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ABSTRACT

Previous work (Bowman et al., 2015; Yang et al., 2017) has found difficulty de-
veloping generative models based on variational autoencoders (VAEs) for text.
To address the problem of the decoder ignoring information from the encoder
(posterior collapse), these previous models weaken the capacity of the decoder to
force the model to use information from latent variables. However, this strategy is
not ideal as it degrades the quality of generated text and increases hyper-parameters.
In this paper, we propose a new VAE for text utilizing a multimodal prior dis-
tribution, a modified encoder, and multi-task learning. We show our model can
generate well-conditioned sentences without weakening the capacity of the decoder.
Also, the multimodal prior distribution improves the interpretability of acquired
representations.

1 INTRODUCTION

Research into generative models for text is an important field in natural language processing (NLP)
and various models have been historically proposed. Although supervised learning with recurrent
neural networks is the predominant way to construct generative language models (Sutskever et al.,
2014; Wu et al., 2017; Vaswani et al., 2017), auto-regressive word-by-word sequence generation is
not good at capturing interpretable representations of text or controlling text generation with global
features (Bowman et al., 2015). In order to generate sentences conditioned on probabilistic latent
variables, Bowman et al. (2015) proposed Variational Autoencoders (VAEs) (Kingma & Welling,
2013) for sentences. However, some serious problems that prevent training of the model have been
reported.

The problem that has been mainly discussed in previous papers is called “posterior collapse” (van den
Oord et al., 2017). Because decoders for textual VAEs are trained with “teacher forcing” (Williams &
Zipser, 1989), they can be trained to some extent without relying on latent variables. As a result, the
KL term of the optimization function (Equation 1) converges to zero and encoder input is ignored
(Bowman et al., 2015). Successful textual VAEs have solved this problem by handicapping the
decoder so the model is forced to utilize latent variables (Bowman et al., 2015; Yang et al., 2017).
However, we believe that weakening the capacity of the decoder may lower the quality of generated
texts and requires careful hyper-parameter turning to find the proper capacity. Therefore, we take a
different approach.

We focus on two overlooked problems. First, previous research fails to address the problem inherent
to the structure of VAEs. The fundamental cause of posterior collapse (apart from teacher forcing) is
the existence of a suboptimal local minimum for the KL term. Second, although existing models use
a LSTM as the encoder, it is known that this simple model is not sufficient for text generation tasks
(Bahdanau et al., 2014; Luong et al., 2015; Vaswani et al., 2017). In this work, we propose a new
architecture for textual VAEs with two modifications to solve these problems.

First, we use a multimodal prior distribution and an unimodal posterior distribution to eliminate the
explicit minima of ignoring the encoder (Chapter 3.2). Multimodal prior distributions for VAEs have
been proposed recently for image and video tasks (Johnson et al., 2016; Dilokthanakul et al., 2016).
Specifically, our model uses a Gaussian Mixture distribution as prior distribution which is trained
with the method proposed by Tomczak & Welling (2017).
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(a) The overall architecture of existing models.

(b) The overall architecture of our model. In the encoder, hidden states of the self-attention Encoder and BoW
are concatenated. The decoder estimates BoW of the input text from the latent variables as a sub-task in addition
to generating text. In our model, the prior distribution of the latent variables is a Gaussian mixture model.

Figure 1: The overall architecture of existing models and our model.

Second, we modify the encoder (Chapter 3.3). We empirically compare a number of existing encoders
and adopt a combination of two. The first is the recently proposed method of embedding text into
fixed-size variables using the attention mechanism (Lin et al., 2017). Although this method was
originally proposed for classification tasks, we show this encoder is also effective at text generation
tasks. The second is a a Bag-of-Words encoding of input text to help the encoder. It has been reported
that a simple Bag-of-Words encoding is effective at embedding the semantic content of a sentence
(Pagliardini et al., 2018). Our experiments show that the modified encoder produces improved results
only when other parts of the model are modifed as well to stabilize training. Additionally, our results
imply that the self-attention encoder captures grammatical structure and Bag-of-Words captures
semantic content.

Finally, to help the model acquire meaningful latent variables without weakening the decoder, we add
multi-task learning (Chapter 3.4). We find that a simple sub-task of predicting words included in the
text significantly improves the quality of output text. It should be noted that this task does not cause
posterior collapse as it does not require teacher forcing.

With these modifications, our model outperforms baselines on BLEU score, showing that generated
texts are well conditioned on information from the encoder (Chapter 4.3). Additionally, we show that
each component of the multimodal prior distribution captures grammatical or contextual features and
improves interpretability of the global features (Chapter 4.5).

