distance to initialization
and should grow with the square-root of the number of input
clusters to ensure the model is expressive enough to learn
the dataset.
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A. Improvements for perfectly cluster-able
data

We would like to note that in the limit of ε0 → 0 where the
input data set is perfectly clustered one can improve the
amount of overparamterization. Indeed, the result above is
obtained via a perturbation argument from this more refined
result stated below.

Theorem A.1 (Training with perfectly clustered data)
Consier the setting and assumptions of Theorem E.14 with
ε0 = 0. Starting from an initial weight matrixW0 selected
at random with i.i.d. N(0,1) entries we run gradient
descent updates of the form Wτ+1 =Wτ − η∇L(Wτ) on
the least-squares loss (1.3) with step size η ≤ K

2cupnΓ2∥C∥2 .
Furthermore, assume the number of parameters obey

kd ≥ CΓ4κ2(C)K2,

with κ(C) the neural net cluster condition number per
Definition 2.1. Then, with probability at least 1 − 2/K100

over randomly initializedW0
i.i.d.∼ N(0,1), the iteratesWτ

obey the following properties.

• The distance to initial pointW0 is upper bounded by

∥Wτ −W0∥F ≤ cΓ√
K logK

λ(C) .

• After τ ≥ τ0 ∶= c K
ηnλ(C) log (Γ

√
n logK

ρ
) iterations,

the entrywise predictions of the learned network with
respect to the ground truth labels {ỹi}ni=1 satisfy

∣f(Wτ ,xi) − ỹi∣ ≤ 4ρ,

for all 1 ≤ i ≤ n. Furthermore, if the noise level ρ
obeys ρ ≤ δ/8 the network predicts the correct label
for all samples i.e.

arg min
α`∶1≤`≤K̄

∣f(Wτ ,xi) − α`∣ = ỹi for i = 1,2, . . . , n.

(A.1)

This result shows that in the limit ε0 → 0 where the data
points are perfectly clustered, the required amount of over-
parameterization can be reduced from kd ≳K4 to kd ≳K2.
In this sense this can be thought of a nontrivial analogue
of (5) where the number of data points are replaced with
the number of clusters and the condition number of the data
points is replaced with a cluster condition number. This
can be interpreted as ensuring that the network has enough
capacity to fit the cluster centers {c`}K`=1 and the associated
true labels. Interestingly, the robustness benefits continue
to hold in this case. However, in this perfectly clustered

scenario there is no need for early stopping and a robust
network is trained as soon as the number of iterations are
sufficiently large. Infact, in this case given the clustered
nature of the input data the network never overfits to the
corrupted data even after many iterations.

B. To (over)fit to corrupted labels requires
straying far from initialization

In this section we wish to provide further insight into why
early stopping enables robustness and generalizable solu-
tions. Our main insight is that while a neural network maybe
expressive enough to fit a corrupted dataset, the model has
to travel a longer distance from the point of initialization as
a function of the distance from the cluster centers ε0 and
the amount of corruption. We formalize this idea as follows.
Suppose

1. two input points are close to each other (e.g. they are
from the same cluster),

2. but their labels are different, hence the network has to
map them to distant outputs.

Then, the network has to be large enough so that it can
amplify the small input difference to create a large output
difference. Our first result formalizes this for a randomly
initialized network. Our random initialization picksW with
i.i.d. standard normal entries which ensures that the network
is isometric i.e. given input x, E[f(W ,x)2] = O(∥x∥2

`2
).

Theorem B.1 Let x1,x2 ∈ Rd be two vectors with unit
Euclidean norm obeying ∥x2 −x1∥`2 ≤ ε0. Let f(W ,x) =
vTφ (Wx) where v is fixed, W ∈ Rk×d, and k ≥ cd with
c > 0 a fixed constant. Assume ∣φ′∣ , ∣φ′′∣ ≤ Γ. Let y1 and
y2 be two scalars satisfying ∣y2 − y1∣ ≥ δ. SupposeW0

i.i.d.∼N(0,1). Then, with probability at least 1−2e−(k+d)−2e−
t2

2 ,
for anyW ∈ Rk×d such that ∥W −W0∥F ≤ c√k and

f(W ,x1) = y1 and f(W ,x2) = y2,

holds, we have

∥W −W0∥ ≥ δ

CΓε0
− t

1000
.

In words, this result shows that in order to fit to a data set
with a single corrupted label, a randomly initialized network
has to traverse a distance of at least δ/ε0. The next lemma
clarifies the role of the corruption amount s and shows that
more label corruption within a fixed class requires a model
with a larger norm in order to fit the labels. For this result we
consider a randomized model with ε2

0 input noise variance.
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Lemma B.2 Let c ∈ Rd be a cluster center. Consider
2s data points {xi}si=1 and {x̃i}si=1 in Rd generated
i.i.d. around c according to the following distribution

c + g with g ∼ N(0, ε2
0

d
Id).

Assign {xi}si=1 with labels yi = y and {x̃i}si=1 with la-
bels ỹi = ỹ and assume these two labels are δ separated
i.e. ∣y − ỹ∣ ≥ δ. Also suppose s ≤ d and ∣φ′∣ ≤ Γ. Then, any
W ∈ Rk×d satisfying

f(W ,xi) = yi and f(W , x̃i) = ỹi for i = 1, . . . , s,

obeys ∥W ∥F ≥ √
sδ

5Γε0
with probability at least 1 − e−d/2.

Unlike Theorem E.15 this result lower bounds the network
norm in lieu of the distance to the initializationW0. How-
ever, using the triangular inequality we can in turn get a
guarantee on the distance from initializationW0 via trian-
gle inequality as long as ∥W0∥F ≲ O(√sδ/ε0) (e.g. by
choosing a small ε0).

The above Theorem implies that the model has to traverse a
distance of at least

∥Wτ −W0∥F ≳√
ρn

K

δ

ε0
,

to perfectly fit corrupted labels. In contrast, we note that the
conclusions of the upper bound in Theorem 2.2 show that
to be able to fit to the uncorrupted true labels the distance
to initialization grows at most by τε0 after τ iterates. This
demonstrates that there is a gap in the required distance to
initialization for fitting enough to generalize and overfitting.
To sum up, our results highlight that, one can find a network
with good generalization capabilities and robustness to label
corruption within a small neighborhood of the initialization
and that the size of this neighborhood is independent of
the corruption. However, to fit to the corrupted labels, one
has to travel much more, increasing the search space and
likely decreasing generalization ability. Thus, early stopping
can enable robustness without overfitting by restricting the
distance to the initialization.

C. Technical Approach and General Theory
In this section, we outline our approach to proving robust-
ness of overparameterized neural networks. Towards this
goal, we consider a general formulation where we aim to
fit a general nonlinear model of the form x↦ f(θ,x) with
θ ∈ Rp denoting the parameters of the model. For instance in
the case of neural networks θ represents its weights. Given
a data set of n input/label pairs {(xi, yi)}ni=1 ⊂ Rd × R, we
fit to this data by minimizing a nonlinear least-squares loss
of the form

L(θ) = 1

2

n∑
i=1

(yi − f(θ,xi))2.

which can also be written in the more compact form

L(θ) = 1

2
∥f(θ) − y∥2

`2
with f(θ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f(θ,x1)
f(θ,x2)⋮
f(θ,xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

To solve this problem we run gradient descent iterations
with a constant learning rate η starting from an initial point
θ0. These iterations take the form

θτ+1 = θτ − η∇L(θτ) with ∇L(θ) = J T (θ) (f(θ) − y) .
(C.1)

Here, J (θ) is the n× p Jacobian matrix associated with the
nonlinear mapping f defined via

J (θ) = [∂f(θ,x1)
∂θ

. . . ∂f(θ,xn)
∂θ

]T . (C.2)

C.1. Bimodal jacobian structure

Our approach is based on the hypothesis that the nonlinear
model has a Jacobian matrix with bimodal spectrum where
few singular values are large and remaining singular values
are small. This assumption is inspired by the fact that real-
istic datasets are clusterable in a proper, possibly nonlinear,
representation space. Indeed, one may argue that one reason
for using neural networks is to automate the learning of such
a representation (essentially the input to the softmax layer).
We formalize the notion of bimodal spectrum below.

Assumption 1 (Bimodal Jacobian) Let β ≥ α ≥ ε > 0
be scalars. Let f ∶ Rp → Rn be a nonlinear mapping
and consider a set D ⊂ Rp containing the initial point θ0

(i.e. θ0 ∈ D). Let S+ ⊂ Rn be a subspace and S− be its
complement. We say the mapping f has a Bimodal Jacobian
with respect to the complementary subpspaces S+ and S−
as long as the following two assumptions hold for all θ ∈ D.

• Spectrum over S+: For all v ∈ S+ with unit Euclidian
norm we have

α ≤ ∥J T (θ)v∥
`2
≤ β.

• Spectrum over S−: For all v ∈ S− with unit Euclidian
norm we have

∥J T (θ)v∥
`2
≤ ε.

We will refer to S+ as the signal subspace and S− as the
noise subspace.

When ε << α the Jacobian is approximately low-rank. An
extreme special case of this assumption is where ε = 0 so
that the Jacobian matrix is exactly low-rank. We formalize
this assumption below for later reference.
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Assumption 2 (Low-rank Jacobian) Let β ≥ α > 0 be
scalars. Consider a set D ⊂ Rp containing the initial point
θ0 (i.e. θ0 ∈ D). Let S+ ⊂ Rn be a subspace and S− be its
complement. For all θ ∈ D, v ∈ S+ and w ∈ S− with unit
Euclidian norm, we have that

α ≤ ∥J T (θ)v∥
`2
≤ β and ∥J T (θ)w∥

`2
= 0.

Our dataset model in Definition 1.2 naturally has a low-
rank Jacobian when ε0 = 0 and each input example is equal
to one of the K cluster centers {c`}K`=1. In this case, the
Jacobian will be at most rankK since each row will be in the
span of {∂f(c`,θ)

∂θ
}K
`=1

. The subspace S+ is dictated by the
membership of each cluster as follows: Let Λ` ⊂ {1, . . . , n}
be the set of coordinates i such that xi = c`. Then, subspace
is characterized by

S+ = {v ∈ Rn ∣ vi1 = vi2 for all i1, i2 ∈ Λ` and 1 ≤ ` ≤K}.
When ε0 > 0 and the data points of each cluster are not the
same as the cluster center we have the bimodal Jacobian
structure of Assumption 1 where over S− the spectral norm
is small but nonzero.

In Section D, we verify that the Jacobian matrix of real
datasets indeed have a bimodal structure i.e. there are few
large singular values and the remaining singular values are
small which further motivate Assumption 2. This is inline
with earlier papers which observed that Hessian matrices of
deep networks have bimodal spectrum (approximately low-
rank) (11) and is related to various results demonstrating
that there are flat directions in the loss landscape (12).

