
Published as a conference paper at ICLR 2020

NON-AUTOREGRESSIVE DIALOG STATE TRACKING

Hung Le‡∗, Richard Socher†, Steven C.H. Hoi†
† Salesforce Research
{rsocher,shoi}@salesforce.com
‡ Singapore Management University
hungle.2018@phdcs.smu.edu.sg

ABSTRACT

Recent efforts in Dialogue State Tracking (DST) for task-oriented dialogues have
progressed toward open-vocabulary or generation-based approaches where the
models can generate slot value candidates from the dialogue history itself. These
approaches have shown good performance gain, especially in complicated dia-
logue domains with dynamic slot values. However, they fall short in two aspects:
(1) they do not allow models to explicitly learn signals across domains and slots to
detect potential dependencies among (domain, slot) pairs; and (2) existing models
follow auto-regressive approaches which incur high time cost when the dialogue
evolves over multiple domains and multiple turns. In this paper, we propose a
novel framework of Non-Autoregressive Dialog State Tracking (NADST) which
can factor in potential dependencies among domains and slots to optimize the
models towards better prediction of dialogue states as a complete set rather than
separate slots. In particular, the non-autoregressive nature of our method not only
enables decoding in parallel to significantly reduce the latency of DST for real-
time dialogue response generation, but also detect dependencies among slots at
token level in addition to slot and domain level. Our empirical results show that
our model achieves the state-of-the-art joint accuracy across all domains on the
MultiWOZ 2.1 corpus, and the latency of our model is an order of magnitude
lower than the previous state of the art as the dialogue history extends over time.

1 INTRODUCTION

In task-oriented dialogues, a dialogue agent is required to assist humans for one or many tasks such
as finding a restaurant and booking a hotel. As a sample dialogue shown in Table 1, each user
utterance typically contains important information identified as slots related to a dialogue domain
such as attraction-area and train-day. A crucial part of a task-oriented dialogue system is Dialogue
State Tracking (DST), which aims to identify user goals expressed during a conversation in the form
of dialogue states. A dialogue state consists of a set of (slot, value) pairs e.g. (attraction-area,
centre) and (train-day, tuesday). Existing DST models can be categorized into two types: fixed- and
open-vocabulary. Fixed vocabulary models assume known slot ontology and generate a score for
each candidate of (slot,value) (Ramadan et al., 2018; Lee et al., 2019). Recent approaches propose
open-vocabulary models that can generate the candidates, especially for slots such as entity names
and time, from the dialogue history (Lei et al., 2018; Wu et al., 2019).

Most open-vocabulary DST models rely on autoregressive encoders and decoders, which encode
dialogue history sequentially and generate token ti of individual slot value one by one conditioned
on all previously generated tokens t[1:i−1]. For downstream tasks of DST that emphasize on low
latency (e.g. generating real-time dialogue responses), auto-regressive approaches incur expensive
time cost as the ongoing dialogues become more complex. The time cost is caused by two major
components: length of dialogue history i.e. number of turns, and length of slot values. For complex
dialogues extended over many turns and multiple domains, the time cost will increase significantly
in both encoding and decoding phases.

Similar problems can be seen in the field of Neural Machine Translation (NMT) research where a
long piece of text is translated from one language to another. Recent work has tried to improve the

∗All work was done while the first author was a research intern at Salesforce Research Asia.

1



Published as a conference paper at ICLR 2020

Human: i want to visit a theater in the center of town .
Dialog State: (attraction-area, centre), (attraction-type, theatre)
System: there are 4 matches . i do not have any info on the fees . do you have any other preferences ?
Human: no other preferences , i just want to be sure to get the phone number of whichever theatre we pick .
Dialog State: (attraction-area, centre), (attraction-type, theatre)
System: i recommend the cambridge corn exchange there phone number is 01223357851 . is there anything else i can help you with ?
Human: yes , i am looking for a tuesday train .
Dialog State: (attraction-area, centre), (attraction-name, the cambridge corn exchange) , (attraction-type, theatre), (train-day, tuesday)
System: where will you be departing from and what s your destination ?
Human: from cambridge to london liverpool street .

Dialog State: (attraction-area, centre), (attraction-name, the cambridge corn exchange) , (attraction-type, theatre), (train-day, tuesday),
(train-departure, cambridge), (train-destination, london liverpool street)

Table 1: A sample task-oriented dialogue with annotated dialogue states after each user turn. The
dialogue states in red and blue denote slots from the attraction domain and train domain respectively.
Slot values are expressed in user and system utterances (highlighted by underlined text).

latency in NMT by using neural network architectures such as convolution (Krizhevsky et al., 2012)
and attention (Luong et al., 2015). Several non- and semi-autoregressive approaches aim to generate
tokens of the target language independently (Gu et al., 2018; Lee et al., 2018; Kaiser et al., 2018).
Motivated by this line of research, we thus propose a non-autoregressive approach to minimize the
time cost of DST models without a negative impact on the model performance.

We adopt the concept of fertility proposed by Gu et al. (2018). Fertility denotes the number of times
each input token is copied to form a sequence as the input to the decoder for non-autoregressive
decoding. We first reconstruct dialogue state as a sequence of concatenated slot values. The result
sequence contains the inherent structured representation in which we can apply the fertility concept.
The structure is defined by the boundaries of individual slot values. These boundaries can be easily
obtained from dialogue state itself by simply measuring number of the tokens of individual slots.
Our model includes a two-stage decoding process: (1) the first decoder learns relevant signals from
the input dialogue history and generates a fertility for each input slot representation; and (2) the
predicted fertility is used to form a structured sequence which consists of multiple sub-sequences,
each represented as (slot token×slot fertility). The result sequence is used as input to the second
decoder to generate all the tokens of the target dialogue state at once.

In addition to being non-autoregressive, our models explicitly consider dependencies at both slot
level and token level. Most of existing DST models assume independence among slots in dialogue
states without explicitly considering potential signals across the slots (Wu et al., 2019; Lee et al.,
2019; Goel et al., 2019; Gao et al., 2019). However, we hypothesize that it is not true in many cases.
For example, a good DST model should detect the relation that train departure should not have the
same value as train destination (example in Table 1). Other cases include time-related pairs such
as (taxi arriveBy, taxi leaveAt) and cross-domain pairs such as (hotel area, attraction area). Our
proposed approach considers all possible signals across all domains and slots to generate a dialogue
state as a set. Our approach directly optimizes towards the DST evaluation metric Joint Accuracy
(Henderson et al., 2014b), which measures accuracy at state (set of slots) level rather than slot level.

Our contributions in this work include: (1) we propose a novel framework of Non-Autoregressive
Dialog State Tracking (NADST), which explicitly learns inter-dependencies across slots for decod-
ing dialogue states as a complete set rather than individual slots; (2) we propose a non-autoregressive
decoding scheme, which not only enjoys low latency for real-time dialogues, but also allows to cap-
ture dependencies at token level in addition to slot level; (3) we achieve the state-of-the-art perfor-
mance on the multi-domain task-oriented dialogue dataset “MultiWOZ 2.1” (Budzianowski et al.,
2018; Eric et al., 2019) while significantly reducing the inference latency by an order of magnitude;
(4) we conduct extensive ablation studies in which our analysis reveals that our models can detect
potential signals across slots and dialogue domains to generate more correct “sets” of slots for DST.

2 RELATED WORK

Our work is related to two research areas: dialogue state tracking and non-autoregressive decoding.

