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Abstract

Deep learning has demonstrated abilities to learn complex structures, but they can
be restricted by available data. Recently, Consensus Networks (CNs)[25] were
proposed to alleviate data sparsity by utilizing features from multiple modalities,
but they too have been limited by the size of labeled data. In this paper, we extend
CN to Transductive Consensus Networks (TCNs), suitable for semi-supervised
learning. In TCNs, different modalities of input are compressed into latent rep-
resentations, which we encourage to become indistinguishable during iterative
adversarial training. To understand TCNs two mechanisms, consensus and classifi-
cation, we put forward its three variants in ablation studies on these mechanisms.
To further investigate TCN models, we treat the latent representations as probability
distributions and measure their similarities as the negative relative Jensen-Shannon
divergences. We show that a consensus state beneficial for classification desires a
stable but imperfect similarity between the representations. Overall, TCNs outper-
form or align with the best benchmark algorithms given 20 to 200 labeled samples
on the Bank Marketing and the DementiaBank datasets.

1 Introduction

Deep learning has demonstrated impressive capacities to learn complicated structures from massive
data sets. However, acquiring sufficient labeled data can be expensive or difficult (e.g., for specific
pathological populations [11]). Transductive learning (a set of semi-supervised algorithms) uses
intrinsic structures among unlabeled data to boost classifier performance. In the real world, data can
spread across multiple modalities (e.g., visual, acoustic, and text) in typical tasks, although many
existing transductive algorithms do not exploit the structure across these modalities. Co-training [3]
and tri-training [24] use one classifier per modality to supervise each other, but they can only apply
to two and three modalities respectively.

Recently, Consensus Networks (CNs) [25] incorporated the idea of co-training. Not limited by
the number of modalities, CNs showed promising results on detecting cognitive impairments from
multi-modal datasets of speech. A consensus network contains several interpreters (one per modality),
a discriminator, and a classifier. The interpreters try to produce low-dimensional representations of
input data that are indistinguishable by the discriminator. The classifier makes predictions based on
these representation vectors.

Despite promising results, CN is limited by the amount of available training data. This motivates our
extension into semi-supervised learning with our Transductive Consensus Network (TCN).
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TCNs operate in two mechanisms: as consensus or classifier. The consensus mechanism urges the
modality representations to resemble each other (trained on the whole dataset without using labels),
and the classifier mechanism optimizes the networks to retain information useful for classification
(trained on the labeled dataset). To illustrate the importance of these two mechanisms in an ablation
study, we also put forward its three variants: TCN-embed, TCN-svm, and TCN-AE in §3. By this
ablation study, we show that both mechanisms should function together via iterative training.

To further reveal the mechanisms of TCN, we formulate in §3.5 the similarity between latent
representations using negative Jensen-Shannon divergences. By monitoring their similarities, we
show that a meaningful consensus state prefers representations to have suboptimal similarities.

In experiments (§4), we compare TCN to its three variants, TCN’s multimodal supervised learning
counterpart (CN), and several other semi-supervised learning benchmark algorithms on two datasets:
Bank Marketing (from the UCI repository) and DementiaBank (a dataset of pathological speech in
multiple modalities). On both datasets, the F-scores of TCN align with the best benchmark models
when there are more labeled data available, and outperform benchmarks (including tri-training) given
as few as 20 labeled points.

2 Related work

Transductive SVMs [9] were an early attempt in transductive semi-supervised learning. In addition to
the SVM objective, TSVMs minimize the hinge loss on unlabeled data. TSVMs have yielded good
performance on our datasets, so we include them for completeness.

Later, many semi-supervised learning algorithms took either autoencoding or GAN approaches. In
autoencoding, a model learns a low-dimensional representation and a reconstruction for each data
sample. Usually, noise is added in generating the low-dimensional representation. By trying to
minimize the difference between reconstructed and original data, the model learns (i) an encoder
capturing low-dimensional hidden information and (ii) a decoder, which is a generative model able to
recover data. This is the approach of the denoising autoencoder [23, 12]. An extension is Ladder
network [20], which stacks denoising autoencoders and adds layer-wise reconstruction losses. Ladder
networks are often more computationally efficient than stacked denoise autoencoders.

