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ABSTRACT

Deep learning has shown high performances in various types of tasks from visual
recognition to natural language processing, which indicates superior flexibility
and adaptivity of deep learning. To understand this phenomenon theoretically, we
develop a new approximation and estimation error analysis of deep learning with
the ReLLU activation for functions in a Besov space and its variant with mixed
smoothness. The Besov space is a considerably general function space including
the Holder space and Sobolev space, and especially can capture spatial inhomo-
geneity of smoothness. Throughout the analysis in the Besov space, it is shown
that deep learning can achieve the minimax optimal rate and outperform any non-
adaptive (linear) estimator such as kernel ridge regression, which shows that deep
learning has higher adaptivity to the spatial inhomogeneity of the target function
than other estimators such as linear ones. In addition to this, it is shown that deep
learning can avoid the curse of dimensionality if the target function is in a mixed
smooth Besov space. We also show that the dependency of the convergence rate
on the dimensionality is tight due to its minimax optimality. These results support
high adaptivity of deep learning and its superior ability as a feature extractor.

1 INTRODUCTION

Deep learning has shown great success in several applications such as computer vision and natural
language processing. As its application range is getting wider, theoretical analysis to reveal the rea-
son why deep learning works so well is also gathering much attention. To understand deep learning
theoretically, several studies have been developed from several aspects such as approximation theory
and statistical learning theory. A remarkable property of neural network is that it has universal ap-
proximation capability even if there is only one hidden layer (Cybenko} |1989; Hornik, |1991;|Sonoda
& Murata, 2017). Thanks to this property, deep and shallow neural networks can approximate any
function with any precision (of course, the meaning of the terminology “any” must be rigorously
defined like “any function in L!(R)”). A natural question coming next is its expressive power. It is
shown that the expressive power of deep neural network grows exponentially against the number of
layers (Montufar et al., 2014; Bianchini & Scarselli, 2014} |Cohen et al., |2016; [Cohen & Shashual
2016; [Poole et al.,|2016) where the “expressive power” is defined by several ways.

The expressive power of neural network can be analyzed more precisely by specifying the target
function’s property such as smoothness. [Barron| (1993 [1994)) developed an approximation theory
for functions having limited “capacity” that is measured by integrability of their Fourier transform.
An interesting point of the analysis is that the approximation error is not affected by the dimen-
sionality of the input. This observation matches the experimental observations that deep learning is
quite effective also in high dimensional situations. Another typical approach is to analyze function
spaces with smoothness conditions such as the Holder space. In particular, deep neural network
with the ReLU activation (Nair & Hinton| |2010; [Glorot et al., 2011)) has been extensively stud-
ied recently from the view point of its expressive power and its generalization error. For example,
Yarotsky| (2017) derived the approximation error of the deep network with the ReLU activation for
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Table 1: Comparison between the performances of deep learning and linear methods. [V is the
number of parameters to approximate a function in a Besov space (B;, ([0, 1]%)), and n is the sample

size. The approximation error is measured by L"-norm. The o} symbol hides the poly-log order.

Model Deep learning | Linear method
= s ~ _ s 1_1
Approximation error rate | O(N~4) 0] (N at(G—a)+
. . ~, _ _2s _ _2s—(2/(pAD)—-1)
Estimation error rate O(n~2+2) Q(n T 1 (2/(PAD - 1) )

functions in the Holder space. [Schmidt-Hieber| (2018) evaluated the estimation error of regularized
least squares estimator performed by deep ReLU network based on this approximation error analysis
in a nonparametric regression setting. [Petersen & Voigtlaender| (2017) generalized the analysis of
Yarotsky| (2017) to the class of piece-wise smooth functions. Imaizumi & Fukumizu| (2018)) utilized
this analysis to derive the estimation error to estimate the piece-wise smooth function and concluded
that deep leaning can outperform linear estimators in that setting. Although these error analyses are
standard from a nonparametric statistics view point and the derived rates are known to be (near)
minimax optimal, the analysis is rather limited because they are given mainly based on the Holder
space. However, there are several other function spaces such as the Sobolev space and the space of
finite total variations. A comprehensive analysis to deal with such function classes from a unified
view point is required.