C.2. Meta result on learning with label corruption

Define the n-dimensional residual vector r where r(θ) =[f(x1,θ) − y1 . . . f(xn,θ) − yn]T . A key idea in our
approach is that we argue that (1) in the absence of any
corruption r(θ) approximately lies on the subspace S+ and
(2) if the labels are corrupted by a vector e, then e approxi-
mately lies on the complement space. Before we state our
general result we need to discuss another assumption and
definition.

Assumption 3 (Smoothness) The Jacobian map-
ping J (θ) associated to a nonlinear mapping
f ∶ Rp → Rn is L-smooth if for all θ1,θ2 ∈ Rp we
have ∥J (θ2) − J (θ1)∥ ≤ L ∥θ2 − θ1∥`2 .4

Additionally, to connect our results to the number of cor-
rupted labels, we introduce the notion of subspace diffused-
ness defined below.

4Note that, if ∂J(θ)
∂θ

is continuous, the smoothness condition
holds over any compact domain (albeit for a possibly large L).

Definition C.1 (Diffusedness) S+ is γ diffused if for any
vector v ∈ S+

∥v∥`∞ ≤ √
γ/n∥v∥`2 ,

holds for some γ > 0.

The following theorem is our meta result on the robustness
of gradient descent to sparse corruptions on the labels when
the Jacobian mapping is exactly low-rank. Theorem E.14 for
the perfectly clustered data (ε0 = 0) is obtained by combin-
ing this result with specific estimates developed for neural
networks.

Theorem C.2 (Gradient descent with label corruption)
Consider a nonlinear least squares problem of the formL(θ) = 1

2
∥f(θ) − y)∥2

`2
with the nonlinear mapping

f ∶ Rp → Rn obeying assumptions 2 and 3 over a unit
Euclidian ball of radius 4∥r0∥`2

α
around an initial point θ0

and y = [y1 . . . yn] ∈ Rn denoting the corrupted labels.
Also let ỹ = [ỹ1 . . . ỹn] ∈ Rn denote the uncorrupted labels
and e = y − ỹ the corruption. Furthermore, suppose the
initial residual f(θ0) − ỹ with respect to the uncorrupted
labels obey f(θ0) − ỹ ∈ S+. Then, running gradient
descent updates of the from (C.1) with a learning rate

η ≤ 1
2β2 min(1, αβ

L∥r0∥`2
), all iterates obey

∥θτ − θ0∥`2 ≤ 4∥r0∥`2
α

.

Furthermore, assume ν > 0 is a precision level obeying ν ≥∥ΠS+(e)∥`∞ . Then, after τ ≥ 5
ηα2 log ( ∥r0∥`2

ν
) iterations,

θτ achieves the following error bound with respect to the
true labels ∥f(θτ) − ỹ∥`∞ ≤ 2ν.

Furthermore, if e has at most s nonzeros and S+ is γ diffused
per Definition C.1, then using ν = ∥ΠS+(e)∥`∞

∥f(θτ) − ỹ∥`∞ ≤ 2∥ΠS+(e)∥`∞ ≤ γ√s
n

∥e∥`2 .
This result shows that when the Jacobian of the nonlinear
mapping is low-rank, gradient descent enjoys two intriguing
properties. First, gradient descent iterations remain rather
close to the initial point. Second, the estimated labels of the
algorithm enjoy sample-wise robustness guarantees in the
sense that the noise in the estimated labels are gracefully
distributed over the dataset and the effects on individual
label estimates are negligible. This theorem is the key result
that allows us to prove Theorem E.14 when the data points
are perfectly clustered (ε0 = 0). Furthermore, this theorem
when combined with a perturbation analysis allows us to
deal with data that is not perfectly clustered (ε0 > 0) and to
conclude that with early stopping neural networks are rather
robust to label corruption (Theorem 2.2).
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Finally, we note that a few recent publication (7; 9; 13)
require the Jacobian to be well-conditioned to fit labels
perfectly. In contrast, our low-rank model cannot perfectly
fit the corrupted labels. Furthermore, when the Jacobian is
bimodal (as seems to be the case for many practical data sets
and neural network models) it would take a very long time
to perfectly fit the labels and as demonstrated earlier such a
model does not generalize and is not robust to corruptions.
Instead we focus on proving robustness with early stopping.

C.3. To (over)fit to corrupted labels requires straying
far from initialization

In this section we state a result that provides further justi-
fication as to why early stopping of gradient descent leads
to more robust models without overfitting to corrupted la-
bels. This is based on the observation that while finding
an estimate that fits the uncorrupted labels one does not
have to move far from the initial estimate in the presence of
corruption one has to stray rather far from the initialization
with the distance from initialization increasing further in the
presence of more corruption. We make this observation rig-
orous below by showing that it is more difficult to fit to the
portion of the residual that lies on the noise space compared
to the portion on the signal space (assuming α≫ ε).

Theorem C.3 Denote the residual at initialization θ0 by
r0 = f(θ0) − y. Define the residual projection over the
signal and noise space as

E+ = ∥ΠS+(r0)∥`2 and E− = ∥ΠS−(r0)∥`2 .
Suppose Assumption 1 holds over an Euclidian ball D of
radius R < max (E+

β
, E−
ε
) around the initial point θ0 with

α ≥ ε. Then, over D there exists no θ that achieves zero
training loss. In particular, if D = Rp, any parameter θ
achieving zero training loss (f(θ) = y) satisfies the distance
bound

∥θ − θ0∥`2 ≥ max(E+

β
,
E−

ε
) .

This theorem shows that the higher the corruption (and
hence E−) the further the iterates need to stray from the
initial model to fit the corrupted data.

D. Numerical experiments
We conduct several experiments to investigate the robustness
capabilities of deep networks to label corruption. In our first
set of experiments, we explore the relationship between loss,
accuracy, and amount of label corruption on the MNIST
dataset to corroborate our theory. Our next experiments
study the distribution of the loss and the Jacobian on the
CIFAR-10 dataset. Finally, we simulate our theoretical
model by generating data according to the corrupted data
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Figure 3. We depict the training accuracy of a LENET model
trainined on 3000 samples from MNIST as a function of rela-
tive distance from initialization. Here, the x-axis keeps track of
the distance between the current and initial weights of all layers
combined.

model of Definition 1.2 and verify the robustness capability
of gradient descent with early stopping in this model.

In Figure 3, we train the same model used in Figure 1 with
n = 3,000 MNIST samples for different amounts of cor-
ruption. Our theory predicts that more label corruption
leads to a larger distance to initialization. To probe this
hypothesis, Figure 3a and 3b visualizes training accuracy
and training loss as a function of the distance from the ini-
tialization. These results demonstrate that the distance from
initialization gracefully increase with more corruption.

Next, we study the distribution of the individual sample
losses on the CIFAR-10 dataset. We conducted two experi-
ments using Resnet-20 with cross entropy loss5. In Figure 4
we assess the noise robustness of gradient descent where we
used all 50,000 samples with either 30% random corruption

5We opted for cross entropy as it is the standard classification
loss however least-squares loss achieves similar accuracy.
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Figure 4. Histogram of the cross entropy loss of individual data
points based on a model trained on 50,000 samples from CIFAR-
10 with early stopping. Plot depicts 5000 random samples from
these 50,000 samples. The loss distribution of clean and corrupted
data are separated but gracefully overlap as the corruption level
increases.

or 50% random corruption. Theorem E.14 predicts that
when the corruption level is small, the loss distribution of
corrupted vs clean samples should be separable. Figure 4
shows that when 30% of the data is corrupted the distribu-
tions are approximately separable. When we increase the
shuffling amount to 50% the training loss on the clean data
increases as predicted by our theory and the distributions
start to gracefully overlap.

As described in Section C, our technical framework utilizes
a bimodal prior on the Jacobian matrix (C.2) of the model.
We now further investigate this hypothesis. For a multiclass
task, the Jacobian matrix is essentially a 3-way tensor where
dimensions are sample size (n), total number of parameters
in the model (p), and the number of classes (K̄). The neural
network model we used for CIFAR 10 has around 270,000
parameters in total. In Figure 5 we illustrate the singular
value spectrum of the two multiclass Jacobian models where

# >0.1× top singular At initialization After training
All classes 4 14
Correct class 15 16

Table 1. Jacobian of the network has few singular values that are
significantly large i.e. larger than 0.1× the spectral norm. This is
true whether we consider the initial network or final network.

we form the Jacobian from all layers except the five largest
(in total we use p̄ ≈ 90,000 parameters).6 We train the
model with all samples and focus on the spectrum before
and after the training. In Figure 5a, we picked n = 1000
samples and unfolded this tensor along parameters to obtain
a 10,000 × 90,000 matrix which verifies our intuition on
bimodality. In particular, only 10 to 20 singular values are
larger than 0.1× the top one. This is consistent with earlier
works that studied the Hessian spectrum. However, focusing
on the Jacobian has the added advantage of requiring only
first order information (11; 14). A disadvantage is that the
size of Jacobian grows with number of classes. Intuitively,
cross entropy loss focuses on the class associated with the
label hence in Figure 5b, we only picked the partial deriva-
tive associated with the correct class so that each sample is
responsible for a single (size p̄) vector. This allowed us to
scale to n = 10000 samples and the corresponding spectrum
is strikingly similar. Another intriguing finding is that the
spectrums of before and after training are fairly close to
each other highlighting that even at random initialization,
spectrum is bimodal.

In Figure 6, we turn our attention to verifying our find-
ings for the corrupted dataset model of Definition 1.2. We
generated K = 2 classes where the associated clusters cen-
ters are generated uniformly at random on the unit sphere
of Rd=20. We also generate the input samples at random
around these two clusters uniformly at random on a sphere
of radius ε0 = 0.5 around the corresponding cluster center.
Hence, the clusters are guaranteed to be at least 1 distance
from each other to prevent overlap. Overall we generate
n = 400 samples (200 per class/cluster). Here, K̄ = K = 2
and the class labels are 0 and 1. We picked a network with
k = 1000 hidden units and trained on a data set with 400
samples where 30% of the labels were corrupted. Figure
6a plots the trajectory of training error and highlights the
model achieves good classification in the first few itera-
tions and ends up overfitting later on. In Figures 6b and
6c, we focus on the loss distribution of 6a at iterations 80
and 4500. In this figure, we visualize the loss distribution
of clean and corrupted data. Figure 6b highlights the loss
distribution with early stopping and implies that the gap be-
tween corrupted and clean loss distributions is surprisingly
resilient despite a large amount of corruption and the high-

6We depict the smaller Jacobian due to the computational cost
of calculating the full Jacobian.
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Figure 5. Spectrum of the Jacobian obtained by plotting the sin-
gular values. (a) is obtained by forming the Jacobian by taking
partial derivatives of all classes associated with a sample for 1000
samples. (b) is obtained by taking the class corresponding to the
label for 10000 samples.

capacity of the model. In Figure 6c, we repeat plot after
many more iterations at which point the model overfits. This
plot shows that the distribution of the two classes overlap
demonstrating that the model has overfit the corruption and
lacks generalization/robustness.

E. Proofs
E.1. Proofs for General Theory

We begin by defining the average Jacobian which will be
used throughout our analysis.