In generative adversarial networks (GANs) [7], a generator tries to produce data that are indistin-
guishable from true data, given a discriminator which itself learns to tell them apart. This adversarial
training procedure could proceed with few labeled data points. For example, Feature-matching GANs
[21] add generated (“synthetic”) samples into the training data of the discriminator as an additional
class. Another example is Categorical GANs [22] which optimize uncertainty (measured by entropy
of predictions) in the absence of labels. Noticeably, [4] showed that a discriminator performing
well on a training set might not benefit the whole dataset. CNs and TCNs, despite not containing
generative components, are built with the adversarial principles inspired from GANs.

The idea to make multiple components in the network agree with each other has been adopted by
several previous models. For example, [2] proposed Parallel Consensus Networks, where multiple
networks classify by majority voting. Each of the networks is trained on features after a unique
transform. [14] proposed consensus optimization in GAN in which a term is added to the utility
functions of both the generator and discriminator to alleviate the adversity between generator and
discriminator. However, neither they nor semi-supervised learning utilized the multiple modalities.

Multi-modal learning is also referred to as multi-view learning. [19] computed multiple viewpoints
from speech samples and classified cognitive impairments. By contrast, our multi-view learning is
semi-supervised, and can involve non-overlapping subsets of features.

In domain adaptation, some work has been applied to find a unified representation between domains,
for example, by applying domain invariant training [6] and semantic similarity loss [16]. However,
our approach does not involve multiple domains – we only handle data from one domain. Here, the
term ‘domain’ refers to how the data are naturally generated, whereas the term ‘modality’ refers to
how different aspects of data are observed.
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(a) TCN-vanilla and TCN-embed (b) TCN-svm (c) TCN-AE

Figure 1: Network structures for TCN and TCN-embed (left), TCN-svm (middle) and TCN-AE
(right), taking the example when there are two modalities in data (M=2).

3 Methodology

In previous work, Consensus Networks [25] was proposed for multimodal supervised learning. We
extend the model to be suitable for semi-supervised learning, resulting in Transductive Consensus
Networks (TCNs). This section also presents three variants: TCN-embed, TCN-svm, and TCN-AE.

3.1 Problem setting

Given labeled data, {x(i), y(i)} (x(i) ∈ XL), and unlabeled data, {x(i)} (where x(i) ∈ XU ), we want
to learn a model that reaches high accuracies in predicting labels in unlabeled data. In the semi-
supervised learning setting, there are many more unlabeled data points than labeled: |XU | � |XL|,
where the whole dataset is X = XL ∪ XU .

Each data point x contains feature values from multiple modalities (i.e., ‘views’). If M be the
total number of modalities, then x = [x1,x2, ...,xM]. For m = 1, ...,M , xm could have different
dimensions, but the dimension of x(i)

m is consistent throughout the dataset. E.g., there may be 200
(100) acoustic (semantic) features for each data point.

3.2 Consensus Networks

Here we briefly review the structures of CNs. In a CN model, M interpreter networks I1,...,M (.) each
compress the corresponding modality for a data sample into a low-dimensional vector v.

vm = Im(xm)

We call these networks interpreters, because they interpret the feature spaces with representations.
In TCNs, a consensus is expected to be reached given representations from multiple views of the
same data sample. A discriminator network D(.) tries to identify the originating modality of each
representation vector. If we write the mth modality of the dataset as a setMm of vectors, then the
discriminator function D(.) can be expressed as:

D(vm) = P (xm ∈Mm|I1..M , D)

To prevent the discriminator from looking at only superficial aspects for each data sample in the
forward pass, Consensus Networks [25] include an additional ‘noise modality’ representation sampled
from a normal distribution, with mean and variance determined by the ‘non-noise’ representations:

vM+1 ∼ N (µv1..M
, σ2

v1..M
)

The model’s discrimination lossLD is therefore defined as the cross entropy loss across all modalities
(plus the noise modality), averaged across both labeled and unlabeled datasets X :

LD = ExEm

{
− logP (xm ∈Mm|I1..M , D)

}
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Finally, a classifier network C(.) predicts the probability of class assignment (y) from the combined
representation vectors, given model parameters:

C([v1,v2, ...,vM]) = P (y|x, I1..M , C)

The classification loss LC is just the cross entropy loss across the labeled data:

LC = Ex

{
− logP (y|x, I1..M , C)

}
The overall optimization goals for CN can therefore be described as:

min
C,I1..M

LC and max
I1..M

min
D
LD (1)

3.3 Transductive Consensus Network

Consensus Networks (CNs), as a supervised learning framework, are limited by the amount of
labeled data. This motivates us to generalize the approach to semi-supervised scenarios. There are
two mechanisms in the CN training procedures, namely the classifier mechanism and consensus
mechanism. The classifier mechanism requires labeled data, but the consensus mechanism does not
explicitly require these labels. We let the consensus mechanism handle both labeled and unlabeled
data. This results in Transductive Consensus Networks.