2.1 DIALOGUE STATE TRACKING

Dialogue State Tracking (DST) is an important component in task-oriented dialogues, especially for
dialogues with complex domains that require fine-grained tracking of relevant slots. Traditionally,

2



Published as a conference paper at ICLR 2020

DST is coupled with Natural Language Understanding (NLU). NLU output as tagged user utterances
is input to DST models to update the dialogue states turn by turn (Kurata et al., 2016; Shi et al., 2016;
Rastogi et al., 2017). Recent approaches combine NLU and DST to reduce the credit assignment
problem and remove the need for NLU (Mrkšić et al., 2017; Xu & Hu, 2018; Zhong et al., 2018).
Within this body of research, Goel et al. (2019) differentiates two DST approaches: fixed- and open-
vocabulary. Fixed-vocabulary approaches are usually retrieval-based methods in which all candidate
pairs of (slot, value) from a given slot ontology are considered and the models predict a probability
score for each pair (Henderson et al., 2014c; Ramadan et al., 2018; Lee et al., 2019). Recent work
has moved towards open-vocabulary approaches that can generate the candidates based on input text
i.e. dialogue history (Lei et al., 2018; Gao et al., 2019; Wu et al., 2019). Our work is more related
to these models, but different from most of the current work, we explicitly consider dependencies
among slots and domains to decode dialogue state as a complete set.

2.2 NON-AUTOREGRESSIVE DECODING

Most of prior work in non- or semi-autoregressive decoding methods are used for NMT to address
the need for fast translation. Schwenk (2012) proposes to estimate the translation model probabili-
ties of a phase-based NMT system. Libovickỳ & Helcl (2018) formulates the decoding process as
a sequence labeling task by projecting source sequence into a longer sequence and applying CTC
loss (Graves et al., 2006) to decode the target sequence. Wang et al. (2019) adds regularization
terms to NAT models (Gu et al., 2018) to reduce translation errors such as repeated tokens and in-
complete sentences. Ghazvininejad et al. (2019) uses a non-autoregressive decoder with masked
attention to decode target sequences over multiple generation rounds. A common challenge in non-
autoregressive NMT is the large number of sequential latent variables, e.g., fertility sequences (Gu
et al., 2018) and projected target sequences (Libovickỳ & Helcl, 2018). These latent variables are
used as supporting signals for non- or semi-autoregressive decoding. We reformulate dialogue state
as a structured sequence with sub-sequences defined as a concatenation of slot values. This form of
dialogue state can be inferred easily from the dialogue state annotation itself whereas such super-
vision information is not directly available in NMT. The lower semantic complexity of slot values
as compared to long sentences in NMT makes it easier to adopt non-autoregressive approaches
into DST. According to our review, we are the first to apply a non-autoregressive framework for
generation-based DST. Our approach allows joint state tracking across slots, which results in better
performance and an order of magnitude lower latency during inference.

3 APPROACH

Our NADST model is composed of three parts: encoders, fertility decoder, and state decoder, as
shown in Figure 1. The input includes the dialogue history X = (x1, ..., xN ) and a sequence of
applicable (domain, slot) pairsXds = ((d1, s1), ..., (dG, sH)), whereG andH are the total numbers
of domains and slots, respectively. The output is the corresponding dialogue states up to the current
dialogue history. Conventionally, the output of dialogue state is denoted as tuple (slot, value) (or
(domain-slot, value) for multi-domain dialogues). We reformulate the output as a concatenation of
slot values Y di,sj : Y = (Y d1,s1 , ..., Y dI ,sJ ) = (yd1,s1

1 , yd1,s1
2 , ..., ydI ,sJ

1 , ydI ,sJ
2 , ...) where I and J

are the numbers of domains and slots in the output dialogue state, respectively.

First, the encoders use token-level embedding and positional encoding to encode the input dia-
logue history and (domain, slot) pairs into continuous representations. The encoded domains and
slots are then input to stacked self-attention and feed-forward network to obtain relevant signals
across dialogue history and generate a fertility Y dg,sh

f for each (domain, slot) pair (dg, sh). The

output of fertility decoder is defined as a sequence: Yfert = Y d1,s1
f , ..., Y dG,sH

f where Y dg,dh

f ∈
{0,max(SlotLength)}. For example, for the MultiWOZ dataset in our experiments, we have
max(SlotLength) = 9 according to the training data. We follow (Wu et al., 2019; Gao et al., 2019) to
add a slot gating mechanism as an auxiliary prediction. Each gate g is restricted to 3 possible values:
“none”, “dontcare” and “generate”. They are used to form higher-level classification signals to sup-
port fertility decoding process. The gate output is defined as a sequence: Ygate = Y d1,s1

g , ..., Y dG,sH
g .

The predicted fertilities are used to form an input sequence to the state decoder for non-
autoregressive decoding. The sequence includes sub-sequences of (dg, sh) repeated by Y dg,sh

f times

3



Published as a conference paper at ICLR 2020

and concatenated sequentially: Xds×fert = ((d1, s1)
Y

d1,s1
f , ..., (dG, sH)Y

dG,sH
f ) and ‖Xds×fert‖ =

‖Y ‖. The decoder projects this sequence through attention layers with dialogue history. During this
decoding process, we maintain a memory of hidden states of dialogue history. The output from the
state decoder is used as a query to attend on this memory and copy tokens from the dialogue history
to generate a dialogue state.

Following Lei et al. (2018), we incorporate information from previous dialogue turns to predict
current turn state by using a partially delexicalized dialogue historyXdel = (x1,del, ..., xN,del) as an
input of the model. The dialogue history is delexicalized till the last system utterance by removing
real-value tokens that match the previously decoded slot values to tokens expressed as domain-slot.
Given a token xn and the current dialogue turn t, the token is delexicalized as follows:

xn,del =delex(xn) =

{
domainidx-slotidx, if xn ⊂ Ŷt−1.
xn, otherwise.

(1)

domainidx = Xds×fert[idx][0], slotidx = Xds×fert[idx][1], idx = Index(xn, Ŷt−1) (2)

For example, the user utterance “I look for a cheap hotel” is delexicalized to “I look for a ho-
tel pricerange hotel.” if the slot hotel pricerange is predicted as “cheap” in the previous turn. This
approach makes use of the delexicalized form of dialogue history while not relying on an NLU
module as we utilize the predicted state from DST model itself. In addition to the belief state, we
also use the system action in the previous turn to delexicalize the dialog history in a similar manner,
following prior work (Rastogi et al., 2017; Zhong et al., 2018; Goel et al., 2019).

Token 
Embedding

Positional 
Embedding

Domain/Slot Positional Encoding

Domain/Slot Token Embedding

Domain-Slot Pair Self-Attention

Context Attention

1 001 2

Domain-Slot Token Self-Attention

Context Attention

centre ‘scollinarchitect british

...

Domains

Slots

Partially Delexicalized
Dialog History

 Fertilities

Slot 
× Fertility 

Domain 
× Fertility 

cheap
Generated 
State

Partially Delex Context Attention

Partially Delex Context Attention

Dialog History

Linear & 
Softmax

Linear & 
Softmax

gen dont
carenonegen gen

...

Linear & Softmax

Gates

Domain/Slot Token Embedding

Pointer Network

...

...

...

...

System action in 
previous turn 

Partially Delexicalized 
Dialog History

I want to find a restaurant 
with british food ...

… I look for architecture 
attraction near the centre

area type dept. dest. name

attr. taxi taxi rest.attr.

...

...

area type name food pricename

attr. attr. rest. rest. rest.rest.

inform(res-price=cheap)

fertility>0 AND gate=gen

I want to find a restaurant 
with rest-food food ...

… I look for architecture 
attraction near the centre

Dialog History

...(res-food=british)...
Dialog state in 
previous turn

Dialog History 
Delexicalization

Figure 1: Our NADST has 3 key components: encoders (“red”), fertility decoder (“blue”), and
state decoder (“green”). (i) Encoders encode sequences of dialogue history, delexicalized dialogue
history, and domain and slot tokens into continuous representations; (ii) Fertility Decoder has 3
attention mechanisms to learn potential dependencies across (domain, slot) pairs in combination
with dialogue history. The output is used to generate fertilities and slot gates; and (iii) State Decoder
receives the input sequence including sub-sequences of (domain, slot)×fertility to decode a complete
dialogue state sequence as concatenation of component slot values. For simplicity, we do not show
feedforward, residual connection, and layer-normalization layers in the figure. Best viewed in color.