2 RELATED WORK

Bowman et al. (2015) is the first work to apply VAEs to language modeling. They identify the
problem of posterior collapse for textual VAEs and propose the usage of word dropout and KL
annealing. Miao et al. (2015) models text as Bag-of-Words with VAEs. This is part of the motivation
behind the usage of Bag-of-Words for textual VAEs. Yang et al. (2017) hypothesize that posterior
collapse can be prevented by controlling the capacity of the decoder and propose a model with a
dilated CNN decoder which allows changing the effective filter size. Semeniuta et al. (2017) use a
deconvolutional layer without teacher forcing to force the model into using information from the
encoder.

Our use of a multimodal prior distribution is inspired by previous works which try to modify prior
distributions of VAEs. Johnson et al. (2016) and Dilokthanakul et al. (2016) apply a VAE with
Gaussian Mixture prior distribution to video and clustering, respectively. Tomczak & Welling (2017)
propose the construction of a prior distribution from a mixture of posterior distributions of some
trainable pseudo-inputs.

Another recent proposal to restrict the latent variables is to use discrete latent variables (Rolfe, 2017;
van den Oord et al., 2017). Some discrete autoencoder models for text modeling has been proposed
(Kaiser & Bengio, 2018; Kaiser et al., 2018). While some results show promise, discretization such as
Gumbel-Softmax (Jang et al., 2016) and Vector Quantization (van den Oord et al., 2017) is required
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to train discrete autoencoders with gradient descent as the gradient of discrete hidden state cannot be
calculated directly. A multimodal prior distribution can be regarded as a smoothed autoencoder model
with discrete latent variables (Dilokthanakul et al., 2016) without a requirement for discretization.

3 MODEL

3.1 VARIATIONAL AUTOENCODER FOR TEXT GENERATION

3.1.1 VARIATIONAL AUTOENCODER

A RNN language model is trained to learn a probability distribution of the next word xt conditioned
on all previous words x1, x2, . . . , xt−1 (Mikolov et al., 2010). A language model conditioned on a
deterministic latent vector z (such as input text representation) has been proposed as well (Sutskever
et al., 2014):

p(x|z) =
T∏
t=1

p(xt|x1, x2, . . . , xt−1, z)

Although these models can be regarded as a generative model with auto-regressive sampling, they
cannot capture interpretable probabilistic structures of global features. Bowman et al. (2015) propose
a new language model which explicitly captures probabilistic latent variables of global features with
Variational Autoencoders (Kingma & Welling, 2013).

Variational Autoencoders (VAEs) are one way to construct a generative model based on neural
networks, which learns Variational Bayes through gradient decent. A VAE has an encoder qφ(z|x)
and a decoder pθ(x|z) each parameterized by a neural network. In many cases, a standard Gaussian
distribution is used for the prior distribution of the latent vector p(z) and a Gaussian distribution
is used for qφ(z|x). Instead of directly maximizing the intractable marginal probability p(x) =∫
p(z)pθ(x|z)dz, we maximize the evidence lower bound:

log p(x) ≥ Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)|p(z)) (1)
= LELBO

As the model samples from qφ(z|x), the reparameterization trick (Kingma & Welling, 2013) can
be used to train the model with gradient descent. Previous work on textual VAEs (Bowman et al.,
2015; Yang et al., 2017) simply applied this model to sequence-to-sequence text generation models
(Figure 1a).

3.1.2 PROBLEMS OF VAES FOR TEXT GENERATION

Recent works (Bowman et al., 2015; Yang et al., 2017) have identified several obstacles for training
VAEs for text generation. One of the largest problems, referred to as “posterior collapse” (van den
Oord et al., 2017), is that training textual VAEs often drives the second term of Equation 1 (KL term)
close to zero (Bowman et al., 2015). When the KL term becomes zero, no information from the
input text is reflected on latent variables since qφ(z|x) and p(z) are identical. This is an undesirable
outcome since latent variables are expected to capture a meaningful representation of input to generate
conditional output. However, to aid stabilization, the previous ground truth word is given to the
decoder each time during training (teacher forcing (Williams & Zipser, 1989)). As this technique is
applied to textual VAEs as well, a simple language model based on LSTM can be trained without
information from the decoder and cause posterior collapse. In order to solve this problem, previous
methods try to weaken the decoder to force the model to use information from the encoder.

However, weakening the capacity of the decoder is not an ideal strategy since it can lower the quality
of generated text and requires additional hyper-parameters specifying decoder capacity. In this paper,
we propose three modifications to the model and successfully improve upon textual VAEs without
restricting the capacity of the decoder. These modifications are explained in the following chapters:
3.2, 3.3, and 3.4.