In this paper, we give generalization error bounds of deep ReLU networks for a Besov space and
its variant with mixed smoothness, which includes the Holder space, the Sobolev space, and the
function class with total variation as special cases. By doing so, (i) we show that deep learnin
achieves the minimax optimal rate on the Besov space and notably it outperforms any linear esti-
mator such as the kernel ridge regression, and (ii) we show that deep learning can avoid the curse of
dimensionality on the mixed smooth Besov space and achieves the minimax optimal rate. As related
work, Mhaskar & Micchelli| (1992); Mhaskar| (1993); (Chui et al.| (1994)); Mhaskar (1996)); Pinkus
(1999) also developed an approximation error analysis which essentially leads to analyses for Besov
spaces. However, the ReLLU activation is basically excluded and comprehensive analyses for the
Besov space have not been given. As a summary, the contribution of this paper is listed as follows:

(i) To investigate adaptivity of deep learning, we give an explicit form of approximation and
estimation error bounds for deep learning with the ReLLU activation where the target func-
tions are in the Besov spaces (B, ;) for s > 0and 0 < p,q < oo with s > d(1/p —1/r)4
where L"-norm is used for error evaluation. In particular, deep learning outperforms any
linear estimator such as kernel ridge regression if the target function has highly spatial
inhomogeneity of its smoothness. See Table I]for the overview.

(i) To investigate the effect of dimensionality, we analyze approximation and estimation prob-
lems in so-called the mixed smooth Besov space by ReLLU neural network. It is shown that
deep learning with the ReLU activation can ease the curse of dimensionality and achieve
the near minimax optimal rate. The theory is developed on the basis of the sparse grid
technique (Smolyakl [1963). See Tablefor the overview.

2 SET UP OF FUNCTION SPACES

In this section, we define the function classes for which we develop error bounds. In particular, we
define the Besov space and its variant with mixed smoothness. The typical settings in statistical
learning theory is to estimate a function with a smoothness condition. There are several ways to
characterize “smoothness.” Here, we summarize the definitions of representative functional spaces
that are appropriate to define the smoothness assumption.

Let Q C R? be a domain of the functions. Throughout this paper, we employ 2 = [0, 1]¢. For
a function f : Q — R, let [|f]l, = ||fllrr) = (Jy|f|Pdz)!/P for 0 < p < oco. Forp =

'In this paper, we mainly consider a regularized empirical risk minimization given in Eq. ([ as an estimation
procedure, and say “deep learning” to indicate it.
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Table 2: Summary of relation between related existing work and our work for a mixed smooth Besov
space. NN is the number of parameters in the deep neural network, n is the sample size. 5 represents
the smoothness parameter, and d represents the dimensionality of the input. The approximation
accuracy is measured by L2-norm and estimation accuracy is measured by the square of L2-norm.
See Theorem@for the definition of u.

Function class Holder Barron class m-Sobolev m-Besov
(0<B<? 0<p)
Approximation
Author Yarotsky| (2017), |[Liang| | [Barron|(1993) Montanelli & | This work
& Srikan (2016) Du| (2017)
Approx. error O(Nf%) O(N—1/2) O(N~—P) O(N—P)
Estimation
Author Schmidt-Hieber| (2018) | [Barron|(1993) [ This work
p- p - = = p 8
Estimation er- | O(n~ 2 ) O(n~ %) — O(n™ 28+1 X
ror 2(d=1)(u+5)
log(n)~ 1+28
d
oo, we define || flloo == || fll=() = Supyeq |f(z)]. For a € RY, let |o| = > i1 lagl. Let
C°(Q) be the set of continuous functions equipped with L>°-norm: C°(Q) := {f : Q@ — R |

f is continuous and || f o < oo} For a € Z4, we denote by D f(z) = %(m) ?

Definition 1 (Holder space (C° (). Let B > 0 with 8 & N be the smoothness parameter. For an
m times differentiable function f : R? — R, let the norm of the Holder space C?(Q) be || f||cs :=
maX|q|<m HDO‘fHOO + maX|q|=m SUP; yeo z ﬁfi)y_\ﬁ,,f(y”, where m = | B8] (the largest integer

less than j3). Then, (3-)Hélder space CP () is defined as C° () = {f | || fllcs < oo}

The parameter 5 > 0 controls the “smoothness” of the function. Along with the Holder space, the
Sobolev space is also important.