4



Published as a conference paper at ICLR 2020

3.1 ENCODERS

An encoder is used to embed dialogue history X into a sequence of continuous representations
Z = (z1, ..., zN ) ∈ RN×d. Similarly, partially delexicalized dialogue history Xdel is encoded to
continuous representations Zdel ∈ RN×d. We store the encoded dialogue history Z in memory
which will be passed to a pointer network to copy words for dialogue state generation. This helps
to address the OOV challenge as shown in (See et al., 2017; Wu et al., 2019). We also encode each
(domain, slot) pair into continuous representation zds ∈ Rd as input to the decoders. Each vector
zds is used to store contextual signals for slot and fertility prediction during the decoding process.

Context Encoder. Context encoder includes a token-level trainable embedding layer and layer
normalization (Ba et al., 2016). The encoder also includes a positional encoding layer which follows
sine and cosine functions (Vaswani et al., 2017). An element-wise summation is used to combine
the token-level vectors with positional encoded vectors. We share the embedding weights to embed
the raw and delexicalized dialogue history. The embedding weights are also shared to encode input
to both fertility decoder and state decoder. The final embedding of X and Xdel is defined as:

Z = Zemb + PE(X) ∈ RN×d (3)

Zdel = Zemb,del + PE(Xdel) ∈ RN×d (4)

Domain and Slot Encoder. Each (domain, slot) pair is encoded by using two separate embedding
vectors of the corresponding domain and slot. Each domain g and slot h is embedded into a contin-
uous representation zdg and zsh ∈ Rd. The final vector is combined by element-wise summation:

zdg,sh = zdg
+ zsh ∈ Rd (5)

We share the embedding weights to embed domain and slot tokens in both fertility decoder and
state decoder. However, for input to state decoder, we inject sequential information into the input
Xds×fert to factor in position-wise information to decode target state sequence. In summary, Xds

and Xds×fert is encoded as following:

Zds = Zemb,ds = zd1,s1 ⊕ ...⊕ zdG,sH (6)
Zds×fert = Zemb,ds×fert + PE(Xds×fert) (7)

Zemb,ds×fert = (zd1,s1)
Y

d1,s1
f ⊕ ...⊕ (zdG,sH )Y

dG,sH
f (8)

where ⊕ denotes concatenation operation. Note that different from a typical decoder input in
Transformer, we do not shift the input sequences to both fertility decoder and state decoder by
one position as we consider non-autoregressive decoding process in both modules. Therefore,
all output tokens are generated in position i based on all remaining positions of the sequence i.e.
1, ..., i− 1, i+ 1, ...‖Xds‖ in fertility decoder and 1, ..., i− 1, i+ 1, ...‖Xds×fert‖ in state decoder.

3.2 FERTILITY DECODER

Given the encoded dialogue history Z, delexicalized dialogue history Zdel, and (domain,slot) pairs
Zds, the contextual signals are learned and passed into each zds vector through a sequence of at-
tention layers. We adopt the multi-head attention mechanism (Vaswani et al., 2017) to project the
representations into multiple sub-spaces. The attention mechanism is defined as scaled dot-product
attention between query Q, key K, and value V :

Attention(Q,K, V ) = softmax(
QKT

√
dk

V ) (9)

Each multi-head attention is followed by a position-wise feed-forward network. The feed-forward
is applied to each position separately and identically. We use two linear layers with a ReLU activa-
tion in between. The fertility decoder consists of 3 attention layers, each of which learns relevant
contextual signals and incorporates them into zds vectors as input to the next attention layer:

Zout
ds = Attention(Zds, Zds, Zds) ∈ RN×d (10)

Zout
ds = Attention(Zout

ds , Zdel, Zdel) ∈ RN×d (11)

Zout
ds = Attention(Zout

ds , Z, Z) ∈ RN×d (12)

5



Published as a conference paper at ICLR 2020

For simplicity, we do not express the multi-head and feed-forward equations. We advise the reader
to review Transformer network (Vaswani et al., 2017) for more detailed description. The multi-head
structure has shown to obtain good performance in many NLP tasks such as NMT (Vaswani et al.,
2017) and QA (Dehghani et al., 2019). By adopting this attention mechanism, we allow the models
to explicitly obtain signals of potential dependencies across (domain, slot) pairs in the first attention
layer, and contextual dependencies in the subsequent attention layers. Adding the delexicalized dia-
logue history as input can provide important contextual signals as the models can learn the mapping
between real-value tokens and generalized domain-slot tokens. To further improve the model capa-
bility to capture these dependencies, we repeat the attention sequence for Tfert times with Zds. In
an attention step t, the output from the previous attention layer t− 1 is used as input to current layer
to compute Zt

ds. The output in the last attention layer ZTfert

ds is passed to two independent linear
transformations to predict fertilities and gates:

P gate = softmax(WgateZ
Tfert

ds ) (13)

P fert = softmax(WfertZ
Tfert

ds ) (14)

where Wgate ∈ Rd×3 and Wfert ∈ Rd×10. We use the standard cross-entropy loss to train the
prediction of gates and fertilities:

Lgate =
∑
dg,sh

− log(P gate(Y dg,sh
g )) (15)

Lfert =
∑
dg,sh

− log(P fert(Y
dg,sh
f )) (16)

3.3 STATE DECODER

Given the generated gates and fertilities, we form the input sequence Xds×fert. We filter out any
(domain, slot) pairs that have gate either as “none” or “dontcare”. Given the encoded input Zds×fert,
we apply a similar attention sequence as used in the fertility decoder to incorporate contextual sig-
nals into each zds×fert vector. The dependencies are captured at the token level in this decoding
stage rather than at domain/slot higher level as in the fertility decoder. After repeating the attention
sequence for Tstate times, the final output ZTstate

ds×fert is used to predict the state in the following:

P state
vocab = softmax(WstateZ

Tstate

ds×fert) (17)

where Wstate ∈ Rd×‖V ‖ with V as the set of output vocabulary. As open-vocabulary DST models
do not assume a known slot ontology, our models can generate the candidates from the dialogue
history itself. To address OOV problem during inference, we incorporate a pointer network (Vinyals
et al., 2015) into the Transformer decoder. We apply dot-product attention between the state decoder
output and the stored memory of encoded dialogue history Z:

P state
ptr = softmax(ZTstate

ds×fertZ
T ) (18)

The final probability of predicted state is defined as the weighted sum of the two probabilities:
P state = pstategen × P state

vocab + (1− pstategen )× P state
ptr (19)

pstategen = sigmoid(WgenVgen) (20)

Vgen = Zds×fert ⊕ ZTstate

ds×fert ⊕ Zexp (21)

where Wgen ∈ R3d×1 and Zexp is the expanded vector of Z to match dimensions of Zds×fert. The
final probability is used to train the state generation following the cross-entropy loss function:

Lstate =
∑
dg,sh

Y
dg,sh
f∑
m=0

− log(P state(ydg,sh
m )) (22)

3.4 OPTIMIZATION

We optimize all parameters by jointly training to minimize the weighted sum of the three losses:
L = Lstate + αLgate + βLfert (23)

where α ≥ 0 and β ≥ 0 are hyper-parameters.

6



Published as a conference paper at ICLR 2020

4 EXPERIMENTS

4.1 DATASET

MultiWOZ (Budzianowski et al., 2018) is one of the largest publicly available multi-domain task-
oriented dialogue dataset with dialogue domains extended over 7 domains. In this paper, we use the
new version of the MultiWOZ dataset published by Eric et al. (2019). The new version includes
some correction on dialogue state annotation with more than 40% change across dialogue turns. On
average, each dialogue has more than one domain. We pre-processed the dialogues by tokenizing,
lower-casing, and delexicalizing all system responses following the pre-processing scripts from (Wu
et al., 2019). We identify a total of 35 (domain, slot) pairs. Other details of data pre-processing
procedures, corpus statistics, and list of (domain, slot) pairs are described in Appendix A.1.