Formally, the loss functions are rewritten as:

LD = Ex∈XEm

{
− logP (xm ∈Mm|I1..M , D)

}

LC = Ex∈XL

{
− logP (y|x, I1..M , C)

}
where X consists of both labeled data XL and unlabeled data XU . Overall, the optimization goal can
still be written as:

min
C,I1..M

LC and max
I1..M

min
D
LD (2)

These goals set up a complex nonlinear optimization problem. To figure out a solution, we break
down the goals into three iterative steps, similar to GAN[7]:

• The ‘I’ step encourages interpreters to produce indistinguishable representations: max
I1..M

LD.

• The ‘D’ step encourages discriminators to recognize modal-specific information retained in
representations: min

D
LD.

• The ‘CI’ step trains the networks to make a correct decision: min
C,I1..M

LC .

3.4 TCN variants

The consensus mechanism builds a low-dimensional latent representation of each (labeled and
unlabeled) data sample containing common knowledge across different modalities, and the classifier
mechanism tries to make these representations meaningful. Three modifications are made to our base
TCN model, resulting in the following models:

TCN-embed consists of the same networks as TCN but is trained slightly differently. Before the
I-D-CI optimization cycle, we add a pretraining phase with I-D iterations, which emphasizes the
consensus mechanism.

TCN-svm removes the classifier network from TCN-embed. After the pretraining phase across
the whole dataset, we extract the representations of those labeled data samples to train a supervised
learning classifier (i.e., an SVM). TCN-svm discards the classifier mechanism, which results in
deteriorations to model performance (§5).
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TCN-AE provides insights from another perspective. In contrast to TCN, TCN-AE contains several
additional reconstructor networks, R1..M (.) (one per modality). Each reconstructor network tries to
recover the input modality from the corresponding low-dimensional representations (plus a small
noise ε):

x̂m = Rm(vm + ε)

Defining reconstruction loss as LR = Ex∈XEm|x̂m − xm|2, the optimization target in TCN-AE can
be expressed as:

min
C,I1..M ,R1..M

LC , and max
I1..M

min
D
LD, and min

I1..M ,R1..M

LR (3)

TCN-AE is inspired by denoising autoencoder[23], where the existence of reconstructor networks
encourage the latent variables to preserve realistic information. This somehow works against the
consensus mechanism, which according to [25] tries to agree on simple representations. TCN-AE
therefore weakens the consensus mechanism. We will show in §5 that an inhibited consensus
mechanism results in inferior model performance.

3.5 The similarity of representations

We want to quantitatively measure the effects of the consensus and the classification mechanisms. To
evaluate the similarities of representations, we treat the hidden dimensions of each representation
vm = [vm,1, vm,2, .., vm,j , ...] (after normalization) as discrete values of a probability mass function1,
which we write as pm. The M modalities for each data point are therefore approximated by M
probability distributions. Now we can measure the relative JS divergences between each pair of
representations vm and vn derived from the same data sample (D̂(pm||pn)). To acquire the relative
value, we normalize the JS divergence by the total entropy in pm and pn:

D̂(pm||pn) =
1

2(Hpm +Hpn)
(DKL(pm||pn) +DKL(pn||pm))

where DKL(pm||pn) =
∑
j

vm,j log
vn,j
vm,j

where vm,j and vn,j are the jth component of vm and vn respectively. In total, for each data sample
with M modalities, M(M−1)

2 pairs of relative divergences are calculated. We average the negative of
these divergences to get the similarity:

Similarity = EiEm,n∈{1..M} and m6=n

{
− D̂(p(i)m ||p(i)n )

}
Note that by our definition the maximum value of the “similarity” value is 0 (where there is no JS
divergence between any pair of the representation vectors), and it has no theoretical lower bound.

Figure 4 shows several 2D visualizations of representation vectors drawn from an arbitrary run. In
Figure 5, we illustrate how the similarities between modality representations evolve during training.

4 Experiments

4.1 Datasets

We compare TCN and its variants on two benchmark datasets: Bank Marketing, and DementiaBank.
The full list of features, by modalities, are provided in the Supplementary Material.