Definition 2 (Sobolev space (W} (£2))). Sobolev space (W) () with a regularity parameter k €
N and a parameter 1 < p < oo is a set of functions such that the Sobolev norm Hf”w; =

(X jal<k ||D“f\|g)% is finite (where the derivative D is taken in the weak sense).

There are some ways to define a Sobolev space with fractional order, one of which will be defined
by using the notion of interpolation space (DeVorel |1998; |Adams & Fournier, |2003)), but we don’t
pursue this direction here. Finally, we introduce Besov space which further generalizes the definition
of the Sobolev space. To define the Besov space, we introduce the modulus of smoothness.

Definition 3. For a function f € LP(Q) for some p € (0,00, the r-th modulus of smoothness of f
is defined by

wrp(fit) = sup [|AL(f)llp,
heRa:|[hls<t
o (V=17 f(x+ jh reQ, x+rhe
whereAZ(f)(x):{OZJ_O(])( ffe Eot}ferm;ise;r =

Based on the modulus of smoothness, the Besov space is defined as in the following definition.
Definition 4 (Besov space (By,(2))). For0 < p,q < oo, a > 0, 7 := |a] + 1, let the seminorm
|- |B;;q be )

|f|Ba = (fooo(tiawﬁp(fat))q%)q (q < OO),

T (supeso tT M wrp( 1) (g = 0).
The norm of the Besov space By’ () can be defined by | ||z, == || fllp +|f|5s , and By () =
{f e 7@ | IflBg, < oo}
2Since = [0, 1] in our setting, the boundedness automatically follows from the continuity.

SWeletN:={1,2,3,...},Zy :={0,1,2,3,... }, 2% := {(21,...,24) | ze € Z: }, Ry := {x >0 |
z€R},andRyy :={z > 0|z €R}.
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Note that p, g < 1 is also allowed. In that setting, the Besov space is no longer a Banach space but a
quasi-Banach space. The Besov space plays an important role in several fields such as nonparametric
statistical inference (Kerkyacharian & Picard, [1992; Donoho et al., [1996; |Donoho & Johnstone,
1998;;|Giné & Nickl, 2015) and approximation theory (Temlyakov, |1993a). These spaces are closely
related to each other as follows (Triebel, [1983):

e Form € N, By, (Q) <= W;(Q) — By (), and By,(2) = W3 (Q)f]
e For0 <s<ooands ¢N,C*(Q) = B3, .(Q).

e For0 < s,p,q,7 < oowiths > §:=d(1/p—1/r);,itholds that B5 (Q) < B °(Q).
In particular, under the same condition, from the definition of || - | B, it holds that

By () < L"(). (1)
e For0 < s,p,q < o0,if s > d/p, then
Bs () <= C°(). )

Hence, if the smoothness parameter satisfies s > d/p, then it is continuously embedded in the set of
the continuous functions. However, if s < d/p, then the elements in the space are no longer contin-
uous. Moreover, it is known that B ([0, 1]) is included in the space of bounded total variation and
Bl ([0,1]) includes it (Peetre & Dept, 1976). Hence, the Besov space also allows spatially inho-
mogeneous smoothness with spikes and jumps; which makes difference between linear estimators
and deep learning (see Sec. {.1).

It is known that the minimax rate to estimate f° is lower bounded by n~2%/(2s+4) ' (Kerkyacharian
& Picard, (19925 [Donoho et al., [1996; |Donoho & Johnstone, [1998}; |Giné & Nickl, 2015). We see
that the curse of dimensionality is unavoidable as long as we consider the Besov space. This is an
undesirable property because we easily encounter high dimensional data in several machine learning
problems. Hence, we need another condition to derive approximation and estimation error bounds
that are not heavily affected by the dimensionality. To do so, we introduce the notion of mixed
smoothness. The Besov space with mixed smoothness is defined as follows (Schmeisser, 1987}
Sickel & Ullrich,|2009). To define the space, we define the coordinate difference operator as

A;Lﬂ(f)(m) = AZ(f(iUl, sy Ti—1y 5 Lty - - ’wd))(xl)

for f : RY — R, h € Ry, i € [d],and 7 > 1. By applying this difference operator to each coordinate
in a subset e C {1,...,d} of coordinates, the mixed differential operator for a step length h € R?