4.2 TRAINING PROCEDURE

We use label smoothing (Szegedy et al., 2016) to train the prediction of dialogue state Y but not
for prediction of fertilities Yfert and gates Ygate. During training, we adopt 100% teacher-forcing
learning strategy by using the ground-truth of Xds×fert as input to the state decoder. We also apply
the same strategy to obtain delexicalized dialogue history i.e. dialogue history is delexicalized from
the ground-truth belief state in previous dialogue turn rather than relying on the predicted belief
state. During inference, we follow a similar strategy as (Lei et al., 2018) by generating dialogue
state turn-by-turn and use the predicted belief state in turn t − 1 to delexicalize dialogue history in
turn t. During inference, Xds×fert is also constructed by prediction Ŷgate and Ŷfert. We adopt the
Adam optimizer (Kingma & Ba, 2015) and the learning rate strategy similarly as (Vaswani et al.,
2017). Best models are selected based on the best average joint accuracy of dialogue state prediction
in the validation set. All parameters are randomly initialized with uniform distribution (Glorot &
Bengio, 2010). We did not utilize any pretrained word- or character-based embedding weights.
We tuned the hyper-parameters with grid-search over the validation set (Refer to Appendix A.2 for
further details). We implemented our models using PyTorch (Paszke et al., 2017) and released the
code on GitHub 1.

4.3 BASELINES

The DST baselines can be divided into 2 groups: open-vocabulary approach and fixed-vocabulary
approach as mentioned in Section 2. Fixed-vocabulary has the advantage of access to the known can-
didate set of each slot and has a high performance of prediction within this candidate set. However,
during inference, the approach suffers from unseen slot values for slots with evolving candidates
such as entity names and time- and location-related slots.

4.3.1 FIXED-VOCABULARY

GLAD (Zhong et al., 2018). GLAD uses multiple self-attentive RNNs to learn a global tracker for
shared parameters among slots and a local tracker for individual slot. The model utilizes previous
system actions as input. The output is used to compute semantic similarity with ontology terms.

GCE (Nouri & Hosseini-Asl, 2018). GCE is a simplified and faster version of GLAD. The model
removes slot-specific RNNs while maintaining competitive DST performance.

MDBT (Ramadan et al., 2018). MDBT model includes separate encoding modules for system
utterances, user utterances, and (slot, value) pairs. Similar to GLAD, The model is trained based on
the semantic similarity between utterances and ontology terms.

FJST and HJST (Eric et al., 2019). FJST refers to Flat Joint State Tracker, which consists of a dialog
history encoder as a bidirectional LSTM network. The model also includes separate feedforward
networks to encode hidden states of individual state slots. HJST follows a similar architecture but
uses a hierarchical LSTM network (Serban et al., 2016) to encode the dialogue history.

SUMBT (Lee et al., 2019). SUMBT refers to Slot-independent Belief Tracker, consisting of a
multi-head attention layer with query vector as a representation of a (domain, slot) pair and key and

1https://github.com/henryhungle/NADST

7

https://github.com/henryhungle/NADST


Published as a conference paper at ICLR 2020

value vector as BERT-encoded dialogue history. The model follows a non-parametric approach as
it is trained to minimize a score such as Euclidean distance between predicted and target slots. Our
approach is different from SUMBT as we include attention among (domain, slot) pairs to explicitly
learn dependencies among the pairs. Our models also generate slot values rather than relying on a
fixed candidate set.

4.3.2 OPEN-VOCABULARY

TSCP (Lei et al., 2018). TSCP is an end-to-end dialogue model consisting of an RNN encoder and
two RNN decoder with a pointer network. We choose this as a baseline because TSCP decodes
dialogue state as a single sequence and hence, factor in potential dependencies among slots like our
work. We adapt TSCP into multi-domain dialogues and report the performance of only the DST
component rather than the end-to-end model. We also reported the performance of TSCP for two
cases when the maximum length of dialogue state sequence L in the state decoder is set to 8 or 20
tokens. Different from TSCP, our models dynamically learn the length of each state sequence as the
sum of predicted fertilities and hence, do not rely on a fixed value of L.

DST Reader (Gao et al., 2019). DST Reader reformulates the DST task as a reading comprehension
task. The prediction of each slot is a span over tokens within the dialogue history. The model follows
an attention-based neural network architecture and combines a slot carryover prediction module and
slot type prediction module.

HyST (Goel et al., 2019). HyST model combines both fixed-vocabulary and open-vocabulary
approach by separately choosing which approach is more suitable for each slot. For the open-
vocabulary approach, the slot candidates are formed as sets of all word n-grams in the dialogue
history. The model makes use of encoder modules to encode user utterances and dialogue acts to
represent the dialogue context.

TRADE (Wu et al., 2019). This is the current state-of-the-art model on the MultiWOZ2.0 and
2.1 datasets. TRADE is composed of a dialog history encoder, a slot gating module, and an RNN
decoder with a pointer network for state generation. SpanPtr is a related baseline to TRADE as
reported by Wu et al. (2019). The model makes use of a pointer network with index-based copying
instead of a token-based copying mechanism.

4.4 RESULTS

We evaluate model performance by the joint goal accuracy as commonly used in DST (Henderson
et al., 2014b). The metric compares the predicted dialogue states to the ground truth in each di-
alogue turn. A prediction is only correct if all the predicted values of all slots exactly match the
corresponding ground truth labels. We ran our models for 5 times and reported the average results.
For completion, we reported the results in both MultiWOZ 2.0 and 2.1.

As can be seen in Table 2, although our models are designed for non-autoregressive decoding, they
can outperform state-of-the-art DST approaches that utilize autoregressive decoding such as (Wu
et al., 2019). Our performance gain can be attributed to the model capability of learning cross-
domain and cross-slot signals, directly optimizing towards the evaluation metric of joint goal accu-
racy rather than just the accuracy of individual slots. Following prior DST work, we reported the
model performance on the restaurant domain in MultiWOZ 2.0 in Table 4. In this dialogue domain,
our model surpasses other DST models in both Joint Accuracy and Slot Accuracy. Refer to Ap-
pendix A.3 for our model performance in other domains in both MultiWOZ2.0 and MultiWOZ2.1.

Latency Analysis. We reported the latency results in term of wall-clock time (in ms) per prediction
state of our models and the two baselines TRADE (Wu et al., 2019) and TSCP (Lei et al., 2018) in
Table 4. For TSCP, we reported the time cost only for the DST component instead of the end-to-
end models. We conducted experiments with 2 cases of TSCP when the maximum output length of
dialogue state sequence in the state decoder is set as L = 8 and L = 20. We varied our models for
different values of T = Tfert = Tstate ∈ {1, 2, 3}. All latency results are reported when running in a
single identical GPU. As can be seen in Table 4, NADST obtains the best performance when T = 3.
The model outperforms the baselines while taking much less time during inference. Our approach
is similar to TSCP which also decodes a complete dialogue state sequence rather than individual
slots to factor in dependencies among slot values. However, as TSCP models involve sequential

8



Published as a conference paper at ICLR 2020

Model MultiWOZ2.1 MultiWOZ2.0
MDBT (Ramadan et al., 2018) † - 15.57%
SpanPtr (Vinyals et al., 2015) - 30.28%
GLAD (Zhong et al., 2018) † - 35.57%
GCE (Nouri & Hosseini-Asl, 2018) † - 36.27%
HJST (Eric et al., 2019) ? 35.55% 38.40%
DST Reader (single) (Gao et al., 2019) ? 36.40% 39.41%
DST Reader (ensemble) (Gao et al., 2019) - 42.12%
TSCP (Lei et al., 2018) 37.12% 39.24%
FJST (Eric et al., 2019) ? 38.00% 40.20%
HyST (ensemble) (Goel et al., 2019) ? 38.10% 44.24%
SUMBT (Lee et al., 2019) † - 46.65%
TRADE (Wu et al., 2019) ? 45.60% 48.60%
Ours 49.04% 50.52%

Table 2: DST Joint Accuracy metric on MultiWOZ 2.1 and 2.0. †: results reported on MultiWOZ2.0
leaderboard. ?: results reported by Eric et al. (2019). Best results are highlighted in bold.

processing in both encoding and decoding, they require much higher latency. TRADE shortens the
latency by separating the decoding process among (domain, slot) pairs. However, at the token level,
TRADE models follow an auto-regressive process to decode individual slots and hence, result in
higher average latency as compared to our approach. In NADST, the model latency is only affected
by the number of attention layers in fertility decoder Tfert and state decoder Tstate. For approaches
with sequential encoding and/or decoding such as TSCP and TRADE, the latency is affected by the
length of source sequences (dialog history) and target sequence (dialog state). Refer to Appendix
A.3 for visualization of model latency in terms of dialogue history length.