3.2 MULTIMODAL PRIOR DISTRIBUTION FOR VAE

In typical VAEs, a standard normal distribution N (0, 1) is used as the prior distribution p(z) and a
normal distribution N (µ, σ2) is used as the posterior distribution qφ(z|x). Although this model is
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Figure 2: VampPrior VAE. h is a representation of input text from the encoder. u1, . . . ,uK are
pseudo-inputs. This model is our modified version of VampPrior VAE. The red and green arrows
represent neural networks with shared weights.

also used for previous textual VAE models (Bowman et al., 2015; Yang et al., 2017), there is a trivial
local minimum p(z) = qφ(z|x) which makes KL(qφ(z|x)|p(z)) in Equation 1 zero, manifesting
in what is referred to as posterior collapse. Roughly speaking, we can avoid this if qφ(z|x) cannot
be identical to p(z). One simple way to achieve this is to use a multimodal distribution as the prior
distribution p(z) and an unimodal distribution as the posterior distribution qφ(z|x). This idea is
motivated by recently proposed VAE models with a multimodal prior distribution for image and
video generation (Johnson et al., 2016; Dilokthanakul et al., 2016). We provide further explanation in
Appendix A and discuss that modification for the decoder is not necessary if the problems in prior
distribution is fixed.

The problem with using a multimodal distribution as a prior for VAEs is deciding on what kind of
distribution to use. Models which learn a multimodal prior distribution along with other parts of
the VAE have been recently proposed (Johnson et al., 2016; Dilokthanakul et al., 2016; Tomczak
& Welling, 2017). One successful model uses a multimodal prior distribution of a variational
mixture of posteriors prior (VampPrior) (Tomczak & Welling, 2017). VampPrior VAEs have multiple
trainable pseudo-inputs uk and regard the mixture of the posterior distributions of the pseudo-inputs
1
K

∑K
i=1 qφ(z|uk) as the prior distribution (K is a pre-defined number of pseudo-inputs). Pseudo-

inputs are trained at the same time as the other components of the VAE. Although pseudo-inputs have
the same size as the input image for the VAE in the original work (Tomczak & Welling, 2017), we
use pseudo-inputs which are projected onto µ and σ directly (Figure 2).

In our experiments, we find a multimodal prior distribution performs unsupervised clustering and each
component of multimodal prior distribution captures specific features of a sentence. Moreover, the
components themselves also form clusters, creating a hierarchical structure within the representation
space (Chapter 4.5).

3.3 ENCODER

Existing models of textual VAEs use a simple LSTM as an encoder (Bowman et al., 2015; Yang
et al., 2017). However, recent research into text generation has found that simple LSTMs do not
have enough capacity to encode information from the whole text. Motivated by the results of our
experiments (Chapter 3.3), we propose concatenating the representation from the self-attention
encoder and Bag-of-Words information. Ideally, self-attention encodes grammatical structure and
Bag-of-Words encodes overall meaning. Our experiments imply our model is successful in this kind
of division of roles (Chapter 4.4).

3.3.1 SELF-ATTENTION ENCODER

The attention mechanism (Bahdanau et al., 2014; Luong et al., 2015) is a popular model to encode text
with LSTMs. Since VAEs are models with fixed size probabilistic latent variables, this mechanism
with variable size representation cannot be applied directly. Therefore, we use a recently proposed
method called self-attention (Lin et al., 2017) (Figure 3), an effective model to embed text into a fixed
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Figure 3: A self-attention encoder. This model encodes variable length input into a fixed length
representation using an attention mechanism. The fixed length representation is acquired by summing
up the hidden states of the bi-directional LSTM based on attention weights. Attention weights
as1, . . . ,asn are calculated by (as1, . . . ,asn) = softmax(ws2 tanh(W1H

T )).

size vector representation for classification tasks using an attention mechanism. Our experiments
show that embedded representations from self-attention are useful for text generation.

The self-attention model uses hidden states of bi-directional LSTM h1, . . . ,hn with variable length.
To acquire a fixed sized representation ms, hidden states are summarized with attention weights
ms =

∑n
i=1 asihi. Attention weights are calculated by using a weight matrix W1 with shape

d-by-2u (u is the size of a hidden state of bi-directional LSTM and d is a hyper-parameter) and a
vector ws2 with size d:

(as1, . . . ,asn) = softmax(ws2 tanh(W1H
T ))

Here H is a n-by-2u matrix of the hidden states H = (h1, . . . ,hn). To get richer information,
r different weights (r is a hyper-parameter) are calculated with a r-by-d weight matrix W2 =
(w12, . . . ,wr2) in the model:

A = softmax(W2 tanh(W1H
T ))

Here the softmax is performed along the second dimension. Finally, a fixed sized representation is
acquired by M = AH . We simply flatten the matrix M into a representation vector. All parameters
are trained with gradient descent.