Definition E.1 (Average Jacobian) We define the average
Jacobian along the path connecting two points x,y ∈ Rp as

J (y,x) ∶= ∫ 1

0
J (x + α(y −x))dα. (E.1)

Lemma E.2 (Linearization of the residual) Given gradi-
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Figure 6. We experiment with the corrupted dataset model of Defi-
nition 1.2. We picked K = 2 classes and set n = 400 and ε0 = 0.5.
Trained 30% corrupted data with k = 1000 hidden units. Each
corruption has 50% chance to remain in the correct class hence
around 15% of the labels are actually flipped which corresponds
to the dashed green line.

ent descent iterate θ̂ = θ − η∇L(θ), define

C(θ) = J (θ̂,θ)J (θ)T .
The residuals r̂ = f(θ̂)−y, r = f(θ)−y obey the following
equation

r̂ = (I − ηC(θ))r.
Proof Following Definition E.1, denoting f(θ̂)−y = r̂ and
f(θ) − y = r, we find that

r̂ =r − f(θ) + f(θ̂)
(a)= r + J (θ̂,θ)(θ̂ − θ)
(b)= r − ηJ (θ̂,θ)J (θ)Tr= (I − ηC(θ))r. (E.2)
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Here (a) uses the fact that Jacobian is the derivative of f and
(b) uses the fact that ∇L(θ) = J (θ)Tr.

Using Assumption C.1, one can show that sparse vectors
have small projection on S+.

Lemma E.3 Suppose Assumption C.1 holds. If r ∈ Rn is a
vector with s nonzero entries, we have that

∥ΠS+(r)∥`∞ ≤ γ√s
n

∥r∥`2 . (E.3)

Proof First, we bound the `2 projection of r on S+ as
follows

∥ΠS+(r)∥`2 = sup
v∈S+

vTr∥v∥`2 ≤ √
γ

n
∥r∥`1 ≤ √

γs

n
∥r∥`2 .

where we used the fact that ∣vi∣ ≤ √
γ∥v∥`2/√n. Next, we

conclude with

∥ΠS+(r)∥`∞ ≤ √
γ

n
∥ΠS+(r)∥`2 ≤ γ

√
s

n
∥r∥`2 .

E.1.1. PROOF OF THEOREM C.2

Proof The proof will be done inductively over the properties
of gradient descent iterates and is inspired from the recent
work (13). In particular, (13) requires a well-conditioned
Jacobian to fit labels perfectly. In contrast, we have a low-
rank Jacobian model which cannot fit the noisy labels (or it
would have trouble fitting if the Jacobian was approximately
low-rank). Despite this, we wish to prove that gradient
descent satisfies desirable properties such as robustness and
closeness to initialization. Let us introduce the notation
related to the residual. Set rτ = f(θτ) − y and let r0 =
f(θ0)−y be the initial residual. We keep track of the growth
of the residual by partitioning the residual as rτ = r̄τ + ēτ
where

ēτ = ΠS−(rτ) , r̄τ = ΠS+(rτ).
We claim that for all iterations τ ≥ 0, the following condi-
tions hold.

ēτ =ē0 (E.4)

∥r̄τ∥2
`2
≤(1 − ηα2

2
)τ ∥r̄0∥2

`2
, (E.5)

1

4
α ∥θτ − θ0∥`2 + ∥r̄τ∥`2 ≤∥r̄0∥`2 ≤ ∥r0∥`2 . (E.6)

Assuming these conditions hold till some τ > 0, inductively,
we focus on iteration τ + 1. First, note that these conditions
imply that for all τ ≥ i ≥ 0, θi ∈ D where D is the Euclidian
ball around θ0 of radius 4∥r0∥`2

α
. This directly follows from

(E.6) induction hypothesis. Next, we claim that θτ+1 is still
within the set D. This can be seen as follows:

Claim 1 Under the induction hypothesis (E.4), θτ+1 ∈ D.

Proof Since range space of Jacobian is in S+ and η ≤ 1/β2,
we begin by noting that

∥θτ+1 − θτ∥`2 = η∥J T (θτ) (f(θτ ) − y)∥`2 (E.7)
(a)= η∥J T (θτ) (ΠS+(f(θτ ) − y))∥`2

(E.8)
(b)= η∥J T (θτ)r̄τ∥`2 (E.9)
(c)≤ ηβ∥r̄τ∥`2 (E.10)
(d)≤ ∥r̄τ∥`2

β
(E.11)

(e)≤ ∥r̄τ∥`2
α

(E.12)

In the above, (a) follows from the fact that row range space
of Jacobian is subset of S+ via Assumption 2. (b) follows
from the definition of r̄τ . (c) follows from the upper bound
on the spectral norm of the Jacobian overD per Assumption
2, (d) from the fact that η ≤ 1

β2 , (e) from α ≤ β. The
latter combined with the triangular inequality and induction
hypothesis (E.6) yields (after scaling (E.6) by 4/α)

∥θτ+1 − θ0∥`2 ≤∥θτ+1 − θτ∥`2 + ∥θ0 − θτ∥`2
≤∥θτ − θ0∥`2 + ∥r̄τ∥`2

α
≤ 4∥r0∥`2

α
,

concluding the proof of θτ+1 ∈ D.

To proceed, we shall verify that (E.6) holds for τ +1 as well.
Note that, following Lemma E.2, gradient descent iterate
can be written as

rτ+1 = (I −C(θτ))rτ .
Since both column and row space of C(θτ) is subset of S+,
we have that

ēτ+1 = ΠS−((I −C(θτ))rτ) (E.13)= ΠS−(rτ) (E.14)= ēτ , (E.15)

This shows the first statement of the induction. Next, overS+, we have

r̄τ+1 = ΠS+((I −C(θτ))rτ) (E.16)= ΠS+((I −C(θτ))r̄τ) +ΠS+((I −C(θτ))ēτ)
(E.17)

= ΠS+((I −C(θτ))r̄τ) (E.18)= (I −C(θτ))r̄τ (E.19)

where the second line uses the fact that ēτ ∈ S− and last line
uses the fact that r̄τ ∈ S+. To proceed, we need to prove
that C(θτ) has desirable properties over S+, in particular,
it contracts this space.
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Claim 2 let PS+ ∈ Rn×n be the projection matrix to S+
i.e. it is a positive semi-definite matrix whose eigenvectors
over S+ is 1 and its complement is 0. Under the induction
hypothesis and setup of the theorem, we have that7

β2PS+ ⪰ C(θτ) ⪰ 1

2
J (θτ)J (θτ)T ⪰ α2

2
PS+ . (E.20)

Proof The proof utilizes the upper bound on the learning
rate. The argument is similar to the proof of Lemma 9.7 of
(13). Suppose Assumption 3 holds. Then, for any θ1,θ2 ∈ D
we have

∥J (θ2,θ1) − J (θ1)∥
=∥∫ 1

0
(J (θ1 + t (θ2 − θ1)) − J (θ1))dt∥ ,

≤∫ 1

0
∥J (θ1 + t (θ2 − θ1)) − J (θ1)∥dt,

≤∫ 1

0
tL ∥θ2 − θ1∥`2 dt ≤ L2 ∥θ2 − θ1∥`2 .

(E.21)

Thus, for η ≤ α
Lβ∥r0∥`2

,

∥J (θτ+1,θτ) − J (θτ)∥ ≤ L
2

∥θτ+1 − θτ∥`2
= ηL

2
∥J T (θτ) (f(θτ ) − y)∥`2

≤ ηβL
2

∥r̄τ∥`2
(a)≤ ηβL

2
∥r̄0∥`2 (b)≤ α

2
. (E.22)

where for (a) we utilized the induction hypothesis (E.6) and
(b) follows from the upper bound on η. Now that (E.22) is
established, using following lemma, we find

C(θτ) =J (θτ+1,θτ)J (θτ)T ⪰ (1/2)J (θτ)J (θτ)T .
The β2 upper bound directly follows from Assumption 2 by
again noticing range space of Jacobian is subset of S+.

Lemma E.4 (Asymmetric PSD perturbation) Consider
the matrices A,C ∈ Rn×p obeying ∥A −C∥ ≤ α/2. Also
suppose CCT ⪰ α2PS+ . Furthermore, assume range
spaces ofA,C lies in S+. Then,

ACT ⪰ CCT

2
⪰ α2

2
PS+ .

7We say A ⪰B if A −B is a positive semi-definite matrix in
the sense that for any real vector v, vT (A −B)v ≥ 0.

Proof For r ∈ S+ with unit Euclidian norm, we have

rTACTr = ∥CTr∥2
`2 + rT (A −C)CTr

≥ ∥CTr∥2
`2 − ∥CTr∥`2∥rT (A −C)∥`2= (∥CTr∥`2 − ∥rT (A −C)∥`2)∥CTr∥`2≥ (∥CTr∥`2 − α/2)∥CTr∥`2≥ ∥CTr∥2
`2/2.

Also, for any r, by range space assumption rTACTr =
ΠS+(r)TACTΠS+(r) (same for CCT ). Combined with
above, this concludes the claim.

What remains is proving the final two statements of the
induction (E.6). Note that, using the claim above and recall-
ing (E.19) and using the fact that ∥J (θτ+1,θτ)∥ ≤ β, the
residual satisfies

∥r̄τ+1∥2
`2 = ∥(I − ηC(θτ))r̄τ∥2

`2= ∥r̄τ∥2
`2 − 2ηr̄Tτ Cτ r̄τ + η2r̄Tτ C

T
τ Cτ r̄τ≤ ∥r̄τ∥2

`2 − ηr̄Tτ J (θτ)J (θτ)T r̄τ+ η2β2r̄Tτ J (θτ)J (θτ)T r̄τ≤ ∥r̄τ∥2
`2 − (η − η2β2)∥J (θτ)T r̄τ∥2

`2≤ ∥r̄τ∥2
`2 − η2 ∥J (θτ)T r̄τ∥2

`2 . (E.23)

where we used the fact that η ≤ 1
2β2 . Now, using the fact

that J (θτ)J (θτ)T ⪰ α2PS+ , we have

∥r̄τ∥2
`2 − η2 ∥J (θτ)T r̄τ∥2

`2 ≤(1 − ηα2

2
)∥r̄τ∥2

`2

≤(1 − ηα2

2
)τ+1∥r̄0∥2

`2 ,

which establishes the second statement of the induction
(E.6). What remains is obtaining the last statement of (E.6).
To address this, completing squares, observe that

∥r̄τ+1∥`2 ≤√∥r̄τ∥2
`2
− η

2
∥J (θτ)T r̄τ∥2

`2

≤∥r̄τ∥`2 − η4 ∥J (θτ)T r̄τ∥2
`2∥r̄τ∥`2 .