Model Joint Acc Slot Acc
MDBT 17.98% 54.99%
SPanPtr 49.12% 87.89%
GLAD 53.23% 96.54%
GCE 60.93% 95.85%
TSCP 62.01% 97.32%
TRADE 65.35% 93.28%
Ours 69.21% 98.84%

Table 3: DST joint accuracy and slot accuracy on
MultiWOZ2.0 restaurant domain. Baseline re-
sults (except TSCP) were from Wu et al. (2019).

Model Joint Acc Latency Speed Up
TRADE 45.60% 362.15 ×2.12
TSCP (L=8) 32.15% 493.44 ×1.56
TSCP (L=20) 37.12% 767.57 ×1.00
Ours (T=1) 42.98% 15.18 ×50.56
Ours (T=2) 45.78% 21.67 ×35.42
Ours (T=3) 49.04% 27.31 ×28.11

Table 4: Latency analysis on MultiWOZ2.1.
Latency is reported in terms of wall-clock
time in ms per prediction state.

Ablation Analysis. We conduct an extensive ablation analysis with several variants of our mod-
els in Table 5. Besides the results of DST metrics, Joint Slot Accuracy and Slot Accuracy, we
reported the performance of the fertility decoder in Joint Gate Accuracy and Joint Fertility Accu-
racy. These metrics are computed similarly as Joint Slot Accuracy in which the metrics are based on
whether all predictions of gates or fertilities match the corresponding ground truth labels. We also
reported the Oracle Joint Slot Accuracy and Slot Accuracy when the models are fed with ground
truth Xds×fert and Xdel labels instead of the model predictions. We noted that the model fails when
positional encoding of Xds×fert is removed before being passed to the state decoder. The perfor-
mance drop can be explained because PE is responsible for injecting sequential attributes to enable
non-autoregressive decoding. Second, we also note a slight drop of performance when slot gating is
removed as the models have to learn to predict a fertility of 1 for “none” and “dontcare” slots as well.
Third, removing Xdel as an input reduces the model performance, mostly due to the sharp decrease
in Joint Fertility Accuracy. Lastly, removing pointer generation and relying on only P state

vocab affects
the model performance as the models are not able to infer slot values unseen during training, espe-
cially for slots such as restaurant-name and train-arriveby. We conduct other ablation experiments
and report additional results in Appendix A.3.

9



Published as a conference paper at ICLR 2020

Xdel
Slot

Gating PE(Xds×fert)
Pointer

Gen.
Joint Gate

Acc
Joint Fert.

Acc
Joint

Slot Acc
Slot
Acc

Oracle Joint
Slot Acc

Oracle
Slot Acc

X X X X 66.65% 63.18% 49.04% 97.31% 73.44% 99.01%
X X X 59.23% 57.83% 19.56% 94.36% 72.12% 98.96%
X X X N/A 64.23% 48.74% 96.62% 73.01% 98.97%

X X X 48.23% 45.35% 39.45% 95.92% 66.27% 98.63%
X(no sys. act) X X X 52.45% 56.81% 44.87% 96.95% 70.83% 98.74%

X X X 63.19% 58.31% 43.46% 96.72% 64.37% 98.39%
X X 44.22% 42.01% 34.48% 95.89% 61.32% 98.24%

X N/A 41.35% 33.52% 95.42% 60.99% 98.19%

Table 5: Ablation analysis on MultiWOZ 2.1 on 4 components: partially delexicalized dialogue
history Xdel, slot gating, positional encoding PE(Xds×fert), and pointer network.

Auto-regressive DST. We conduct experiments that use an auto-regressive state decoder and keep
other parts of the model the same. For the fertility decoder, we do not use Equation 14 and 16 as
fertility becomes redundant in this case. We still use the output to predict slot gates. Similar to
TRADE, we use the summation of embedding vectors of each domain and slot pair as input to the
state decoder and generate slot value token by token. First, From Table 6, we note that the perfor-
mance does not change significantly as compared to the non-autoregressive version. This reveals
that our proposed NADST models can predict fertilities reasonably well and performance is com-
parable with the auto-regressive approach. Second, we observe that the auto-regressive models are
less sensitive to the use of system action in dialogue history delexicalization. We expect this as pre-
dicting slot gates is easier than predicting fertilities. Finally, we note that our auto-regressive model
variants still outperform the existing approaches. This could be due to the high-level dependencies
among (domain, slot) pairs learned during the first part of the model to predict slot gates.

MultiWOZ Sys. Act Joint Gate
Acc

Joint
Slot Acc

Slot
Acc

Oracle Joint
Slot Acc

Oracle
Slot Acc

2.1 X 65.89% 49.76% 97.40% 71.39% 98.92%
2.1 62.04% 46.57% 97.23% 66.72% 98.65%
2.0 X 68.81% 50.08% 97.44% 79.04% 99.22%
2.0 65.27% 50.46% 97.43% 76.21% 99.08%

Table 6: Performance of auto-regressive model variants on MultiWOZ2.0 and 2.1. Fertility predic-
tion is removed as fertility becomes redudant in auto-regressive models.

Visualization and Qualitative Evaluation. In Figure 4, we include two examples of dialogue
state prediction and the corresponding visualization of self-attention scores of Xds×fert in state
decoder. In each heatmap, the highlighted boxes express attention scores among non-symmetrical
domain-slot pairs. In the first row, 5 attention heads capture the dependencies of two pairs (train-
leaveat, train-arriveby) and (train-departure, train-destination). The model prediction for these two
slots matches the gold labels: (train-leaveat, 09:50), (train-arriveby, 11:30) and (train-departure,
cambridge), (train-destination, ely) respectively. In the second row, besides slot-level dependency
between domain-slot pairs (taxi-departure, taxi-destination), token-level dependency is exhibited
through the attention between attraction-type and attraction-name. By attending on token rep-
resentations of attraction-name with corresponding output “christ college”, the models can infer
“attraction-type=college” correctly. In addition, our model also detects contextual dependency be-
tween train-departure and attraction-name to predict “train-departure=christ college.” Refer to Ap-
pendix A.4 for the dialogue history with gold and prediction states of these two sample dialogues.

5 CONCLUSION

We proposed NADST, a novel Non-Autoregressive neural architecture for DST that allows the model
to explicitly learn dependencies at both slot-level and token-level to improve the joint accuracy
rather than just individual slot accuracy. Our approach also enables fast decoding of dialogue states
by adopting a parallel decoding strategy in decoding components. Our extensive experiments on the
well-known MultiWOZ corpus for large-scale multi-domain dialogue systems benchmark show that
our NADST model achieved the state-of-the-art accuracy results for DST tasks, while enjoying a
substantially low inference latency which is an order of magnitude lower than the prior work.