3.3.2 BAG-OF-WORDS INPUT

Previous research shows the effectiveness of Bag-of-Words in NLP tasks such as text classification
(Hill et al., 2016). Because the difficulty of encoding the content of the input sentence with LSTM
is known, we propose using a simple Bag-of-Words input to encode the content of the sentence for
text generation tasks. Also, since VAEs are trained in a stochastic manner, it is difficult to train the
encoder. Since Bag-of-Words input is much easier to train compared to LSTMs and self-attention
encoders, it will help stabilize training. We simply summarize word representation of all words in the
input text and project this vector with a linear layer.

3.4 MULTI-TASK LEARNING

In NLP deep learning tasks, some methods to improve the performance of the main task with multi-
task learning has been reported. For example, multi-lingual training even improves the result of each
language in translation task (Dong et al., 2015) and sub-task of phone recognition improves the result
of speech recognition (Toshniwal et al., 2017). One of the effects of multi-task learning is said that it
enables to acquire better intermediate representations (Liu et al., 2015). Also, a recently proposed
model to encode chemical structure with VAEs show that multi-task learning improves the quality of
embedded representation (Rafael et al., 2018).

To address the largest problem of VAEs for text, the difficulty in learning meaningful latent variables,
we propose using multi-task learning in our model. However, using additional information such as
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model SA LSTM BoW SA+BoW
BLEU 25.11 23.48 22.08 34.48

FN 69.74 51.35 34.55 28.62

Table 1: A comparison of encoder models. BLEU corresponds to the BLEU scores of non-VAE
sequence generation tasks. FN corresponds to the false negative rate for the prediction task of words
in input text. SA denotes self-attention Encoder and BoW denotes Bag-of-Words Encoder.

grammatical properties or labels is not desirable for language modeling with textual VAEs. We find
that the simple task of predicting words in output text can help the model improve the quality of
output text. Additionally, this sub-task will alleviate the problem of posterior collapse since it does
not contain auto-regressive structure which in turn requires training with teacher forcing.

4 EXPERIMENTS

4.1 SETTINGS

We compare our model with two models proposed by Bowman et al. (2015) and Yang et al. (2017).
Basically, we use the same configurations for these models. For the model of Yang et al. (2017), we
use a SCMM-VAE model in the original paper and pretrain the encoder. For the multimodal prior
distribution model, we report the score of a prior distribution with 500 components and analyze the
acquired representation space with one with 100 components for ease of analysis. We use 100,000
sentences from a scale document dataset “Yahoo! Answers Comprehensive Questions and Answers
version 1.0” for training to acquire the results. For details of the dataset and model parameters, see
Appendix B.

4.2 COMPARISON OF ENCODERS IN NON-VAE TASKS

We compare a self-attention encoder (Lin et al., 2017), a LSTM encoder, and a Bag-of-Words encoder
with tasks to embed a text into 128 sized vector and show the results in Table 1. First, we compare
the models on a sequence-to-sequence autoencoder model. We show that the self-attention encoder
works best in terms of BLEU score. However, we find that the self-attention encoder has a higher
false negative rate compared to even a simple LSTM at the task of predicting the words in an input
text. From this result, we hypothesize that the self-attention encoder is good at acquiring the structure
of a sentence or focusing on specific information but is not good at embedding all the information in
a sentence. From these results, we decided to use self-attention and Bag-of-Words for our encoder.

4.3 LANGUAGE MODELING RESULTS

The results for language modeling are shown in Table 2. We report the reconstruction loss (negative
log likelihood) of text, KL divergence and BLEU of textual VAEs. The results show that multi-task
learning and a multimodal prior distribution in isolation both improve the model. On the other
hand, changing the encoder in isolation has no influence on results. Note that this is not the case for
non-VAE models. However, when multi-task learning is also used, incorporating Bag-of-Words input
(the first modification of the encoder) improves the score. Moreover, when we use a multimodal
prior distribution, the self-attention encoder, the second modification of the encoder, outperforms the
LSTM encoder. This result implies that it is difficult to train the encoder (especially the self-attention
encoder) of VAEs unlesss the overall model is improved as well. Therefore, when other parts of
the model are improved in tandem and training becomes more stable, the improved ability of the
encoder is utilized. Finally, our model with all modifications (the last line) outperforms baselines by
a significant margin.