On the other hand, the distance to initial point satisfies

∥θτ+1 − θ0∥`2 ≤∥θτ+1 − θτ∥`2 + ∥θτ − θ0∥`2≤∥θτ − θ0∥`2 + η∥J (θτ)r̄τ∥`2 .
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Combining the last two lines (by scaling the second line by
1
4
α) and using induction hypothesis (E.6), we find that

1

4
α ∥θτ+1 − θ0∥`2 + ∥r̄τ+1∥`2
≤ 1

4
α(∥θτ − θ0∥`2 + η∥J (θτ)r̄τ∥`2) + ∥r̄τ∥`2
− η

4

∥J (θτ)T r̄τ∥2
`2∥r̄τ∥`2

≤ [1

4
α∥θτ − θ0∥`2 + ∥r̄τ∥`2]

+ η
4
[α∥J (θτ)r̄τ∥`2 − ∥J (θτ)T r̄τ∥2

`2∥r̄τ∥`2 ]
≤ [1

4
α∥θτ − θ0∥`2 + ∥r̄τ∥`2]

+ η
4
∥J (θτ)r̄τ∥`2 [α − ∥J (θτ)T r̄τ∥`2∥r̄τ∥`2 ]

≤ 1

4
α∥θτ − θ0∥`2 + ∥r̄τ∥`2

≤ ∥r̄0∥`2 ≤ ∥r0∥`2 .
This establishes the final line of the induction and concludes
the proof of the upper bound on ∥θτ − θ0∥`2 . To proceed,
we shall bound the infinity norm of the residual. Using
ΠS−(e) = ΠS−(r0) = ēτ , note that

∥f(θτ) − y − e∥`∞ = ∥rτ − e∥`∞ (E.24)≤ ∥r̄τ∥`∞ + ∥e − ēτ∥`∞ (E.25)= ∥r̄τ∥`∞ + ∥e −ΠS−(e)∥`∞ (E.26)= ∥r̄τ∥`∞ + ∥ΠS+(e)∥`∞ . (E.27)

What remains is controlling ∥r̄τ∥`∞ . For this term, we
shall use the naive upper bound ∥r̄τ∥`2 . Using the rate of
convergence of the algorithm (E.6), we have that

∥r̄τ∥`2 ≤ (1 − ηα2

4
)τ∥r0∥`2 .

We wish the right hand side to be at most ν > 0 where
ν ≥ ∥ΠS+(e)∥`∞ . This implies that we need

(1 − ηα2

4
)τ∥r0∥`2 ≤ ν ⇐⇒ τ log(1 − ηα2

4
) ≤ log( ν∥r0∥`2 )

(E.28)

⇐⇒ τ log( 1

1 − ηα2

4

) ≥ log(∥r0∥`2
ν

)
(E.29)

To conclude, note that since ηα2

4
≤ 1/8 (as η ≤ 1/2β2), we

have

log( 1

1 − ηα2

4

) ≥ log(1 + ηα2

4
) ≥ ηα2

5
.

Consequently, if τ ≥ 5
ηα2 log( ∥r0∥`2

ν
), we find that ∥r̄τ∥`∞ ≤∥r̄τ∥`2 ≤ ν, which guarantees

∥rτ − e∥`∞ ≤ 2ν.

which is the advertised result. If e is s sparse and S+ is
diffused, applying Lemma C.1 we have

∥ΠS+(e)∥`∞ ≤ γ√s
n

∥e∥`2 .

E.1.2. PROOF OF GENERIC LOWER BOUND – THEOREM
C.3

Proof Suppose θ ∈ D satisfies y = f(θ). Define Jτ =J ((1 − τ)θ + τθ0) and J = J (θ,θ0) = ∫ 1
0 Jτdτ . Since

Jacobian is derivative of f , we have that

f(θ) − f(θ0) = ∫ 1

0
Jτ(θ − θ0)dτ = J(θ − θ0).

Now, define the matrices J+ = ΠS+(J) and J− = ΠS−(J).
Using Assumption 1, we bound the spectral norms via

∥J+∥ = sup
v∈S+,∥v∥`2≤1

∥JTv∥`2 ≤ β
∥J−∥ = sup

v∈S−,∥v∥`2≤1

∥JTv∥`2 ≤ ε.
To proceed, projecting the residual on S+, we find for any θ
with f(θ) = y

ΠS+(f(θ) − f(θ0)) = ΠS+(J)(θ − θ0) Ô⇒
∥θ − θ0∥`2 ≥ ∥ΠS+(f(θ) − f(θ0))∥`2

β
≥ E+

β
.

The identical argument for S− yields ∥θ − θ0∥`2 ≥ E−
ε

. To-
gether this implies

∥θ − θ0∥`2 ≥ max(E−

ε
,
E+

β
). (E.30)

If R is strictly smaller than right hand side, we reach a
contradiction as θ /∈ D. If D = Rp, we still find (E.30).

This shows that if ε is small and E− is nonzero, gradient
descent has to traverse a long distance to find a good model.
Intuitively, if the projection over the noise space indeed
contains the label noise, we actually don’t want to fit that.
Algorithmically, our idea fits the residual over the signal
space and not worries about fitting over the noise space.
Approximately speaking, this intuition corresponds to the
`2 regularized problem

min
θ
L(θ) ∥θ − θ0∥`2 ≤ R.

If we set R = E+
β

, we can hope that solution will learn only
the signal and does not overfit to the noise. The next sec-
tion builds on this intuition and formalizes our algorithmic
guarantees.
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E.2. Proofs for Neural Networks

Throughout, σmin(⋅) denotes the smallest singular value of
a given matrix. We first introduce helpful definitions that
will be used in our proofs.

Definition E.5 (Support subspace) Let {xi}ni=1 be an in-
put dataset generated according to Definition 1.1. Also let{x̃i}ni=1 be the associated cluster centers, that is, x̃i = c` iff
xi is from the `th cluster. We define the support subspaceS+ as a subspace of dimension K, dictated by the cluster
membership as follows. Let Λ` ⊂ {1, . . . , n} be the set of
coordinates i such that x̃i = c`. Then, S+ is characterized
by

S+ = {v ∈ Rn ∣ vi1 = vi2 for all i1, i2 ∈ Λ`, 1 ≤ ` ≤K}.
Definition E.6 (Neural Net Jacobian) Given input sam-
ples (xi)ni=1, form the input matrix X = [x1 . . . xn]T ∈
Rn×d. The Jacobian of the learning problem (1.3), at a
matrix W is denoted by J (W ,X) ∈ Rn×kd and is given
by

J (W ,X)T = (diag(v)φ′(WXT )) ∗XT .

Here ∗ denotes the Khatri-Rao product.

The following theorem is borrowed from (5) and charac-
terizes three key properties of the neural network Jacobian.
These are smoothness, spectral norm, and minimum singu-
lar value at initialization which correspond to Lemmas 6.6,
6.7, and 6.8 in that paper.

Theorem E.7 (Jacobian Properties at Cluster Center)
Suppose X = [x1 . . . xn]T ∈ Rn×d be an input dataset
satisfying λ(X) > 0. Suppose ∣φ′∣, ∣φ′′∣ ≤ Γ. The Jacobian
mapping with respect to the input-to-hidden weights obey
the following properties.

• Smoothness is bounded by

∥J (W̃ ,X) − J (W ,X)∥ ≤ Γ√
k
∥X∥ ∥W̃ −W ∥

F
for all W̃ ,W ∈ Rk×d.

• Top singular value is bounded by

∥J (W ,X)∥ ≤ Γ ∥X∥ .
• Let C > 0 be an absolute constant. As long as

k ≥ CΓ2logn ∥X∥2

λ(X)
At random Gaussian initialization W0 ∼ N(0,1)k×d,
with probability at least 1 − 1/K100, we have

σmin (J (W0,X)) ≥ √
λ(X)/2.

In our case, the Jacobian is not well-conditioned. However,
it is pretty well-structured as described previously. To pro-
ceed, given a matrixX ∈ Rn×d and a subspace S ⊂ Rn, we
define the minimum singular value of the matrix over this
subspace by σmin(X,S) which is defined as

σmin(X,S) = sup
∥v∥`2=1,UUT =PS

∥vTUTX∥`2 .
Here, PS ∈ Rn×n is the projection operator to the subspace.
Hence, this definition essentially projects the matrix on S
and then takes the minimum singular value over that pro-
jected subspace. The following theorem states the properties
of the Jacobian at a clusterable dataset.

Theorem E.8 (Jacobian Properties at Clusterable Dataset)
Let input samples (xi)ni=1 be generated according to (ε0, δ)
clusterable dataset model of Definition 1.1 and define
X = [x1 . . . xn]T . Let S+ be the support space and(x̃i)ni=1 be the associated clean dataset as described
by Definition E.5. Set X̃ = [x̃1 . . . x̃n]T . Assume∣φ′∣, ∣φ′′∣ ≤ Γ and λ(C) > 0. The Jacobian mapping at
X̃ with respect to the input-to-hidden weights obey the
following properties.

• Smoothness is bounded by

∥J (W̃ , X̃) − J (W , X̃)∥ ≤ Γ

√
cupn

kK
∥C∥ ∥W̃ −W ∥

F
for all W̃ ,W ∈ Rk×d.

• Top singular value is bounded by

∥J (W , X̃)∥ ≤ √
cupn

K
Γ ∥C∥ .

• As long as

k ≥ CΓ2logK ∥C∥2

λ(C)
At random Gaussian initialization W0 ∼ N(0,1)k×d,
with probability at least 1 − 1/K100, we have

σmin (J (W0, X̃),S+) ≥
√

clownλ(C)
2K

• The range space obeys range(J (W0, X̃)) ⊂ S+
where S+ is given by Definition E.5.

Proof Let J (W ,C) be the Jacobian at the cluster center
matrix. Applying Theorem E.7, this matrix already obeys
the properties described in the conclusions of this theorem
with desired probability (for the last conclusion). We prove
our theorem by relating the cluster center Jacobian to the
clean dataset Jacobian matrix J (W , X̃).
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Note that X̃ is obtained by duplicating the rows of the
cluster center matrix C. This implies that J (W , X̃) is ob-
tained by duplicating the rows of the cluster center Jacobian.
The critical observation is that, by construction in Definition
1.1, each row is duplicated somewhere between clown/K
and cupn/K.

To proceed, fix a vector v and let p̃ = J (W , X̃)v ∈ Rn and
p = J (W ,C)v ∈ RK . Recall the definition of the support
sets Λ` from Definition E.5. We have the identity

p̃i = p` for all i ∈ Λ`.

This implies p̃ ∈ S+ hence range(J (W , X̃)) ⊂ S+. Fur-
thermore, the entries of p̃ repeats the entries of p somewhere
between clown/K and cupn/K. This implies that,√

cupn

K
∥p∥`2 ≥ ∥p̃∥`2 ≥ √

clown

K
∥p∥`2 ,

and establishes the upper and lower bounds on the singular
values of J (W , X̃) over S+ in terms of the singular values
of J (W ,C). Finally, the smoothness can be established
similarly. Given matricesW ,W̃ , the rows of the difference

∥J (W̃ , X̃) − J (W , X̃)∥
is obtained by duplicating the rows of∥J (W̃ ,C) − J (W ,C)∥ by at most cupn/K times.
Hence the spectral norm is scaled by at most

√
cupn/K.