is defined as
r.e i 7,0
AR = (Thee AF) (D AF() = 1.
Then, the mixed modulus of smoothness is defined as
wg,p(f: t) = Sup|hi|§ti,i€e ”A;‘L)e(f)Hp

fort € Ri and 0 < p < oo. This quantity measures how the function f is “rough” in a coordinate-
wise manner. In contrast to the Besov space (Def. , the differentiation is taken over all coordinates
in e, which imposes a coordinate-wise smoothness. Letting 0 < p,q < o0, o € Ri Land r; =
l;] + 1, the semi-norm | - [zpa.e based on the mixed smoothness is defined by

/
LIl 7w, (0 2 ) (0 < g < 00),
SuptGQ(Hiee ti_o”)wﬁ,p(fﬂ t) (q = OO)

By summing up the semi-norm over the choice of e, the (quasi-)norm of the mixed smooth Besov
space (abbreviated to m-Besov space) is defined by

e, = 1fll+ > sy

eC{l,....d}

| f] MBS +=

“The notation < means a continuous embedding; that is, X — Y for two normed spaces X, Y means X
is continuously embedded in Y.
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and thus MBg () := {f € LP(Q) | | fllmBg, < 0o} where 0 < p,q < coand a € R . In
this paper, we assume that «; = - - - = «4. With a slight abuse of notation, we also use the notation
Mng for a > 0 to indicate MBéf“qv-wa)‘

It is known that, when p = ¢, the m-Besov space is characterized as a fensor product space of
B; ,([0,1]) (Sickel & Ullrich, [2009). The m-Besov space includes several important models con-
sidered in the literature of statistical learning, e.g., the additive model (Meier et al., 2009) and the
tensor model (Signoretto et al., 2010). It is known that an appropriate estimator in these models
can avoid curse of dimensionality (Meier et al., 2009; Raskutti et al., 2012; Kanagawa et al., 2016;
Suzuki et al.| 2016). What we will show in this paper supports that this fact is also applied to deep
learning from a unifying viewpoint.

The difference between the (normal) Besov space and the m-Besov space can be informally ex-
plained as follows. For regularity condition o; < 2 (¢ = 1,2), the m-Besov space consists of
functions for which the following derivatives are “bounded”:

of of o*f &f &f & &f 0f

0z1" Oz’ 022" 023 Ox10xe’ 011013 023012  Ox30x3"
That is, the “max” of the orders of derivatives over coordinates needs to be bounded by 2. On the
other hand, the Besov space only ensures the boundedness of the following derivatives:

of of 0:f 02°f O°f

921’ 023’ 023" 023’ Da10ms"
where the “sum” of the orders needs to be bounded by 2. This difference directly affects the rate of
convergence of approximation accuracy. Further details about this space and related topics can be
found in a comprehensive survey (Diing et al.l 2016).

Relation to Barron class. Barron (1991} [1993; |1994) showed that, if the Fourier transform of
a function f satisfies some integrability condition, then we may avoid curse of dimensionality for
estimating neural networks with sigmoidal activation functions. The integrability condition is given
by [ea [lw]]| f(w)|dw < oo, where f is the Fourier transform of a function f. We call the class of
functions satisfying this condition Barron class. A similar function class is analyzed by Klusowski
& Barron| (2016) too. We cannot compare directly the m-Besov space with the Barron class, but they
are closely related. Indeed, if p = ¢ = 2and s = a; = --- = ag, then m-Besov space MB3 ,(2)
is equivalent to the tensor product of Sobolev space (Sickel & Ullrichl 2011)) which consists of
functions f : @ — R satisfying [, H?Zl(l + |wi]?)*| f(w)]2dw < oc. Therefore, our analysis
gives a (similar but) different characterization of conditions to avoid curse of dimensionality.

3 APPROXIMATION ERROR ANALYSIS

In this section, we evaluate how well the functions in the Besov and m-Besov spaces can be ap-
proximated by neural networks with the ReL.U activation. Let us denote the ReLU activation by
n(x) = max{z,0} (x € R), and for a vector x, () is operated in an element-wise manner. Define
the neural network with height L, width W, sparsity constraint S and norm constraint B as

(L, W, 5, B) = {WEn() + 50 o -0 (WD 4 ) [ W) € RIXW, 4(0) € R,
wh e RWxd p(M) ¢ RV WO ¢ RWVXW 3 e RW (1 < ¢ < L),
L

Zzzl(llw(@llo +[16®lo) < S, max W Oloo v (1600 < BY,
where || - ||o is the £p-norm of the matrix (the number of non-zero elements of the matrix) and || - ||
is the £,-norm of the matrix (maximum of the absolute values of the elements). We want to evaluate
how large L, W, S, B should be to approximate f© € MBg' (2) by an element f € ®(L, W, S, B)
with precision € > 0 measured by L™-norm: minseq || f — f°[» < e.