4.4 ANALYSIS OF TWO TYPES OF THE ENCODERS

Our model uses self-attention and Bag-of-Words as the encoder. We show the results which imply
that self-attention acquires grammatical structure and Bag-of-Words provides semantic content.
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Encoder BoW Decoder MT Prior Text KLD BLEU
LSTM LSTM Uni 218.92 15.28 12.98
LSTM DCNN Uni 276.58 12.64 11.92

SA LSTM Uni 218.04 15.46 13.13
SA o LSTM Uni 214.93 16.92 12.95

LSTM LSTM o Uni 216.05 30.39 15.76
SA LSTM o Uni 213.15 30.71 15.65

LSTM o LSTM o Uni 200.60 41.73 17.89
SA o LSTM o Uni 203.92 41.12 17.69

LSTM LSTM Multi 196.02 24.51 13.84
LSTM DCNN Multi 214.40 27.08 13.99

SA LSTM Multi 208.31 18.21 13.51
LSTM o LSTM o Multi 203.72 41.01 18.28

SA o LSTM o Multi 193.89 48.99 19.20

Table 2: Language modeling results. SA denotes self-attention and DCNN denotes Dilated CNN.
BoW is Bag-of-Words input and MT is multi task learning (Bag-of-Words prediction task). The
model of the first row is (Bowman et al., 2015), and the model of the second row is (Yang et al.,
2017).

SA what is the importance of computer in data processing ?
BoW definition of traditional education the death penalty and violence in a com-

munity
output what are the definition of environmental

education for education ?
what is the penalty between drugs and
battery in ?

SA is it true that australia likes war to update their new improve weapons ?
BoW definition of traditional education the death penalty and violence in a com-

munity
output is it true that a good alternative to get a

degree of education ?
is it possible to death penalty in the
world to death penalty ?

Table 3: Sampling from the posterior distribution of our model when different input is given to the
self-attention and Bag-of-Words encoders. “SA” is a sentence given to self-attention encoder and
“BoW” is a sentence given to the Bag-of-Words encoder. For details, see Chapter 4.4. For more
samples, see Table 7 in Appendix D.

First, to see the relationship between these two encoders, we analyze generated sentences when
different sentences are provided to self-attention and Bag-of-Words encoder. We show examples of
the results in Table 3. Generated sentences in Table 3 have similar grammatical structure to the input
of the self-attention encoder and nouns in the sentences are strongly affected by the Bag-of-Words
encoder.

Moreover, by looking into the attention weights of the self-attention encoder, we can see which parts
of a sentence the encoder focuses on as shown by Lin et al. (2017). We show the maximum attention
weight for each word in Figure 4. We can see that the self-attention encoder assigns a larger weight
to words which determine the structure of a sentence such as interrogatives and prepositions rather
than nouns. In addition, attention weights are similar between sentences which share grammatical
structure even when nouns or word lengths differ.

4.5 INTERPRETABILITY OF MULTIMODAL PRIOR DISTRIBUTION

We show our model properly acquires a representation of sentences and a multimodal prior distribution
helps us interpret acquired representation with unsupervised clustering. By sampling from each
component, we can see that our model successfully performs clustering. We find that sentences
allocated to to components respectively have one of at least two things in common: grammatical
structure or topic. For sentences sampled from components, please see Table 8 in Appendix D.
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Figure 4: Visualized attention weight of the self-attention encoder. We show the maximum attention
weight for each word. Darker red represents a larger attention weight. Interrogatives and prepositions
are assigned larger weights compared to nouns.

Figure 5: The mean of each component of the multimodal prior distribution, visualized with t-SNE.
We can see several clusters of components. For further analysis of cluster 1 and 2, see Chapter 4.5,
Table 4.

We show a new method to interpret the global structure of the acquired representation space. We
analyze the representation space by visualizing the means of 100 components in the multimodal
prior distribution of our model with t-SNE (Maaten & Hinton, 2008) and show the result in Figure 5.
In addition to the fact that each component clusters together, we now see the clusters themselves
form into larger clusters, creating a hierarchical relationship. We take a further look into two clear
clusters indicated in Figure 5. First, we sample from component 38, 56, and 94 in cluster 1 and
show the result in Table 4. From the sampled sentences, we can see that components in cluster 1
share grammatical structure “[interrogative] can I [verb]” and each component has its own topics
(computer, politics, culture). On the other hand, components in cluster 2 share the topics (politics or
human relationship) and each component has its own grammatical structure. Also, from Figure 5,
components 52, 31, and 37 seem to be on the circle in this order and we can see the continuous
changes of grammatical structure in this order. Thus, we can observe that our model acquires a
hierarchical structure of sentences and the structure can be easily interpreted through analysis of
components in the multimodal prior distribution.