10



Published as a conference paper at ICLR 2020

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan Ultes, Osman
Ramadan, and Milica Gašić. MultiWOZ - a large-scale multi-domain wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 5016–5026, Brussels, Belgium, October-November 2018.
Association for Computational Linguistics. doi: 10.18653/v1/D18-1547. URL https://www.
aclweb.org/anthology/D18-1547.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyag Gao, and Dilek
Hakkani-Tur. Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking baselines.
arXiv preprint arXiv:1907.01669, 2019.

Shuyang Gao, Abhishek Sethi, Sanchit Aggarwal, Tagyoung Chung, and Dilek Hakkani-Tur. Dialog
state tracking: A neural reading comprehension approach. arXiv preprint arXiv:1908.01946,
2019.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Constant-time machine
translation with conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Rahul Goel, Shachi Paul, and Dilek Hakkani-Tür. Hyst: A hybrid approach for flexible and accurate
dialogue state tracking. Proc. Interspeech 2019, pp. 1458–1462, 2019.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tem-
poral classification: labelling unsegmented sequence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on Machine learning, pp. 369–376. ACM, 2006.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-autoregressive
neural machine translation. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B1l8BtlCb.

Matthew Henderson, Blaise Thomson, and Jason D Williams. The second dialog state tracking
challenge. In Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse
and Dialogue (SIGDIAL), pp. 263–272, 2014a.

Matthew Henderson, Blaise Thomson, and Steve Young. Word-based dialog state tracking with
recurrent neural networks. In Proceedings of the 15th Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL), pp. 292–299, 2014b.

Matthew Henderson, Blaise Thomson, and Steve J. Young. Robust dialog state tracking using delex-
icalised recurrent neural networks and unsupervised adaptation. 2014 IEEE Spoken Language
Technology Workshop (SLT), pp. 360–365, 2014c.

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob Uszkoreit, and Noam
Shazeer. Fast decoding in sequence models using discrete latent variables. In International Con-
ference on Machine Learning, pp. 2395–2404, 2018.

Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

11

https://www.aclweb.org/anthology/D18-1547
https://www.aclweb.org/anthology/D18-1547
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=B1l8BtlCb


Published as a conference paper at ICLR 2020

Gakuto Kurata, Bing Xiang, Bowen Zhou, and Mo Yu. Leveraging sentence-level information
with encoder LSTM for semantic slot filling. In Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing, pp. 2077–2083, Austin, Texas, November
2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1223. URL https:
//www.aclweb.org/anthology/D16-1223.

Hwaran Lee, Jinsik Lee, and Tae yoon Kim. Sumbt: Slot-utterance matching for universal and
scalable belief tracking. In ACL, 2019.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 1173–1182, 2018.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, and Dawei Yin. Sequicity:
Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1437–1447, 2018.

Jindřich Libovickỳ and Jindřich Helcl. End-to-end non-autoregressive neural machine translation
with connectionist temporal classification. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 3016–3021, 2018.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 1412–1421, Lisbon, Portugal, September 2015. Association
for Computational Linguistics. doi: 10.18653/v1/D15-1166. URL https://www.aclweb.
org/anthology/D15-1166.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien Wen, Blaise Thomson, and Steve Young.
Neural belief tracker: Data-driven dialogue state tracking. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1777–
1788. Association for Computational Linguistics, 2017. doi: 10.18653/v1/P17-1163. URL
http://www.aclweb.org/anthology/P17-1163.

Elnaz Nouri and Ehsan Hosseini-Asl. Toward scalable neural dialogue state tracking model. arXiv
preprint arXiv:1812.00899, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Osman Ramadan, Paweł Budzianowski, and Milica Gasic. Large-scale multi-domain belief track-
ing with knowledge sharing. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, volume 2, pp. 432–437, 2018.

Abhinav Rastogi, Dilek Z. Hakkani-Tür, and Larry P. Heck. Scalable multi-domain dialogue state
tracking. 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp.
561–568, 2017.

Holger Schwenk. Continuous space translation models for phrase-based statistical machine trans-
lation. In Proceedings of COLING 2012: Posters, pp. 1071–1080, Mumbai, India, Decem-
ber 2012. The COLING 2012 Organizing Committee. URL https://www.aclweb.org/
anthology/C12-2104.

Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 1073–1083, 2017.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. Building
end-to-end dialogue systems using generative hierarchical neural network models. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

12

https://www.aclweb.org/anthology/D16-1223
https://www.aclweb.org/anthology/D16-1223
https://www.aclweb.org/anthology/D15-1166
https://www.aclweb.org/anthology/D15-1166
http://www.aclweb.org/anthology/P17-1163
https://www.aclweb.org/anthology/C12-2104
https://www.aclweb.org/anthology/C12-2104


Published as a conference paper at ICLR 2020

Yangyang Shi, Kaisheng Yao, Hu Chen, Dong Yu, Yi-Cheng Pan, and Mei-Yuh Hwang. Re-
current support vector machines for slot tagging in spoken language understanding. In Pro-
ceedings of the 2016 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 393–399, San Diego, California,
June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1044. URL
https://www.aclweb.org/anthology/N16-1044.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 28, pp. 2692–2700. Curran Associates, Inc., 2015. URL http://papers.nips.
cc/paper/5866-pointer-networks.pdf.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-autoregressive ma-
chine translation with auxiliary regularization. In The Thirty-Third AAAI Conference on Artificial
Intelligence (AAAI2019), pp. 5377–5384, 2019.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Milica Gasic, Lina M. Rojas Barahona, Pei-
Hao Su, Stefan Ultes, and Steve Young. A network-based end-to-end trainable task-oriented
dialogue system. In Proceedings of the 15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Volume 1, Long Papers, pp. 438–449, Valencia, Spain,
April 2017. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/E17-1042.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl, Caiming Xiong, Richard Socher, and
Pascale Fung. Transferable multi-domain state generator for task-oriented dialogue systems.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 808–819, Florence, Italy, July 2019. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P19-1078.

Puyang Xu and Qi Hu. An end-to-end approach for handling unknown slot values in dialogue
state tracking. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1448–1457. Association for Computational Linguistics,
2018. URL http://aclweb.org/anthology/P18-1134.

Victor Zhong, Caiming Xiong, and Richard Socher. Global-locally self-attentive encoder for di-
alogue state tracking. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 1458–1467, Melbourne, Australia, July
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1135. URL https:
//www.aclweb.org/anthology/P18-1135.

13

https://www.aclweb.org/anthology/N16-1044
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
https://www.aclweb.org/anthology/E17-1042
https://www.aclweb.org/anthology/E17-1042
https://www.aclweb.org/anthology/P19-1078
http://aclweb.org/anthology/P18-1134
https://www.aclweb.org/anthology/P18-1135
https://www.aclweb.org/anthology/P18-1135


Published as a conference paper at ICLR 2020

A APPENDIX

A.1 DATASET PRE-PROCESSING

We follow similar data preprocessing procedures as Budzianowski et al. (2018) and Wu et al. (2019)
on both MultiWOZ 2.0 and 2.1. The resulting corpus includes 8,438 multi-turn dialogues in training
set with an average of 13.5 turns per dialogue. For the test and validation set, each includes 1,000
multi-turn dialogues with an average of 14.7 turns per dialogue. The average number of domains per
dialogue is 1.8 for training, validation, and test sets. The MultiWOZ corpus includes much larger
ontology than previous DST datasets such as WOZ (Wen et al., 2017) and DSTC2 (Henderson et al.,
2014a). We identified a total of 35 (domain, slot) pairs across 7 domains. However, only 5 domains
are included in the test data. Refer to Table 7 for the statistics of dialogues in these 5 domains.