3.1 APPROXIMATION ERROR ANALYSIS FOR BESOV SPACES

Here, we show how the neural network can approximate a function in the Besov space which is
useful to derive the generalization error of deep learning. Although its derivation is rather standard
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as considered in (Chui et al.| (1994)); Bolcskei et al.| (2017), it should be worth noting that the bound
derived here cannot be attained by any non-adaptive method and the generalization error based on
the analysis is also unattainable by any linear estimators including the kernel ridge regression. That
explains the high adaptivity of deep neural network and how it outperforms usual linear methods
such as kernel methods.

To show the approximation accuracy, a key step is to show that the ReLU neural network can ap-
proximate the cardinal B-spline with high accuracy. Let V(z) = 1 (z € [0,1]), 0 (otherwise), then
the cardinal B-spline of order m is defined by taking m + 1-times convolution of A/

N (z) = (N * N x---x N)(x),
m + 1 times
where f * g(z) := [ f(x — t)g(t)dt. It is known that N, is a piece-wise polynomial of order m.
Fork = (k1,...,k¢) € Z% and j = (j1,...,ja) € Z%, let M ;(x) = H;izl N (2Fi2; — 5;). Even
for k € Z,, we also use the same notation to express M,‘fj(x) = Hle Non(2%2; — j;). Here, k
controls the spatial “resolution” and j specifies the location on which the basis is put. Basically, we
approximate a function f in a Besov space by a super-position of M ki (z), which is closely related
to wavelet analysis (Mallat, [1999).

Mhaskar & Micchellil (1992); |Chui et al.| (1994) have shown the approximation ability of neural
network for a function with bounded modulus of smoothness. However, the class of the activation
functions in their analysis does not include ReL.U but they dealt with activation functions satisfying
the following conditions,

lim n(x)/zF — 1, Em n(z)/z* =0, IK > 1st |n(z)| < K(1+ |z))* (x € R), (3a)
Tr—r00 x — 00

for k = 2 which excludes ReL.U. Mhaskar| (1993) analyzed deep neural network under the same
setting but it restricts the smoothness parameter to s = k£ + 1. Mhaskar| (1996) considered the
Sobolev space W™ with an infinitely many differentiable “bump” function which also excludes
ReLU. However, approximating the cardinal B-spline by ReLU can be attained by appropriately
using the technique developed by |Yarotsky| (2017) as in the following lemma.

Lemma 1 (Approximation of cardinal B-spline basis by the RelLU activation). There exists a con-
stant ¢(q, ) depending only on d and m such that, for all ¢ > 0, there exists a neural network M €

®(Lo, Wo, So, Bo) with Lo := 3+2 [mg2 (()) + 5] Mog,(d vV m)], Wo := 6dm(m-+2)+2d,
So := LoW¢ and By := 2(m + 1)™ that satisfies

1Mo — M| ey < €,
and M (z) = 0 for all x ¢ [0,m + 1]%

3de

The proof is in Appendix [A] Based on this lemma, we can translate several B-spline approximation
results into those of deep neural network approximation. In particular, combining this lemma and
the B-spline interpolant representations of functions in Besov spaces (DeVore & Popov, |1988; |De-
Vore et al., 1993} |Diing, |2011b), we obtain the optimal approximation error bound for deep neural
networks. Here, let U () be the unit ball of a quasi-Banach space H, and for a set F of functions,
define the worst case approximation error as

R.(F,H):= su inf || f° — r dy.

( ) ferI()fH)fEFHf FllLro,114)

Proposition 1 (Approximation ability for Besov space). Suppose that 0 < p,q,r < co and 0 <
s < oo satisfy the following condition:

s>d(1/p—1/r)4. “)
Assume that m € N satisfies 0 < s < min(m,m — 1+ 1/p). Let 6 = d(1/p — 1/r)4+ and
v = (s — 8)/(20). For sufficiently large N € N and e = N—/d="""+d")(d/p=9)+ 1o5(N) =1, Jet

dvm

L—3+2[log2< ) + 5][logy(d vV m)], W = NWy,

GC(dﬂn)
S =[(L-1)W§+1]N, B =O(NW a7 Hav(d/p=s)1)y,

then it holds that
R.(®(L,W,S,B), B ,([0,1]%) < N~*/*.
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Remark 1. By Eq. (1), the condition {@) indicates that f° € B, , satisfies f© € L"(Q). If we set
p=q=oc0andr = oo, then By, () = C*(Q) which yields the result by Yarotsky| (2017) as a
special case.