As models with multimodal distributions are relatively new, we hope methods to control multimodal
prior distribution are investigated further in future works. However, we emphasize that our result is
already impressive since without a multiomodal prior, extensive search with sampling or additional
labels is required to interpret the structure of acquired text representation. A multimodal prior
distribution makes it much easier to understand the structure of the representation space though
analysis of components of the distribution.

5 CONCLUSION

This paper proposes a new variant of Variational Autoencoders for text modeling without weakening
the capacity of the decoder. Although the predominant way to stabilize training of textual VAEs
is to weaken the decoder, it is not a good strategy since it can harm the quality of generated text
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38
how can i get the internet ?
how do i delete my resume from yahoo account when i ask a new account ?
when can i find a webpage to run ? i need to find a letter in english language

56
where can i get tickets to u.s. citizens ? i need a petition in april but i was wondering
where can i find the good stock agent for the u.s. industry for 9 years ?
where can i find the latest info about the elections ?

94
where can i find free book of japanese magazine ?
how do i download or graphs of armageddon ?
where can i get a good journal ?

52
do you think there will help you live in the united states ?
do u think it is ok to be ugly ?
do you think the usa is the largest continent ? hes not the coach ?

31
what do you think about the government in the state of india ?
what do you think of the most stupid person on the earth ?
what do you think of a man wants to become president ? ( who wants ) ?

37
how do u get a group of african american to join ?
how do i increase a mortgage loan in indiana ?
how do you get married in canada ?

Table 4: Samples from components of the prior distribution from cluster 1 (above) and 2 (below) in
Figure 5. Components in cluster 1 share grammatical structure and components in cluster 2 share
topics. Please see Chapter 4.5 for more details.

and increases hyper-parameters. We show (i) multimodal prior distribution, (ii) improvement of the
encoder and (iii) multi-task learning can improve the model with a simple LSTM decoder.
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A THEORETICAL ANALYSIS OF MULTIMODAL PRIOR DISTRIBUTION

We show theoretical justification for a multimodal prior distribution as a solution for posterior collapse.
We use the equivalent objective for ELBO (Equation 1) by Zhao et al. (2017):

EpD(x)[LELBO] = EpD(x)qφ(z|x)[log pθ(x|z) + log p(z)− log qφ(z|x)]

= EpD(x)qφ(z|x)[log
p(z)

pD(x)qφ(z|x)
+ log pθ(x|z) + log pD(x)]

= EpD(x)qφ(z|x)[log
p(z)

pD(x)qφ(z|x)
+ log

pθ(x)pθ(z|x)
p(z)

] + C

= EpD(x)qφ(z|x)[log
pθ(x)

pD(x)
+ log

pθ(z|x)
qφ(z|x)

] + C

= −KL(pD(x)|pθ(x))− EpD(x)[KL(qφ(z|x)|pθ(z|x))] + C (2)

where pD(x) is the data distribution, pθ(x) is the marginal distribution pθ(x) =
∫
p(z)pθ(x|z)dz,

and C is EpD(x)[log pD(x)], which does not depend on any parameters. This objective can be
minimized to zero without utilizing latent variables under the assumption that (i) the decoder is
sufficiently flexible and (ii) the posterior distribution can be trained so p(z) = qφ(z|x) (Zhao et al.,
2017). This nature of ELBO causes posterior collapse in VAEs. There are two simple ways to break
these assumptions.

First, if the capacity of the decoder is restricted, assumption (i) cannot be satisfied. This is the
theoretical underpinning for previous approaches used in textual VAEs (Bowman et al., 2015; Yang
et al., 2017) which restrict the capacity of the decoder. However, as previously discussed, weakening
the decoder is undesirable. Additionally, hyper-parameter search is required to strike a balance
between the two terms if the KL term is not modified as well.

Therefore, we propose to break the assumption (ii) with a multimodal prior distribution. When
the prior distribution p(z) is a multimodal distribution and the posterior distribution qφ(z|x) is an
unimodal distribution, there is no way to satisfy p(z) = qφ(z|x). Moreover, there will be multiple
minima for KL(qφ(z|x)|p(z)). When Kullback-Leibler divergence KL(q|p) between the Gaussian
mixture distribution p and the normal distribution q is minimized (here we assume that q is trainable),
q will be allocated to one component of p since KL(q|p) =

∫
q(z) log q(z)

p(z)dz becomes larger when
p is assigned a low probability in an area where q is assigned a high probability (Figure 6). In such
a formulation, there is no clear global minima for the KL term and the posterior distribution is not
forced to ignore information from the encoder.