The Bank Marketing dataset is from the UCI machine learning repository[5]. used for predicting
whether the customer will subscribe a term deposit in a bank marketing campaign via telephone[15].
There are originally 4,640 positive samples (subscribed) and 36,548 negative ones (did not subscribe).
Since consensus network models do not work well on imbalanced datasets, we randomly sample
5,000 negative samples to create an (almost) balanced dataset. We also convert the categorical
raw features2 into one-hot representations. We then divide the features into three modalities: basic
information, statistical data, and employment-related features.

1There is a ReLU layer at output of each interpreter network, so the probability mass will be non-negative.
2https://archive.ics.uci.edu/ml/datasets/bank+marketing
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DementiaBank3 contains 473 spoken picture descriptions of the clinical “cookie-theft picture”[1],
containing 240 positive samples (the Dementia class) and 233 negative samples (the Control class).
We extract 413 linguistic features from each speech sample and their transcriptions, including
acoustic (e.g., pause durations), lexical & semantic (e.g., average cosine similarities between words
in sentences) and syntactic (e.g., complexity of the syntactic parse structures) modalities.

Dataset N. of samples %pos / %neg N. features per modality
Bank marketing 9640 48.13 / 51.87 10 / 22 / 12
DementiaBank 473 50.76 / 49.26 185 / 117 / 110

Table 1: Basic information about the datasets (after preprocessing). In the Bank Marketing dataset, the
three modalities correspond to basic information, statistical data, and employment-related features. In
DementiaBank, the three modalities correspond to acoustic, syntactic, and lexical&semantic features.
Detailed descriptions of the features are included in supplementary materials.

4.2 Benchmarks

We evaluate TCN and its variants against several benchmarks, including:

1. Multimodal semi-supervised learning benchmark: Tri-training [24]4.
2. TCN’s supervised counterpart: Consensus Network (CN).
3. Unimodal semi-supervised learning: TSVM [9], ladder network [20], CatGAN [22].

4.3 Implementation

For simplicity, we use fully connected networks for all of I1..M , D, C, and R1..M in this paper. To
enable faster convergence, all fully connected networks have a batch normalization layer [8]. For
training, the batch size is set to 10. The neural network models are implemented using PyTorch [17],
and supervised learning benchmark algorithms (SVM, MLP) use scikit-learn [18].

We use the Adam optimizer [10] with an initial learning rate of 0.001. In training TCN, TCN-embed,
and TCN-AE, optimizations are stopped when the classification loss does not change by more than
10−5 in comparison to the previous step, or when the step count reaches 100. In the pre-training
phase of TCN-embed and TCN-svm, training is stopped when the discrimination loss changes by
less than 10−5, or when pretraining step count reaches 20.

Sometimes, the iterative optimization (i.e., the I-D-CI cycle for TCN / TCN-embed, and the I-D-RI-CI
cycle for the TCN-AE variant) is trapped in local saddle points – the training classification loss does
not change while the training classification loss is higher than log 2 ≈ 0.693. This is the expected
loss of a binary classifier with zero knowledge. If the training classification loss is higher than
log 2, the model is re-initialized with a new random seed and the training is restarted. Empirically,
this re-initialization happens no more than once per ten runs, but the underlying cause needs to be
examined further.

5 Results and discussion

5.1 TCN performances versus the benchmarks

As shown in Figure 2, TCN outperforms or matches the best benchmarks. On the Bank Marketing
dataset, TCN, CN, and TSVM clearly outperform the rest. On DementiaBank, Tri-train, TCN, and
TSVM form the “first tier”.

Also, semi-supervised learning does not always outperform those supervised algorithms. For example,
on the Bank Marketing dataset, CN (i.e., TCN’s supervised learning counterpart) holds the second
best performance.

3https://dementia.talkbank.org
4Implemented using three identical multiple layer perceptrons with one hidden layer containing 30 neurons.
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Figure 2: TCN (top blue lines; best viewed in colors) outperform or align with benchmark algorithms,
including multi-modal semi-supervised (tri-train [24]), uni-modal semi-supervised (TSVM [9],
Ladder [20], CatGAN [22]), and multi-modal supervised (CN [25]).

Figure 3: Accuracy plots for TCN vs its variants. Best viewed in colors. TCN-embed accuracies
aligns with TCN, both significantly outperforming TCN-AE, which is better than TCN-svm. The
consensus and classification mechanisms should both be present.