Lemma E.9 (Upper bound on initial misfit) Consider a
one-hidden layer neural network model of the form x ↦
vTφ (Wx) where the activation φ has bounded deriva-
tives obeying ∣φ(0)∣, ∣φ′(z)∣ ≤ Γ. Suppose entries of v ∈ Rk

are half 1/√k and half −1/√k so that ∥v∥`2 = 1. Also
assume we have n data points x1,x2, . . . ,xn ∈ Rd with
unit euclidean norm (∥xi∥`2 = 1) aggregated as rows of a
matrix X ∈ Rn×d and the corresponding labels given by
y ∈ Rn generated accoring to (ρ, ε0 = 0, δ) noisy dataset
(Definition 1.2). Then for W0 ∈ Rk×d with i.i.d. N(0,1)
entries

∥vTφ (W0X
T ) − y∥

`2
≤ O(Γ√

n logK),
holds with probability at least 1 −K−100.

Proof This lemma is based on a fairly straightforward union
bound. First, by construction ∥y∥`2 ≤ √

n. What remains
is bounding ∥vTφ (W0X

T )∥`2 . Since ε0 = 0 there are K
unique rows. We will show that each of the unique rows is
bounded with probability 1 −K−101 and union bounding
will give the final result. Letw be a row ofW0 and x be a
row ofX . Since φ is Γ Lipschitz and ∣φ(0)∣ ≤ Γ, each entry
of φ (Xw) is O(Γ)-subgaussian. Hence vTφ(W0x) is
weighted average of k i.i.d. subgaussians which are entries

of φ(W0x). Additionally it is zero mean since ∑ni=1 vi =
0. This means vTφ(W0x) is also O(Γ) subgaussian and
obeys

P(∣vTφ(W0x)∣ ≥ cΓ√
logK) ≤K−101,

for some constant c > 0, concluding the proof.

E.2.1. PROOF OF THEOREM E.14

We first prove a lemma regarding the projection of label
noise on the cluster induced subspace.

Lemma E.10 Let {(xi, yi)}ni=1 be an (ρ, ε0 = 0, δ) cluster-
able noisy dataset as described in Definition 1.2. Let {ỹi}ni=1

be the corresponding noiseless labels. Let J (W ,C) be
the Jacobian at the cluster center matrix which is rank K
and S+ be its column space. Then, the difference between
noiseless and noisy labels satisfy the bound

∥ΠS+(y − ỹ)∥`∞ ≤ 2ρ.

Proof Let e = y−ỹ. Observe that by assumption, `th cluster
has at most s` = ρn` errors. Let I` denote the membership
associated with cluster ` i.e. I` ⊂ {1, . . . , n} and i ∈ I` if
and only if xi belongs to `th cluster. Let 1(`) ∈ Rn be the
indicator function of the `th class where ith entry is 1 if
i ∈ I` and 0 else for 1 ≤ i ≤ n. Then, denoting the size of
the `th cluster by n`, the projection to subspace S+ can be
written as the P matrix where

P = K∑̀
=1

1

n`
1(`)1(`)T .

Let e` be the error pattern associated with `th cluster i.e. e`
is equal to e over I` and zero outside. Since cluster mem-
bership is non-overlapping, we have that

Pe = K∑̀
=1

1

n`
1(`)1(`)Te`.

Similarly since supports of 1(`) are non-overlapping, we
have that

∥Pe∥`∞ = max
1≤`≤K

1

n`
1(`)1(`)Te`.

Now, using ∥e∥`∞ ≤ 2 (max distance between two labels),
observe that

∥1(`)1(`)Te`∥`∞ ≤ 2∥1(`)∥`∞∥e`∥`1 = 2∥e`∥`1 .
Since number of errors within cluster ` is at most n`ρ, we
find that

∥Pe∥`∞ = K∑̀
=1

∥ 1

n`
1(`)1(`)Te`∥`∞ ≤ ∥e`∥`1

n`
≤ 2ρ.



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

The final line yields the bound

∥PS+(y − ỹ)∥`∞ = ∥PS+(e)∥`∞ = ∥Pe∥`∞ ≤ 2ρ.

With this, we are ready to state the proof of Theorem E.14.
Proof The proof is based on the meta Theorem C.2, hence
we need to verify its Assumptions 2 and 3 with proper values
and apply Lemma E.10 to get ∥PS+(e)∥`∞ . We will also
make significant use of Corollary E.8.

Using Corollary E.8, Assumption 3 holds with L =
Γ
√

cupn

kK
∥C∥ where L is the Lipschitz constant of Jaco-

bian spectrum. Denote rτ = f(Wτ) − y. Using Lemma
E.9 with probability 1 − K−100, we have that ∥r0∥`2 =∥y − f(W0)∥`2 ≤ Γ

√
c0n logK/128 for some c0 > 0.

Corollary E.8 guarantees a uniform bound for β, hence
in Assumption 2, we pick

β ≤ √
cupn

K
Γ ∥C∥ .

We shall also pick the minimum singular value over S+ to
be

α = α0

2
where α0 =

√
clownλ(C)

2K
,

We wish to verify Assumption 2 over the radius of

R =4∥f(W0) − y∥`2
α

≤Γ
√
c0n logK/8

α

=Γ

¿ÁÁÀc0n logK/2
clownλ(C)

2K

=Γ

√
c0K logK

clowλ(C) ,
neighborhood ofW0. What remains is ensuring that Jaco-
bian over S+ is lower bounded by α. Our choice of k guar-
antees that at the initialization, with probability 1 −K−100,
we have

σmin(J (W0,X),S+) ≥ α0.

Suppose LR ≤ α = α0/2. Using triangle inequality on
Jacobian spectrum, for any W ∈ D, using ∥W −W0∥F ≤
R, we would have

σmin(J (W ,X),S+) ≥σmin(J (W0,X),S+) −LR≥α0 − α = α.

Now, observe that

LR =Γ

√
cupn

kK
∥C∥Γ

¿ÁÁÀc0K log(K)
clowλ(C)

=Γ2∥C∥√cupc0n logK

clowkλ(C)
≤α0

2

=
√

clownλ(C)
8K

,

as k satisfies

k ≥ O(Γ4∥C∥2 cupK log(K)
c2lowλ(C)2

) ≥ O(Γ4K log(K) ∥C∥2

λ(C)2
).

Finally, since LR = 4L∥r0∥`2/α ≤ α, the learning rate is

η ≤ 1

2β2
min(1, αβ

L ∥r0∥`2 ) =
1

2β2
= K

2cupnΓ2 ∥C∥2
.

Overall, the assumptions of Theorem C.2 holds with stated
α,β,L with probability 1 − 2K−100 (union bounding initial
residual and minimum singular value events). This implies
for all τ > 0 the distance of current iterate to initial obeys

∥Wτ −W0∥F ≤ R.
The final step is the properties of the label corruption. Using
Lemma E.10, we find that

∥ΠS+(ỹ − y)∥`∞ ≤ 2ρ.

Substituting the values corresponding to α,β,L yields that,
for all gradient iterations with

5

ηα2
log(∥r0∥`2

2ρ
) ≤ 5

ηα2
log

⎛⎝Γ
√
c0n logK/32

2ρ

⎞⎠
=O( K

ηnλ(C) log(Γ
√
n logK

ρ
)) ≤ τ,

denoting the clean labels by ỹ and applying Theorem C.2,
we have that, the infinity norm of the residual obeys (using∥ΠS+(e)∥`∞ ≤ 2ρ)

∥f(W ) − ỹ∥`∞ ≤ 4ρ.

This implies that if ρ ≤ δ/8, the network will miss the correct
label by at most δ/2, hence all labels (including noisy ones)
will be correctly classified.

E.2.2. PROOF OF THEOREM E.15

Consider

f(W ,x) = vTφ (Wx)
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and note that

∇xf(W ,x) =W T diag (φ′ (Wx))v

Thus

∂

∂x
f(W ,x)u =vT diag (φ′ (Wx))Wu

= k∑̀
=1

v`φ
′ (⟨w`,x⟩)wT

` u

Thus

∇w` ( ∂

∂x
f(W ,x)u) = v` (φ′′(wT

` x)(wT
` u)x + φ′(wT

` x)u)

Thus, denoting vectorization of a matrix by vect(⋅)

vect(U)T ( ∂

∂vect(W ) ∂

∂x
f(W ,x))u

= k∑̀
=1

v` (φ′′(wT
` x)(wT

` u)(uT` x) + φ′(wT
` x)(uT` u))

=uTW T diag (v)diag (φ′′(Wx))Ux + vT diag (φ′ (Wx))Uu

Thus by the general mean value theorem there exists a point(W̃ , x̃) in the square (W0,x1), (W0,x2), (W ,x1) and(W ,x2) such that

(f(W ,x2) − f(W0,x2)) − (f(W ,x1) − f(W0,x1))= (x2 −x1)TW̃ T diag (v)diag (φ′′(W̃ x̃)) (W −W0)x̃
+ vT diag (φ′ (W̃ x̃)) (W −W0)(x2 −x1)

Using the above we have that

∣ (f(W ,x2) − f(W0,x2)) − (f(W ,x1) − f(W0,x1)) ∣
(a)≤ ∣(x2 −x1)TW̃ T diag (v)diag (φ′′(W̃ x̃)) (W −W0)x̃∣

+ ∣vT diag (φ′ (W̃ x̃)) (W −W0)(x2 −x1)∣
(b)≤ (∥v∥`∞ ∥x̃∥`2 ∥W̃ ∥ + ∥v∥`2)Γ ∥x2 −x1∥`2 ∥W −W0∥
(c)≤ ( 1√

k
∥x̃∥`2 ∥W̃ ∥ + 1)Γ ∥x2 −x1∥`2 ∥W −W0∥

(d)≤ ( 1√
k
∥W̃ ∥ + 1)Γ ∥x2 −x1∥`2 ∥W −W0∥

(e)≤ ( 1√
k
∥W0∥ + 1√

k
∥W̃ −W0∥ + 1)

⋅ Γ ∥x2 −x1∥`2 ∥W −W0∥
(f)≤ ( 1√

k
∥W0∥ + 1√

k
∥W̃ −W0∥F + 1)

⋅ Γ ∥x2 −x1∥`2 ∥W −W0∥
(g)≤ ⎛⎝ 1√

k
∥W̃ −W0∥F + 3 + 2

√
d

k

⎞⎠
⋅ Γ ∥x2 −x1∥`2 ∥W −W0∥

(h)≤ CΓ ∥x2 −x1∥`2 ∥W −W0∥ (E.31)

Here, (a) follows from the triangle inequality, (b) from
simple algebraic manipulations along with the fact that∣φ′(z)∣ ≤ Γ and ∣φ′′(z)∣ ≤ Γ, (c) from the fact that v` = ± 1√

k
,

(d) from ∥x2∥`2 = ∥x1∥`2 = 1 which implies ∥x̃∥`2 ≤ 1, (e)
from triangular inequality, (f) from the fact that Frobenius
norm dominates the spectral norm, (g) from the fact that with
probability at least 1− 2e−(d+k), ∥W0∥ ≤ 2(√k +√

d), and
(h) from the fact that ∥W̃ −W0∥ ≤ ∥W −W0∥F ≤ c̃√k
and k ≥ cd.