Domain attraction hotel restaurant taxi train All

Slot
area

name
type

area
bookday

bookpeople
bookstay
internet
name

parking
pricerange

stars
type

area
bookday

bookpeople
booktime

food
name

pricerange

arriveby
departure

destination
leaveat

arriveby
bookpeople

day
departure

destination
leaveat

-

train 3,381 3,103 2,717 3,813 1,654 8,438
val 416 484 401 438 207 1,000
test 394 494 395 437 195 1,000

Table 7: Summary of MultiWOZ dataset 2.1

A.2 MODEL HYPER-PARAMETERS

We employed dropout (Srivastava et al., 2014) of 0.2 at all network layers except the linear layers
of generation network components and pointer attention components. We used a batch size of 32,
embedding dimension d = 256 in all experiments. We also fixed the number of attention heads to 16
in all attention layers. We shared the embedding weights to embed domain and slot tokens as input to
fertility decoder and state decoder. We also shared the embedding weights between dialogue history
encoder and state generator. We varied our models for different values of T = Tfert = Tstate ∈
{1, 2, 3}. In all experiments, the warmup steps are fine-tuned from a range from 13K to 20K training
steps.

A.3 ADDITIONAL RESULTS

Domain-specific Results. We conduct experiments to evaluate our model performance in all 5 test
domains in MultiWOZ2.0 and 2.1. From Table 8, our models perform better in restaurant and at-
traction domain in general. The performance in the taxi and hotel domain is significantly lower than
other domains. This could be explained as the hotel domain has a complicated slot ontology with 10
different slots, larger than the other domains. For the taxi domain, we observed that dialogues with
this domain are usually of multiple domains, including the taxi domain in combination with other
domains. Hence, it is more challenging to track dialogue states in the taxi domain.

Latency Results. We visualized the model latency against the length of dialogue history in Figure
2 and 3. In Figure 2, we only plot with dialogue history length up to 80 tokens as TSCP models
do not use the full dialogue history as input. In Figure 3, for a fair comparison between TRADE
and NADST, we plot the latency of the original TRADE which decodes dialogue state slot by slot
and a new version of TRADE∗ model which decodes individual slots following a parallel decoding
mechanism. Since TRADE independently generates dialogue state slot by slot, we enable parallel
generation simply by feeding all slots into models at once (without impacts on performance). How-
ever, at the token level, TRADE∗ still follows an autoregressive decoding framework. Compared to
TRADE∗ and TSCP, our model latency is only dependent on the model complexity i.e. the number

14



Published as a conference paper at ICLR 2020

MultiWOZ2.1 MultiWOZ2.0
Domain Joint Acc Slot Joint Acc Slot
Hotel 48.76% 97.70% 53.86% 97.75%
Train 62.36% 98.36% 58.58% 98.08%
Attraction 66.83% 98.89% 74.21% 99.19%
Restaurant 65.37% 98.78% 69.21% 98.84%
Taxi 33.80% 96.69% 34.94% 96.76%

Table 8: Additional domain-specific results of our model in MultiWOZ2.0 and MultiWOZ2.1. The
model performs best with the restaurant domain and worst with the taxi domain.

of attention layers T = Tfert = Tstate. For TRADE∗ and TSCP, the model latency increases as
dialogue extends over time while NADST latency is almost constant. The non-constant latency is
mostly due to overhead processing such as delexicalizing dialogue history. Our approach is, hence,
suitable especially for dialogues in multiple domains as they usually extend over more number of
turns (e.g. 13 to 14 turns per dialogue in average in MultiWOZ corpus) In Figure 3, we noted that
the latency of the original TRADE is almost unchanged as the dialogue history extends. This is most
likely due to the model having to decode all possible (domain, slot) pairs rather than just relevant
pairs as in NADST and TSCP. The TRADE∗ shows a clearer increasing trend of latency because
the parallel process is independent of the number of (domain,slot) pairs considered. TRADE∗ still
requires more time to decode than NADST as we also parallelize decoding at the token level.

Figure 2: Comparison of model latency as wall-clock time (in ms) per prediction of complete dia-
logue state (not by individual slot). The latency is plotted against the length of the dialogue history.
We compare our models with TSCP (Lei et al., 2018) with varied maximum output length of dia-
logue states L = 8 and L = 20. We vary our models with different values of number of attention
layers T = Tfert = Tstate = 1, 2, 3. Our models are more scalable as the latency does not change
significantly when dialogue history extends over time.

Ablation Results. We conduct additional ablation experiments by varying the proportion of predic-
tion values vs. ground-truth values for Xdel and Xds×fert as input to the models. As can be seen
in Table 9, the model performance increases gradually as the proportion of prediction input %pred
reduces from 100% (true prediction) to 0% (oracle prediction). In particular, we observe more sig-

15



Published as a conference paper at ICLR 2020

Figure 3: Comparison of model latency as wall-clock time (in ms) per prediction of complete dia-
logue state. The latency is plotted against the length of the dialogue history. For a fair comparison,
we compare our models with TRADE (Wu et al., 2019) in 2 cases: original TRADE which decodes
dialogue state slot by slot and TRADE∗ which decodes dialogue state in parallel at slot-level. Here
we plot the base-10 logarithm of latency to show the difference between the 2 cases of TRADE. We
vary our models with different values of number of attention layers T = Tfert = Tstate = 1, 2, 3.
Our models are more scalable as the latency does not change significantly when dialogue history
extends over time.

nificant changes in performance against changes of %pred ofXds×fert. The model performance can
increase up to more than 67% joint accuracy when we have an oracle input of Xds×fert. However,
we consider improving model performance by Xdel more practically achievable. For example, we
can make use of a more sophisticated mechanism to delexicalize dialog history rather than exact
word matching as the current strategy. Another example is having better Xdel through a pretrained
NLU model. In the ideal case with access to ground-truth labels of both Xdel and Xds×fert, the
model can obtain a joint accuracy of 73%.

%pred
Xdel

%pred
Xds×fert

Joint
Acc

Slot
Acc

%pred
Xdel

%pred
Xds×fert

Joint
Acc

Slot
Acc

0% 100% 57.40% 98.06% 100% 0% 67.32% 98.67%
20% 100% 56.50% 97.98% 100% 20% 64.09% 98.47%
40% 100% 55.24% 97.91% 100% 40% 61.29% 98.29%
60% 100% 53.58% 97.79% 100% 60% 57.02% 98.00%
80% 100% 52.02% 97.67% 100% 80% 54.11% 97.76%
100% 100% 49.04% 97.31% 100% 100% 49.04% 97.31%
0% 0% 73.44% 99.01% 0% 0% 73.44% 99.01%

Table 9: Additional results of our model in MultiWOZ2.1 when we assume access to the ground-
truth labels ofXdel andXds×fert (oracle prediction). We vary the the percentage of using the model
prediction X̂del and X̂ds×fert from 100% (true prediction) to 0% (oracle prediction).

16



Published as a conference paper at ICLR 2020

Figure 4: Heatmap visualization of self-attention scores of 5 heads between Zds×fert representa-
tions in the state decoder. The corresponding prediction output for each representation is presented
on the right side. The examples are for the 6th turn in dialogue ID MUL0536 (upper row) and
PMUL3759 (lower row) in MultiWOZ2.1.

A.4 SAMPLE PREDICTION OUTPUT

We extracted prediction output in all turns for 2 example dialogues: MUL0536 and PMUL3759.

17



Published as a conference paper at ICLR 2020

Turn 1
Human: i am looking for abbey pool and astroturf pitch can you help me ?

Gold Dialog State: (attraction-name, abbey pool and astroturf pitch)

Predicted Dialog State: (attraction-name, abbey pool and astroturf pitch)

Turn 2

System:
yes , abbey pool and astroturf pitch is a swimmingpool east of town . their number is 01223902088 ,

and address is pool way , whitehill road , off newmarket road . postcode cb58nt .

Human: thank you very much for the information . that is all i needed help with . have a nice day .

Gold Dialog State: (attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (attraction-type, swimming pool)

Predicted Dialog State: (attraction-area, east), (attraction-name, abbey pool and astroturf pitch)

Turn 3

System: you are welcome . let me know if i can do anything else for you .

Human: i actually do need to find a train going to ely .