5.2 What can we learn from the TCN variants?

As shown in Figure 3, TCN aligns with or outperforms TCN-embed. Both of these approaches
significantly outperform TCN-AE. On the other hand, TCN-svm produces almost trivial classifiers.
There are several points worth noting.

• Both the consensus and the classification mechanisms are beneficial to classifier performance.
The classification mechanism can be beneficial even with as few as 20 labeled data samples.
• Iterative optimization is crucial. Without classification mechanisms, the consensus mecha-

nism by itself fails to derive good reprensentations. Without consensus mechanisms (i.e.,
when the reconstructors hinder the consensus mechanisms), accuracies drop significantly.

5.3 Understanding the similarity of representations

To understand more about TCN, we visualize them with T-SNE[13] in Figure 4, and plot the similarity
values in Figure 5.

• The higher similarity values corresponds to a state where the distributions contain higher
symmetry in aggregate manner.

• Measured from the similarity values, TCN models reach a consensus state where the
similarities are stable. TCN-svm reaches agreements quickly but are close to trivial. TCN-
AE, with the autoencoder blocking the consensus mechanism, fails to reach a state of
agreement.
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(a) Step 2: sim=-0.0206 (b) Step 30: sim=-0.0072 (c) Step 110: sim=-0.0146

Figure 4: Three 2-D T-SNE[13] visualizations of representations among modalities, taken from a
run of the vanilla TCN (on DementiaBank dataset with 80 labeled data). The three colors represent
three modalities. At step 2, the representations are distributed randomly. At step 110, they become
mixed evenly. The most interesting embedding happens at step 30, when representations of the three
modalities form three ‘drumstick’ shapes. With the highest visual symmetry, this configuration also
has the highest similarity among the three.

Figure 5: Examples of similarity plots against the number of steps taken, for DementiaBank using
80 labeled samples (“DB80”, blue) and Bank Marketing using 20 labeled samples (“BM20”, green).
The y axis are scaled to (−0.035, 0) except TCN-AE, where the relative JS divergences “explode”.
Note that we stop the training procedure when losses converge (as detailed in §4.3), so the trials may
stop at different steps.

6 Conclusion and future work

In this paper, we present Transductive Consensus Networks (TCNs) that extend consensus networks
with semi-supervised learning. We identify two mechanisms in which TCNs function, i.e., the
consensus and classifier mechanisms. With three TCN variants in an ablation study, we show the
importance of both mechanisms. Moreover, by treating the representations as probability distributions
and defining their similarity as negative relative JS divergences, we show that although the consensus
mechanism urges high similarities, a good consensus state might not need perfect similarities between
modality representations.

In the future, several avenues may be considered. To start with, building consensus networks using
other types of neural networks may be considered. In addition, more exploration could be done to
find a more explainable metric to describe the extent of agreement. Currently, we use − DJS

H1+H2
, but

this requires some approximations. Optimizing against the similarity metric, instead of setting up a
discriminator, may be worth examining as well.
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Supplementary Material

Features by modalities for Bank Marketing

Three modalities are determined as following. The division are somewhat arbitrary, except that we
try to make the binary features resulting from one categorical feature be in the same modality.

1. Basic information: age, marital, education, housing, loan, contact, duration, pdays, previous,
management

2. Statistical information: campaign, poutcome, emp.var.rate, unknown, cons.conf.idx, eu-
ribor3m, day_in_week (converted to 7 binary features), month (converted to 12 binary
features)

3. Employment-related information: consumer price index, never employed, retired, self-
employed, technician, services, student, housemaid, entrepreneur, blue-collar

Features by modalities for Dementia Bank

Three modalities are determined as following:

1. Acoustic-related features: phonation rate, mean pause duration, pause word ratio, total
speech duration, short/medium/long pause count, speech rate, word/audio/(filled or un-
filled) pauses durations, the mean/variance/kurtosis/skewness of the first 42 Mel Frequency
Cepestral Coefficients

2. Syntactic-semantic features: probabilistic context-free grammar parsing tree heights (average
/ max / etc.), and the occurrences of 104 production rules (e.g: NP→ DT).

3. Lexical and POS-derived features: the occurrences of part-of-speech tags, Brunet’s index,
Honore’s statistics, word length, cosine distances between words in sentences, etc.
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