Next we note that for a Gaussian random vector g ∼N(0,Id) we have

∥φ(gTx2) − φ(gTx1)∥ψ2 (E.32)

=∥φ(gTx2) − φ(gTx1)∥ψ2=∥φ′ (tgTx2 + (1 − t)gTx1)gT (x2 −x1)∥ψ2≤Γ∥gT (x2 −x1)∥ψ2≤cΓ ∥x2 −x1∥`2 . (E.33)

Also note that

f(W0,x2) − f(W0,x1) =vT (φ (W0x2) − φ (W0x1))
∼ k∑̀

=1

v` (φ(gT` x2) − φ(gT` x1))
where g1,g2, . . . ,gk are i.i.d. vectors with N(0,Id) distri-
bution. Also for v obeying 1Tv = 0 this random variable
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has mean zero. Hence, using the fact that weighted sum of
subGaussian random variables are subgaussian combined
with (G.2) we conclude that f(W0,x2) − f(W0,x1) is
also subGaussian obeying ∥f(W0,x2) − f(W0,x1)∥ψ2 ≤
cΓ ∥v∥`2 ∥x2 −x1∥`2 . Thus

∣f(W0,x2) − f(W0,x1)∣ ≤ctΓ ∥v∥`2 ∥x2 −x1∥`2=ctΓ ∥x2 −x1∥`2 , (E.34)

with probability at least 1 − e− t22 .

Now combining (G.1) and (G.3) we have

δ ≤ ∣y2 − y2∣= ∣f(W ,x1) − f(W ,x2)∣= ∣vT (φ(Wx2) − φ(Wx1))∣≤ ∣(f(W ,x2) − f(W0,x2)) − (f(W ,x1) − f(W0,x1))∣+ ∣vT (φ(W0x2) − φ(W0x1))∣≤CΓ ∥x2 −x1∥`2 ∥W −W0∥ + ctΓ ∥x2 −x1∥`2
≤CΓε0 (∥W −W0∥ + 1

1000
t)

Thus

∥W −W0∥ ≥ δ

CΓε0
− t

1000
,

with high probability.

E.3. Perturbation analysis for perfectly clustered data
(Proof of Theorem 2.2)

Denote average neural net Jacobian at dataX via

J (W1,W2,X) = ∫ 1

0
J (αW1 + (1 − α)W2,X)dα.

Lemma E.11 (Perturbed Jacobian Distance) Let X =[x1 . . . xn]T be the input matrix obtained from Defini-
tion 1.1. Let X̃ be the noiseless inputs where x̃i is the
cluster center corresponding to xi. Given weight matrices
W1,W2,W̃1,W̃2, we have that

∥J (W1,W2,X) − J (W̃1,W̃2, X̃)∥
≤ Γ

√
n(∥W̃1 −W1∥F + ∥W̃2 −W2∥F

2
√
k

+ ε0).
Proof GivenW ,W̃ , we write

∥J (W ,X) − J (W̃ , X̃)∥ ≤∥J (W ,X) − J (W̃ ,X)∥
+ ∥J (W̃ ,X) − J (W̃ , X̃)∥.

We first bound

∥J (W ,X) − J (W̃ ,X)∥
= ∥diag(v)φ′(WXT ) ∗XT − diag(v)φ′(W̃XT ) ∗XT ∥
= 1√

k
∥(φ′(WXT ) − φ′(W̃XT )) ∗XT ∥

To proceed, we use the results on the spectrum of Hadamard
product of matrices due to Schur (15). GivenA ∈ Rk×d,B ∈
Rn×d matrices whereB has unit length rows, we have

∥A ∗B∥ =√∥(A ∗B)T (A ∗B)∥
=√∥(ATA) ⊙ (BTB)∥
≤√∥ATA∥=∥A∥.

Substituting A = φ′(WXT ) − φ′(W̃XT ) and B = XT ,
we find

∥(φ′(WXT ) − φ′(W̃XT )) ∗XT ∥
≤∥φ′(WXT ) − φ′(W̃XT )∥
≤Γ∥(W̃ −W )XT ∥F≤Γ

√
n∥W̃ −W ∥F .

Secondly,

∥J (W̃ ,X)−J (W̃ , X̃)∥ = 1√
k
∥φ′(W̃XT )∗(X −X̃)∥

where reusing Schur’s result and boundedness of ∣φ′∣ ≤ Γ

∥φ′(W̃XT ) ∗ (X − X̃)∥ ≤Γ
√
k∥X − X̃∥

≤Γ
√
knε0.

Combining both estimates yields

∥J (W ,X) − J (W̃ , X̃)∥ ≤ Γ
√
n(∥W̃ −W ∥F√

k
+ ε0).

To get the result on ∥J (W1,W2,X) − J (W̃1,W̃2, X̃)∥,
we integrate

∥J (W1,W2,X) − J (W̃1,W̃2, X̃)∥
≤ ∫ 1

0
Γ
√
n
∥α(W̃1 −W1) + (1 − α)(W̃1 −W1)∥F√

k
dα

+ ∫ 1

0
Γ
√
nε0dα

≤ Γ
√
n(∥W̃1 −W1∥F + ∥W̃2 −W2∥F

2
√
k

+ ε0) .
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Theorem E.12 (Robustness of gradient path) Generate
samples (xi, yi)ni=1 according to (ρ, ε0, δ) noisy
dataset model and form the concatenated input/labels
X ∈ Rd×n,y ∈ Rn. Let X̃ be the clean input sample matrix
obtained by mapping xi to its associated cluster center. Set
learning rate η ≤ K

2cupnΓ2∥C∥2 and maximum iterations τ0
satisfying

ητ0 = C1
K

nλ(C) log(Γ
√
n logK

ρ
).

where C1 ≥ 1 is a constant of our choice. Suppose input
noise level ε0 and number of hidden nodes obey

ε0 ≤O( λ(C)
Γ2K log(Γ

√
n logK

ρ
))

k ≥O(Γ10K
2∥C∥4

λ(C)4
log(Γ

√
n logK

ρ
)6).

SetW0
i.i.d.∼ N(0,1). Starting fromW0 = W̃0 consider the

gradient descent iterations over the losses

Wτ+1 =Wτ − η∇L(Wτ) where

L(W ) = 1

2

n∑
i=1

(yi − f(W , x̃i))2

W̃τ+1 = W̃τ −∇L̃(W̃τ) where

L̃(W̃ ) = 1

2

n∑
i=1

(yi − f(W̃ , x̃i))2

Then, for all gradient descent iterations satisfying τ ≤ τ0,
we have that

∥f(Wτ ,X) − f(W̃τ , X̃)∥`2 ≤ c0τηε0Γ3n3/2
√

logK,

and

∥Wτ − W̃τ∥F ≤ O(τηε0
Γ4Kn

λ(C) log(Γ
√
n logK

ρ
)2).

Proof Since W̃τ are the noiseless iterations, with proba-
bility 1 − 2K−100, the statements of Theorem E.14 hold on
W̃τ . To proceed with proof, we first introduce short hand
notations. We use

ri =f(Wi,X) − y, r̃i = f(W̃i, X̃i) − y,Ji =J (Wi,X), Ji+1,i = J (Wi+1,Wi,X),
J̃i =J (W̃i, X̃), J̃i+1,i = J (W̃i+1,W̃i, X̃),
di =∥Wi − W̃i∥F , pi = ∥ri − r̃i∥F ,
β =Γ∥C∥√cupn/K, and L = Γ∥C∥√cupn/Kk.

Here β is the upper bound on the Jacobian spectrum and L
is the spectral norm Lipschitz constant as in Theorem E.8.

Applying Lemma E.11, note that

∥J (Wτ ,X) − J (W̃τ , X̃)∥ ≤ L∥W̃ −W ∥F + Γ
√
nε0≤ Ldτ + Γ

√
nε0∥J (Wτ+1,Wτ ,X) − J (W̃τ+1,W̃τ , X̃)∥

≤ L(dτ + dτ+1)/2 + Γ
√
nε0.

Following this and using that noiseless residual is non-
increasing and satisfies ∥r̃τ∥`2 ≤ ∥r̃0∥`2 , note that parameter
satisfies

Wi+1 =Wi − ηJiri , W̃i+1 = W̃i − ηJ̃ Ti r̃i (E.35)

∥Wi+1 − W̃i+1∥F ≤ ∥Wi − W̃i∥F + η∥Ji − J̃i∥∥r̃i∥`2+ η∥Ji∥∥ri − r̃i∥`2 (E.36)

di+1 ≤ di + η((Ldi + Γ
√
nε0)∥r̃0∥`2 + βpi), (E.37)

and residual satisfies (using I ⪰ J̃i+1,iJ̃ Ti /β2 ⪰ 0)

ri+1 =ri − ηJi+1,iJ Ti ri Ô⇒
ri+1 − r̃i+1 =(ri − r̃i) − η(Ji+1,i − J̃i+1,i)J Ti ri− ηJ̃i+1,i(J Ti − J̃ Ti )ri − ηJ̃i+1,iJ̃ Ti (ri − r̃i).
ri+1 − r̃i+1 =(I − ηJ̃i+1,iJ̃ Ti )(ri − r̃i)− η(Ji+1,i − J̃i+1,i)J Ti ri− ηJ̃i+1,i(J Ti − J̃ Ti )ri.∥ri+1 − r̃i+1∥`2 ≤∥ri − r̃i∥`2+ ηβ∥ri∥`2(L(3dτ + dτ+1)/2 + 2Γ

√
nε0).∥ri+1 − r̃i+1∥`2 ≤∥ri − r̃i∥`2

+ ηβL
2

(∥r̃0∥`2 + pi)(3dτ + dτ+1)
+ 2Γ

√
nηβ(∥r̃0∥`2 + pi)ε0. (E.38)

where we used ∥ri∥`2 ≤ pi + ∥r̃0∥`2 and∥(I − ηJ̃i+1,iJ̃ Ti )v∥`2 ≤ ∥v∥`2 which follows from
(E.23). This implies

pi+1 ≤ pi + ηβ(∥r̃0∥`2 + pi)(L(3dτ + dτ+1)/2 + 2Γ
√
nε0).