Gold Dialog State:
(attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (attraction-type, swimming pool),

(train-destination-ely)

Predicted Dialog State: (attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (train-destination-ely)

Turn 4

System: is that leaving from cambridge ? and if so , what time would you like to arrive in ely ?

Human: yes , i will be leaving cambridge and going to ely , i would like it to arrive by 11:30 .

Gold Dialog State:
(attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (attraction-type, swimming pool),

(train-arriveby, 11:30), (train-departure, cambridge), (train-destination, ely)

Predicted Dialog State:
(attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (train-arriveby, 11:30),

(train-departure, cambridge), (train-destination, ely)

Turn 5

System:
what day would you be traveling ? there are 2,828 trains on that route . there is a train that departs friday at

9:50 and will arrive in ely at 10:07 .

Human: oops ! i guess forgot to mention it s thursday that i need to travel .

Gold Dialog State:
(attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (attraction-type, swimming pool),

(train-arriveby, 11:30), (train-day, thursday), (train-departure, cambridge), (train-destination, ely)

Predicted Dialog State:
(attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (train-arriveby, 11:30),

(train-day, thursday), (train-departure, cambridge), (train-destination, ely)

Turn 6

System: there are 3 trains that would fit , leaving at 05:50 , 07:50 , or 09:50 .

Human: can i get info for the 09:50 the price and the trains id please ?

Gold Dialog State:
(attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (attraction-type, swimming pool),

(train-arriveby, 11:30), (train-day, thursday), (train-departure, cambridge), (train-destination, ely),

(train-leaveat, 09:50)

Predicted Dialog State:
(attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (train-arriveby, 11:30),

(train-day, thursday), (train-departure, cambridge), (train-destination, ely), (train-leaveat, 09:50)

Turn 7

System: certainly . the train s id is tr1923 , and the price for a ticket is 4.40 pounds .

Human: great , thank you ! that will be all i need for now .

Gold Dialog State:
(attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (attraction-type, swimming pool),

(train-arriveby, 11:30), (train-day, thursday), (train-departure, cambridge), (train-destination, ely),

(train-leaveat, 09:50)

Predicted Dialog State:
(attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (train-arriveby, 11:30),

(train-day, thursday), (train-departure, cambridge), (train-destination, ely), (train-leaveat, 09:50)

Turn 8

System: are you certain you do not need further assistance ?

Human: 9:50 departure , 4.40 pounds , tr1923 . i got it , thank you !

Gold Dialog State:
(attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (attraction-type, swimming pool),

(train-arriveby, 11:30), (train-day, thursday), (train-departure, cambridge), (train-destination, ely),

(train-leaveat, 09:50)

Predicted Dialog State:
(attraction-area, east), (attraction-name, abbey pool and astroturf pitch) , (train-arriveby, 11:30),

(train-day, thursday), (train-departure, cambridge), (train-destination, ely), (train-leaveat, 09:50)

Table 10: Full set of predicted dialogue states for dialogue ID MUL0536 in MultiWOZ2.1.

18



Published as a conference paper at ICLR 2020

Figure 5: Visualization of all attention heads in the last attention step Tstate in the state decoder.
The DST prediction is done for the 6th turn in dialogue ID MUL0536 in MultiWOZ2.1.

19



Published as a conference paper at ICLR 2020

Turn 1
Human: what s your favorite college to visit in cambridge ?
Gold Dialog State: (attraction-type, college)
Predicted Dialog State: (attraction-type, college)

Turn 2

System:
i like christ s college in the center of town , but there are many others throughout the city . what part of
the city did you want to visit ?

Human: i think i would like to visit that location , it seems nice . could i get the phone number and the area ?
Gold Dialog State: (attraction-name, christ college), (attraction-type, college)
Predicted Dialog State: (attraction-area, centre), (attraction-name, christ college), (attraction-type, college)

Turn 3

System: the area is centre and the phone number is 01223334900 . is there anything else i can help you with ?

Human:
actually , i am hungry . can you find me a restaurant that serves north american food ? something not
super expensive , maybe in a moderate price range ?

Gold Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-food, modern american),
(restaurant-pricerange, moderate)

Predicted Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-food, north american),
(restaurant-pricerange, moderate)

Turn 4

System:
i am sorry , there s no restaurant serving specifically north american or american food in my database ,
is there another type of food you would consider ?

Human: how about modern european food ?

Gold Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-food, modern european),
(restaurant-pricerange, moderate)

Predicted Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-food, modern european),
(restaurant-pricerange, moderate)

Turn 5

System: there are 3 modern european restaurant -s 2 in the center and 1 in the south . do you have a preference ?
Human: i would prefer the 1 on the centre , could i have the phone number and postcode please ?

Gold Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-area, centre),
(restaurant-food, modern european), (restaurant-pricerange, moderate)

Predicted Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-area, centre),
(restaurant-food, modern european), (restaurant-pricerange, moderate)

Turn 6

System: de luca cucina and bar s phone number is 01223356666 . postcode is cb21aw .
Human: could you help me get a taxi to get from the college to the restaurant ?

Gold Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-area, centre),
(restaurant-food, modern european), (restaurant-pricerange, moderate), (taxi-departure, christ college),
(taxi-destination, de luca cucina and bar)

Predicted Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-area, centre),
(restaurant-food, modern european), (restaurant-pricerange, moderate), (taxi-departure, christ college),
(taxi-destination, de luca cucina and bar)

Turn 7

System:
what time would you like to leave the college ? i can book you a taxi to take you to the restaurant if you
would like .

Human: i would like to leave by 13:00 .

Gold Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-area, centre),
(restaurant-food, modern european), (restaurant-pricerange, moderate), (taxi-departure, christ college),
(taxi-destination, de luca cucina and bar), (taxi-leaveat, 12:45)

Predicted Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-area, centre),
(restaurant-food, modern european), (restaurant-pricerange, moderate), (taxi-departure, christ college),
(taxi-destination, de luca cucina and bar), (taxi-leaveat, 13:00)

Turn 8

System:
i have booked you a taxi leaving at 12:45 . the car will be a red toyota and contact number is 07350032543
. anything else today ?

Human: that s it . thank you very much .

Gold Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-area, centre),
(restaurant-food, modern european), (restaurant-pricerange, moderate), (taxi-departure, christ college),
(taxi-destination, de luca cucina and bar), (taxi-leaveat, 12:45)

Predicted Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-area, centre),
(restaurant-food, modern european), (restaurant-pricerange, moderate), (taxi-departure, christ college),
(taxi-destination, de luca cucina and bar), (taxi-leaveat, 12:45)

Turn 9

System: will you need anymore information concerning your stay ?
Human: that is all , thanks for the help .

Gold Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-area, centre),
(restaurant-food, modern european), (restaurant-pricerange, moderate), (taxi-departure, christ college),
(taxi-destination, de luca cucina and bar), (taxi-leaveat, 12:45)

Predicted Dialog State:
(attraction-name, christ college), (attraction-type, college), (restaurant-area, centre),
(restaurant-food, modern european), (restaurant-pricerange, moderate), (taxi-departure, christ college),
(taxi-destination, de luca cucina and bar), (taxi-leaveat, 12:45)

Table 11: Full set of predicted dialogue states for dialogue ID PMUL3759 in MultiWOZ2.1.

20



Published as a conference paper at ICLR 2020

Figure 6: Visualization of all attention heads in the last attention step Tstate in the state decoder.
The DST prediction is done for the 6th turn in dialogue ID PMUL3759 in MultiWOZ2.1.

21


	Introduction
	Related Work
	Dialogue State Tracking
	Non-autoregressive Decoding

	Approach
	Encoders
	Fertility Decoder
	State Decoder
	Optimization

	Experiments
	Dataset
	Training Procedure
	Baselines
	Fixed-vocabulary
	Open-vocabulary

	Results

	Conclusion
	Appendix
	Dataset Pre-processing
	Model Hyper-Parameters
	Additional Results
	Sample Prediction Output