We propose a hypothesis that the modification of the decoder is not necessary if multimodal prior
distribution is used. In practice, it is natural to assume that training the decoder so pD(x) = pθ(x|z)
for all z is much harder than to make KL(qφ(z|x)|p(z)) = 0. Under the assumption, the model
will be trained so KL(qφ(z|x)|p(z)) = 0 as the first step and this condition force the decoder to
be trained so pD(x) = pθ(x|z) for all z when there is no modification of the model. Although

Figure 6: This Gaussian mixture distribution (blue line) has two equally weighted components with
means 2.0 and -2.0, and variance 1.0. The distribution (green line) to the left isN (2.0, 0.3) and to the
right isN (0, 5). The Kullback-Leibler divergence KL(q|p) between Gaussian mixture distribution p
and normal distribution q of the left image is 1.4, and the right image is 12.4.
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Encoder BoW Decoder MT 50 100 500 2000
LSTM o LSTM o 17.98 18.24 18.28 18.51

SA o LSTM o 18.79 18.74 19.20 19.32

Table 5: Comparison of BLEU scores from multimodal prior distribution model with different
numbers of components.

this is the opposite way from the explanation by Zhao et al. (2017), this process is more natural
in practice since it is easy to train prior distribution. Therefore, if we modify the model to avoid
KL(qφ(z|x)|p(z)) = 0, the decoder will not try to satisfy pD(x) = pθ(x|z) for all z but learn
the conditioned distribution for each z. This analysis motivates us to modify textual VAE without
weakening the capacity of the decoder. The results of our experiments are consistent with this
hypothesis.

B EXPERIMENTS SETTING

B.1 DATASET

We use the large scale document dataset “Yahoo! Answers Comprehensive Questions and Answers
version 1.0”. From the Yahoo! Answer dataset, we pick up 100,000 sentences randomly from 10
topics (Society & Culture, Science & Mathematics, Health, Education & Reference, Computers &
Internet, Sports, Business & Finance, Entertainment & Music, Family & Relationships, Politics &
Government). As test and validation dataset, we use 10,000 sentences each. We set the maximum
length of a sentence to 60 words (ignore the rest of the sentence, the average length of the original
sentences is 38.12 words) and use the most common 40,000 words for this experiment.

B.2 MODEL CONFIGURATIONS

Our model uses self-attention and Bag-of-Words in the encoder and a LSTM for the decoder. The
size of the hidden state of LSTM is 256 for both for LSTM and self-attention. The size of the word
embedding is 256 and the size of the latent variables is 128. For the self-attention encoder, we use
d = 350 and r = 30. In accordance with (Bowman et al., 2015; Yang et al., 2017), we feed the latent
variables on every step of the decoder LSTM by concatenating it with the word embedding. We
applied 0.4 word dropout for input text to the decoder for our model and the model from Bowman
et al. (2015). In this paper, we modify the model without restricting the capacity of the decoder.
However, the method used by Bowman et al. (2015) called word dropout, which was originally
proposed to weaken the decoder, is now seen as a method of smoothing (Xie et al., 2017). As this
method is also effective and harmless for non-VAE text generation task, we use word dropout for
our model. In addition, we pretrain the encoder and the decoder with sequence-to-sequence text
generation for our multi-prior distribution model. Note that it was impossible to pretain decoders for
previous models since it can result in posterior collapse.

For multi-prior distribution, we compare 4 numbers of components [50, 100, 500, 2000] and found
that performance is not sensitive to this hyperparameter, although a larger number of components
results in a slightly better score (Table 5). As using a prior distribution with many components
leads to overfitting, over-regularization, and high computational complexity (Tomczak & Welling,
2017), we report the score of a prior distribution with 500 components and analyze the acquired
representation space with 100 components for ease of analysis.

We compare our model with two models proposed by Bowman et al. (2015) and Yang et al. (2017).
Basically, we use the same configurations for these models. For the model of Yang et al. (2017), we
use the SCMM-VAE model in the original paper and pretrain the encoder.

We use Adam (Kingma & Ba, 2014) for the optimizer. According to our experiments, setting the
learning rate to 5× 10−4 and β1 to 0.5 performs the best. For KL weight annealing, we set the initial
weight for the KL term to be 0 and increase it linearly to 1 until epoch 30. After KL weight annealing,
we train for 80 epochs with learning rate decay (0.95 for every epoch).