(E.39)

Finalizing proof: Next, using Lemma E.9, we have∥r̃0∥`2 ≤ Θ ∶= C0Γ
√
n logK. We claim that if

ε0 ≤ O( 1

τ0ηΓ2n
) ≤ 1

8τ0ηβΓ
√
n

L ≤ 2

5τ0ηΘ(1 + 8ητ0β2) ≤ 1

30(τ0ηβ)2Θ

(where we used ητ0β2 ≥ 1), for all t ≤ τ0, we have that

pt ≤8tηΓ
√
nε0Θβ ≤ Θ

dt ≤2tηΓ
√
nε0Θ(1 + 8ητ0β

2). (E.40)
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The proof is by induction. Suppose it holds until t ≤ τ0 − 1.
At t + 1, via (E.37) we have that

dt+1 − dt
η

≤LdtΘ + Γ
√
nε0Θ + 8τ0ηβ

2Γ
√
nε0Θ

?≤2Γ
√
nε0Θ(1 + 8ητ0β

2).
Right hand side holds since L ≤ 1

2ητ0Θ
. This establishes the

induction for dt+1.

Next, we show the induction on pt. Observe that 3dt+dt+1 ≤
10τ0ηΓ

√
nε0Θ(1 + 8ητ0β

2). Following (E.39) and using
pt ≤ Θ, we need

pt+1 − pt
η

≤βΘ(L(3dτ + dτ+1) + 4Γ
√
nε0)

?≤8Γ
√
nε0Θβ⇐⇒

L(3dτ + dτ+1) + 4Γ
√
nε0

?≤ 8Γ
√
nε0 ⇐⇒

L(3dτ + dτ+1) ?≤ 4Γ
√
nε0 ⇐⇒

10Lτ0η(1 + 8ητ0β
2)Θ ?≤ 4 ⇐⇒
L

?≤ 2

5τ0η(1 + 8ητ0β2)Θ .

Concluding the induction since L satisfies the final line.
Consequently, for all 0 ≤ t ≤ τ0, we have that

pt ≤ 8tηΓ
√
nε0Θβ = c0tηε0Γ3n3/2

√
logK.

Next, note that, condition on L is implied by

k ≥1000Γ2n(τ0ηβ)4Θ2

=O(Γ4n
K4

n4λ(C)4
log(Γ

√
n logK

ρ
)4

⋅ (∥C∥Γ√
n/K)4 (Γ√

n logK)2)
=O(Γ10K

2∥C∥4

λ(C)4
log(Γ

√
n logK

ρ
)4 log2(K))

which is implied by k ≥ O(Γ10K
2∥C∥4
λ(C)4 log(Γ

√
n logK

ρ
)6).

Finally, following (E.40), distance satisfies

dt ≤20tη2τ0Γ
√
nε0Θβ2

≤O(tηε0
Γ4Kn

λ(C) log(Γ
√
n logK

ρ
)2).

E.3.1. COMPLETING THE PROOF OF THEOREM 2.2

Theorem 2.2 is obtained by the theorem below when we
ignore the log terms, and treating Γ, λ(C) as constants. We
also plug in η = K

2cupnΓ2∥C∥2 .

Theorem E.13 (Training neural nets with corrupted labels)
Let {(xi, yi)}ni=1 be an (s, ε0, δ) clusterable noisy dataset
as described in Definition 1.2. Let {ỹi}ni=1 be the corre-
sponding noiseless labels. Suppose ∣φ(0)∣, ∣φ′∣, ∣φ′′∣ ≤ Γ for
some Γ ≥ 1, input noise and the number of hidden nodes
satisfy

ε0 ≤O( λ(C)
Γ2K log(Γ

√
n logK

ρ
))

k ≥O(Γ10K
2∥C∥4

λ(C)4
log(Γ

√
n logK

ρ
)6).

where C ∈ RK×d is the matrix of cluster centers. Set
learning rate η ≤ K

2cupnΓ2∥C∥2 and randomly initialize

W0
i.i.d.∼ N(0,1). With probability 1 − 3/K100, after

τ = O( K
ηnλ(C)) log(Γ

√
n logK

ρ
) iterations, for all 1 ≤ i ≤ n,

we have that

• The per sample normalized `2 norm bound satisfies

∥f(Wτ ,X) − ỹ∥`2√
n

≤cε0Γ3K
√

logK

λ(C) log(Γ
√
n logK

ρ
)

+ 4ρ.

• Suppose ρ ≤ δ/8. Denote the total number of prediction
errors with respect to true labels (i.e. not satisfying
(E.46)) by err(W ). With same probability, err(Wτ)
obeys

err(Wτ)
n

≤ cε0K

δ

Γ3
√

logK

λ(C) log(Γ
√
n logK

ρ
).

• Suppose ρ ≤ δ/8 and ε0 ≤ c′ δλ(C)2

Γ5K2 log(Γ
√
n logK

ρ )3
, then,

Wτ assigns all input samples xi to correct ground
truth labels ỹi i.e. (E.46) holds for all 1 ≤ i ≤ n.

• Finally, for any iteration count 0 ≤ t ≤ τ the total
distance to initialization is bounded as

∥Wτ −W0∥F ≤O(Γ√
K logK

λ(C)
+ tηε0

Γ4Kn

λ(C) log(Γ
√
n logK

ρ
)2).

(E.41)

Proof Note that proposed number of iterations τ is set so
that it is large enough for Theorem E.14 to achieve small
error in the clean input model (ε0 = 0) and it is small enough
so that Theorem E.12 is applicable. In light of Theorems
E.12 and E.14 consider two gradient descent iterations start-
ing fromW0 where one uses clean dataset (as if input vec-
tors are perfectly cluster centers) X̃ and other uses the
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original datasetX . Denote the prediction residual vectors
of the noiseless and original problems at time τ with re-
spect true ground truth labels ỹ by r̃τ = f(W̃τ , X̃)− ỹ and
rτ = f(Wτ ,X) − ỹ respectively. Applying Theorems E.12
and E.14, under the stated conditions, we have that

∥r̃τ∥`∞ ≤ 4ρ and (E.42)

∥rτ − r̃τ∥`2 ≤ cε0
K

nλ(C) log(Γ
√
n logK

ρ
)Γ3n3/2

√
logK

(E.43)

= cε0Γ3K
√
n logK

λ(C) log(Γ
√
n logK

ρ
)

(E.44)

First statement: The latter two results imply the `2 error
bounds on rτ = f(Wτ ,X) − ỹ.

Second statement: To assess the classification rate we
count the number of entries of rτ = f(Wτ ,X) − ỹ that
is larger than the class margin δ/2 in absolute value. Sup-
pose ρ ≤ δ/8. Let I be the set of entries obeying this. For
i ∈ I using ∥r̃τ∥`∞ ≤ 4ρ ≤ δ/4, we have

∣rτ,i∣ ≥ δ/2 Ô⇒ ∣rτ,i∣ + ∣rτ,i − r̄τ,i∣ ≥ δ/2Ô⇒ ∣rτ,i − r̄τ,i∣ ≥ δ/4.
Consequently, we find that

∥rτ − r̄τ∥`1 ≥ ∣I∣δ/4.
Converting `2 upper bound on the left hand side to `1, we
obtain

c
√
n
ε0Γ3K

√
n logK

λ(C) log(Γ
√
n logK

ρ
) ≥ ∣I∣δ/4.

Hence, the total number of errors is at most

∣I∣ ≤ c′ ε0nK

δ

Γ3
√

logK

λ(C) log(Γ
√
n logK

ρ
)

Third statement – Showing zero error: Pick an input sam-
ple x from dataset and its clean version x̃. We will argue
that f(Wτ ,x) − f(W̃τ , x̃) is smaller than δ/4 when ε0 is
small enough. We again write

∣f(Wτ ,x) − f(W̃τ , x̃)∣ ≤∣f(Wτ ,x) − f(W̃τ ,x)∣+ ∣f(W̃τ ,x) − f(W̃τ , x̃)∣
The first term can be bounded via

∣f(Wτ ,x) − f(W̃τ ,x)∣ =∣vTφ(Wτx) − vTφ(W̃τx)∣≤∥v∥`2∥φ(Wτx) − φ(W̃τx)∥`2≤Γ∥Wτ − W̃τ∥F
≤O(ε0

Γ5K2

λ(C)2
log(Γ

√
n logK

ρ
)3)

Next, we need to bound

∣f(W̃τ ,x) − f(W̃τ , x̃)∣ ≤ ∣vTφ(W̃τx) − vTφ(W̃τ x̃)∣
(E.45)

where ∥W̃τ −W0∥F ≤ O(Γ√
K logK
λ(C) ), ∥x − x̃∥`2 ≤ ε0

and W0
i.i.d.∼ N(0,I). Consequently, using by assumption

we have

k ≥ O(∥W̃ −W0∥2
F ) = O(Γ2K logK

λ(C) ),
and applying an argument similar to Theorem E.15 (detailed
in Appendix G), with probability at 1 − 1/n100, we find that

∣f(W̃τ ,x) − f(W̃τ , x̃)∣ ≤ C ′Γε0(∥W̃τ −W0∥F +√
logn),

≤ CΓε0(Γ
√

K logK

λ(C) +√
logn).

Combining the two bounds above we get

∣f(Wτ ,x) − f(W̃τ , x̃)∣ ≤ε0O( Γ5K2

λ(C)2
log(Γ

√
n logK

ρ
)3

+ Γ(Γ√
K logK

λ(C) +√
logn))

≤ε0O( Γ5K2

λ(C)2
log(Γ

√
n logK

ρ
)3).

Hence, if ε0 ≤ c′ δλ(C)2

Γ5K2 log(Γ
√
n logK

ρ )3
, we obtain that, for all

1 ≤ i ≤ n,

∣f(Wτ ,xi) − ỹi∣ <∣f(W̃τ , x̃i) − f(Wτ ,xi)∣
+ ∣f(W̃τ , x̃i) − ỹi∣ỹi∣ ≤ 4ρ + δ

4
.

If ρ ≤ δ/8, we obtain

∣f(Wτ ,xi) − ỹi∣ < δ/2
hence,Wτ outputs the correct decision for all samples.

Fourth statement – Distance: This follows from the trian-
gle inequality

∥Wτ −W0∥F ≤ ∥Wτ − W̃τ∥F + ∥W̃τ −W0∥F
We have that right hand side terms are at most

O(Γ√
K logK
λ(C) ) and O(tηε0

Γ4Kn
λ(C) log(Γ

√
n logK

ρ
)2) from

Theorems E.12 and E.14 respectively. This implies (E.41).

Before we end this section we would like to note that in the
limit of ε0 → 0 where the input data set is perfectly clustered
one can improve the amount of overparamterization. Indeed,
the result above is obtained via a perturbation argument
from this more refined result stated below.
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Theorem E.14 (Training with perfectly clustered data)
Consier the setting and assumptions of Theorem E.14 with
ε0 = 0. Starting from an initial weight matrixW0 selected at
random with i.i.d.N(0,1) entries we run Gradient Descent
(GD) updates of the form Wτ+1 = Wτ − η∇L(Wτ) on
the least-squares loss (1.3) with step size η ≤ K

2cupnΓ2∥C∥2 .
Furthermore, assume the number of parameters obey

kd ≥ CΓ4κ2(C)K2,

with κ(C) the neural net cluster condition number per
Definition 2.1. Then, with probability at least 1 − 2/K100

over randomly initializedW0
i.i.d.∼ N(0,1), the iteratesWτ

obey the following properties.