13



Under review as a conference paper at ICLR 2019

C SEMI-SUPERVISED LEARNING

Model Encoder BoW Decoder MT Prior 100 500
LSTM LSTM – – 12.10 18.50

LM-LSTM LSTM – – 31.21 41.51
SA-LSTM LSTM – – 20.38 36.55

VAE

LSTM LSTM Uni 38.90 53.25
LSTM DCNN Uni 23.19 50.14

SA o LSTM o Uni 38.84 54.69
SA o LSTM o Multi 34.99 54.20

Table 6: Semi-supervised learning. LM-LSTM and SA-LSTM come from (Dai & Le, 2015), they
denotes the LSTM initialized with an autoencoder and a language model. The methods of semi-
supervised learning with VAEs use the same scheme as (Yang et al., 2017). LSTM is a simple
supervised model.

The structure of semi-supervised models using VAEs is taken from Yang et al. (2017). We use
the topic of a sentence from the dataset as a label and feed the encoded representation from the
encoder to the discriminator. We report the results of semi-supervised learning in Table 6. Our
models do not differ from semi-supervised learning baselines. This result can be understood because
this semi-supervised learning assumes that label information is helpful or necessary to generate
proper sentences. Our experiments show that our model both is conditioned by the encoder and also
generates proper sentences without labels. This is consistent with the reasoning from Yang et al.
(2017) that the best models for language modeling and semi-supervised learning are different.

D ADDITIONAL SAMPLING RESULTS

D.1 QUALITATIVE ANALYSIS OF TWO TYPES OF ENCODERS

We show additional samples for Table 3 in Table 7. Please see Chapter 4.4 for detailed explanation.

SA what is the importance of computer in data processing ?
BoW definition of traditional education the death penalty and violence in a com-

munity
what are the definition of environmental
education for education ?

what is the penalty between drugs and
battery in ?

what does the definition of a consumer
solution ?

what is the pros and cons in a deadly
nation ?

how are your definition of education
system ?

what happens to the death penalty for
a day ?

SA is it true that australia likes war to update their new improve weapons ?
BoW definition of traditional education the death penalty and violence in a com-

munity
is it true that a good alternative to get a
degree of education ?

is it possible to death penalty in the
world to death penalty ?

is it true that the age of people to change
lots of traditional ?

is there a place to get a peaceful death
penalty in the world ?

is it a good idea of having a 100 % of
education ?

are there any place in the city to make a
death penalty ?

Table 7: Sampling from posterior distribution of our model when different texts are input to self-
attention and Bag-of-Words of the encoder. “SA” is a sentence given to self-attention encoder and
“BoW” is a sentence to Bag-of-Words encoder. For detail, see Chapter 4.4.
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1
is it true that the only way to provide the holy rabbit through the same answer ?
is it possible to go to a police officer ?
is it possible to have to pay for her home

22
does any body really work with their own marketing cards ?
does anyone have a good website ?
does anyone know how to get rid of them ?

76
what is the best way to get money from this year ?
what is the best way to download a satellite background ?
what is the best way to keep my boyfriend ?

60
who will win the world cup in france ?
where was the first place in the nba ?
is anyone proud of the world cup <UNK>?

68
i can not put my script in the java script , how do i format the <UNK>? my script is not
working !
windows media player ? does anyone have a good thing to learn english ?
how do i search ?

80
do n’t you think the president is the worst president of the us
is the liberal , the jewish religion will be cut the food to do ?
who is the president of the united states ?

Table 8: Samples from components of prior distribution. Component 1, 22, and 76 generate sentences
with common structure. On the other hand, component 60, 68, and 83 generate structurally diverse
sentences on the same topics (computer, sports). <UNK>is a word not in the dictionary. For detail,
see Chapter 4.5.

D.2 COMPONENTS OF MULTI-PRIOR DISTRIBUTION

We report text from 6 components of a multimodal prior distribution from our model in Table 8.
We found two types of features allocated for components. The first one is grammatical structure.
Components 1, 22, and 77 in Table 8 each generate similarly structured sentences: sentences from
component 1 begin with “it is true that” or “it is possible to”, sentences from component 22 begin
with “does anyone (anybody)”, and sentences from component 77 begin with “what is the best way
to”. This result is straightforward to interpret as properly acquiring grammatical structure will lower
reconstruction loss. More interestingly, sentences generated the next type of components, namely
components 60, 68, and 83 are each on the same topic. Sentences generated from component 60
are about sports, those from component 68 are about computer (music), and those from component
83 are about politics. However, these sentences do not share grammatical structure and generate
sentences with diverse structures.
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