• The distance to initial pointW0 is upper bounded by

∥Wτ −W0∥F ≤ cΓ√
K logK

λ(C) .

• After τ ≥ τ0 ∶= c K
ηnλ(C) log (Γ

√
n logK

ρ
) iterations,

the entrywise predictions of the learned network with
respect to the ground truth labels {ỹi}ni=1 satisfy

∣f(Wτ ,xi) − ỹi∣ ≤ 4ρ,

for all 1 ≤ i ≤ n. Furthermore, if the noise level ρ
obeys ρ ≤ δ/8 the network predicts the correct label
for all samples i.e.

arg min
α`∶1≤`≤K̄

∣f(Wτ ,xi) − α`∣ = ỹi
for i = 1,2, . . . , n. (E.46)

This result shows that in the limit ε0 → 0 where the data
points are perfectly clustered, the required amount of over-
parameterization can be reduced from kd ≳K4 to kd ≳K2.
In this sense this can be thought of a nontrivial analogue
of (5) where the number of data points are replaced with
the number of clusters and the condition number of the data
points is replaced with a cluster condition number. This
can be interpreted as ensuring that the network has enough
capacity to fit the cluster centers {c`}K`=1 and the associated
true labels. Interestingly, the robustness benefits continue
to hold in this case. However, in this perfectly clustered
scenario there is no need for early stopping and a robust
network is trained as soon as the number of iterations are
sufficiently large. Infact, in this case given the clustered
nature of the input data the network never overfits to the
corrupted data even after many iterations.

E.4. To (over)fit to corrupted labels requires straying
far from initialization

In this section we wish to provide further insight into why
early stopping enables robustness and generalizable solu-
tions. Our main insight is that while a neural network maybe

expressive enough to fit a corrupted dataset, the model has
to travel a longer distance from the point of initialization as
a function of the distance from the cluster centers ε0 and
the amount of corruption. We formalize this idea as follows.
Suppose

1. two input points are close to each other (e.g. they are
from the same cluster),

2. but their labels are different, hence the network has to
map them to distant outputs.

Then, the network has to be large enough so that it can
amplify the small input difference to create a large output
difference. Our first result formalizes this for a randomly
initialized network. Our random initialization picksW with
i.i.d. standard normal entries which ensures that the network
is isometric i.e. given input x, E[f(W ,x)2] = O(∥x∥2

`2
).

Theorem E.15 Let x1,x2 ∈ Rd be two vectors with unit
Euclidean norm obeying ∥x2 −x1∥`2 ≤ ε0. Let f(W ,x) =
vTφ (Wx) where v is fixed, W ∈ Rk×d, and k ≥ cd with
c > 0 a fixed constant. Assume ∣φ′∣ , ∣φ′′∣ ≤ Γ. Let y1 and
y2 be two scalars satisfying ∣y2 − y1∣ ≥ δ. SupposeW0

i.i.d.∼N(0,1). Then, with probability at least 1−2e−(k+d)−2e−
t2

2 ,
for anyW ∈ Rk×d such that ∥W −W0∥F ≤ c√k and

f(W ,x1) = y1 and f(W ,x2) = y2,

holds, we have

∥W −W0∥ ≥ δ

CΓε0
− t

1000
.

In words, this result shows that in order to fit to a data set
with a single corrupted label, a randomly initialized network
has to traverse a distance of at least δ/ε0. The next lemma
clarifies the role of the corruption amount s and shows that
more label corruption within a fixed class requires a model
with a larger norm in order to fit the labels. For this result we
consider a randomized model with ε2

0 input noise variance.

Lemma E.16 Let c ∈ Rd be a cluster center. Con-
sider 2s data points {xi}si=1 and {x̃i}si=1 in Rd generated
i.i.d. around c according to the following distribution

c + g with g ∼ N(0, ε2
0

d
Id).

Assign {xi}si=1 with labels yi = y and {x̃i}si=1 with la-
bels ỹi = ỹ and assume these two labels are δ separated
i.e. ∣y − ỹ∣ ≥ δ. Also suppose s ≤ d and ∣φ′∣ ≤ Γ. Then, any
W ∈ Rk×d satisfying

f(W ,xi) = yi and f(W , x̃i) = ỹi for i = 1, . . . , s,

obeys ∥W ∥F ≥ √
sδ

5Γε0
with probability at least 1 − e−d/2.
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Unlike Theorem E.15 this result lower bounds the network
norm in lieu of the distance to the initializationW0. How-
ever, using the triangular inequality we can in turn get a
guarantee on the distance from initializationW0 via trian-
gle inequality as long as ∥W0∥F ≲ O(√sδ/ε0) (e.g. by
choosing a small ε0).

The above Theorem implies that the model has to traverse a
distance of at least

∥Wτ −W0∥F ≳√
ρn

K

δ

ε0
,

to perfectly fit corrupted labels. In contrast, we note that the
conclusions of the upper bound in Theorem 2.2 show that
to be able to fit to the uncorrupted true labels the distance
to initialization grows at most by τε0 after τ iterates. This
demonstrates that there is a gap in the required distance to
initialization for fitting enough to generalize and overfitting.
To sum up, our results highlight that, one can find a network
with good generalization capabilities and robustness to label
corruption within a small neighborhood of the initialization
and that the size of this neighborhood is independent of
the corruption. However, to fit to the corrupted labels, one
has to travel much more, increasing the search space and
likely decreasing generalization ability. Thus, early stopping
can enable robustness without overfitting by restricting the
distance to the initialization.

F. Proof of Lemma E.16
Create two matrices X ∈ Rs×d and X̃ ∈ Rs×d by concate-
nating the input samples. Note that the matrix X − X̃
has i.i.d. N(0,2ε2

0/d) entries. Thus, using standard results
regarding the concentration of the spectral norm with proba-
bility at least 1 − e−d/2, we have

∥X − X̃∥ ≤ √
2(√ s

d
+ 2) ε0 ≤ 5ε0.

Define the vectors y, ỹ ∈ Rs with entries given by yi and ỹi,
respectively. SupposeW fits these labels perfectly. Using
the fact that ∥v∥`2 = 1, we can conclude that

√
sδ ≤ ∥y − ỹ∥`2 = ∥f(W ,X) − f(W , X̃)∥`2 ,= ∥vT (φ(WX) − φ(WX̃))∥`2 ,≤ Γ∥v∥`2∥W (X − X̃)∥F ,≤ Γ∥X − X̃∥∥W ∥F ≤ 5Γε0∥W ∥F .

This implies the desired lower bound on ∥W ∥F .

G. Single label perturbation
Note that

∣f(W ,x) − f(W , x̃)∣
= ∣vT (φ (Wx) − φ (Wx̃))∣
≤ ∣vT (φ (Wx) − φ (Wx̃)) − vT (φ (W0x) − φ (W0x̃))∣+ ∣vT (φ (W0x) − φ (W0x̃))∣

To continue note that by the general mean value
theorem there exists a point (W ,x) in the square(W0,x), (W0, x̃), (W ,x), and (W , x̃) such that

(f(W ,x) − f(W0,x)) − (f(W , x̃) − f(W0, x̃))
= (x − x̃)TW T

diag (v)diag (φ′′(Wx)) (W −W0)x+ vT diag (φ′ (Wx)) (W −W0)(x − x̃)
Using the above we have that

∣ (f(W ,x) − f(W0,x)) − (f(W , x̃) − f(W0, x̃)) ∣
(a)≤ ∣(x − x̃)TW T

diag (v)diag (φ′′(Wx)) (W −W0)x∣
+ ∣vT diag (φ′ (Wx)) (W −W0)(x − x̃)∣

(b)≤ (∥v∥`∞ ∥x∥`2 ∥W ∥ + ∥v∥`2)Γ ∥x − x̃∥`2 ∥W −W0∥
(c)≤ ( 1√

k
∥x∥`2 ∥W ∥ + 1)Γ ∥x − x̃∥`2 ∥W −W0∥

(d)≤ ( 1√
k
∥W ∥ + 1)Γ ∥x − x̃∥`2 ∥W −W0∥

(e)≤ Γ ∥x − x̃∥`2 ∥W −W0∥
⋅ ( 1√

k
∥W0∥ + 1√

k
∥W −W0∥ + 1)

(f)≤ Γ ∥x − x̃∥`2 ∥W −W0∥
⋅ ( 1√

k
∥W0∥ + 1√

k
∥W −W0∥F + 1)

(g)≤ Γ ∥x − x̃∥`2 ∥W −W0∥
⋅ ⎛⎝ 1√

k
∥W −W0∥F + 3 + 2

√
d

k

⎞⎠
(h)≤ CΓ ∥x − x̃∥`2 ∥W −W0∥ (G.1)

Here, (a) follows from the triangle inequality, (b) from
simple algebraic manipulations along with the fact that∣φ′(z)∣ ≤ Γ and ∣φ′′(z)∣ ≤ Γ, (c) from the fact that v` = ± 1√

k
,

(d) from ∥x∥`2 = ∥x̃∥`2 = 1 which implies ∥x∥`2 ≤ 1, (e)
from triangular inequality, (f) from the fact that Frobenius
norm dominates the spectral norm, (g) from the fact that with
probability at least 1− 2e−(d+k), ∥W0∥ ≤ 2(√k +√

d), and
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(h) from the fact that ∥W −W0∥ ≤ ∥W −W0∥F ≤ c̃√k
and k ≥ cd.

Next we note that for a Gaussian random vector g ∼N(0,Id) we have

∥φ(gTx) − φ(gT x̃)∥ψ2= ∥φ(gTx) − φ(gT x̃)∥ψ2= ∥φ′ (tgTx + (1 − t)gT x̃)gT (x − x̃)∥ψ2≤ Γ∥gT (x − x̃)∥ψ2≤ cΓ ∥x − x̃∥`2 . (G.2)

Also note that

f(W0,x) − f(W0, x̃) =vT (φ (W0x) − φ (W0x̃))
∼ k∑̀

=1

v` (φ(gT` x) − φ(gT` x̃))
where g1,g2, . . . ,gk are i.i.d. vectors with N(0,Id) dis-
tribution. Also for v obeying 1Tv = 0 this random vari-
able has mean zero. Hence, using the fact that weighted
sum of subGaussian random variables are subgaussian com-
bined with (G.2) we conclude that f(W0,x) − f(W0, x̃)
is also subGaussian obeying ∥f(W0,x) − f(W0, x̃)∥ψ2 ≤
cΓ ∥v∥`2 ∥x − x̃∥`2 . Thus

∣f(W0,x) − f(W0, x̃)∣ ≤ctΓ ∥v∥`2 ∥x − x̃∥`2=ctΓ ∥x − x̃∥`2 , (G.3)

with probability at least 1 − e− t22 . Thus, using t = 2
√

logn
for n data points

∣f(W0,xi) − f(W0, x̃i)∣ ≤ 2cΓ
√

logn ∥xi − x̃i∥`2 ,
holds for all i = 1,2, . . . , n with probability at least

1 − ne− t22 ≥ 1 − 1

n100
.