The proof is in Appendix [B| According to the theorem, the approximation error N /¢ can be
achieved by the settings L = O(log(N)), W = O(N) and S = O(Nlog(N)) for N € N. The
convergence rate N /¢ is controlled by the smoothness s and the dimensionality d; as the smooth-
ness s goes up, we have better approximation error, and as the dimensionality d goes up, we have
worse error. An interesting point is that the statement is valid even for p # r. In particular, the theo-
rem also supports non-continuous regime (s < d/p) in which L°-convergence does no longer hold
but instead L"-convergence is guaranteed under the condition s > d(1/p — 1/r). In that sense,
the convergence of the approximation error is guaranteed in considerably general settings. [Pinkus
(1999) gave an explicit form of convergence when 1 < p = r for the activation functions satisfying
Eq. (3) which does not cover ReLU and an important setting p # r. [Petrushev| (1998) considered
p = r = 2 and activation function with Eq. (3)) where s is an integer such that s < k+1+(d—1)/2.
Chui et al.| (1994) and |[Bolcsker et al.| (2017) dealt with the smooth sigmoidal activation satisfying
the condition (E]) with £ > 2 or a “smoothed version” of the ReLU activation which excludes ReLU;
but [Bolcskei et al.| (2017) presented a general strategy for neural-net approximation by using the
notion of best M -term approximation. Mhaskar & Micchelli| (1992)) gives an approximation bound
using the modulus of smoothness, but the smoothness s and the order of sigmoidal function k in
is tightly connected and f° is assumed to be continuous which excludes the situation s < d/p.
On the other hand, the above proposition does not require such a tight connection and it explicitly
gives the approximation bound for Besov spaces. Williamson & Bartlett (1992) derived a spline ap-
proximation error bound for an element in a Besov space when d = 1, but the derived bound is only
O(N~s+(/p=1/7)+) which is the rate of non-adaptive methods described below, and approximation
by a ReLU activation network is not discussed. We may also use the analysis of |(Cohen et al.[{(2001)
which is based on compactly supported wavelet bases, but the cardinal B-spline is easy to handle
through quasi-interpolant representation as performed in the proof of Proposition

It should be noted that the presented approximation accuracy bound is not trivial because it can not
be achieved by a non-adaptive method. Actually, the best N -term approximation error (Kolmorogov
width) of the Besov space is lower bounded as

N=/d+Q/p=1my 1< p<r<2 s>d1/p—1/r)),
inf sup  inf ||f = fllor(o) 2 § N~*/aH /et (1<p<2<r<oo, s>d/p),
SNCBy.q feu(By ,) feSn N—s/d (2<p<r<oo,s>d/2),

4)
ifl<p<r<o,1<g<ooandl < s, where Sy is any N-dimensional subspace of B;q
(Romanyuk, 2009; Myronyuk, 2016} [Vybarall [2008). That is, any linear/non-linear approximator
with fixed N-bases does not achieve the approximation error N ~*/¢ in some parameter settings
such as 1 < p < 2 < r. On the other hand, adaptive methods including deep learning can improve
the error rate up to NV —s/d which is rate optimal (Diing, [2011b)). The difference is significant when
p < r. This implies that deep neural network possesses high adaptivity to find which part of the
function should be intensively approximated. In other words, deep neural network can properly
extracts the feature of the input (which corresponds to construct an appropriate set of bases) to
approximate the target function in the most efficient way.

3.2 APPROXIMATION ERROR ANALYSIS FOR M-BESOV SPACE

Here, we deal with m-Besov spaces instead of the ordinary Besov space. The next theorem gives the
approximation error bound to approximate functions in the m-Besov spaces by deep neural network

d—1
models. Define Dy, 4 := (1 + %)k (1 + ﬁ) . Then, we have the following theorem.

Theorem 1 (Approximation ability for m-Besov space). Suppose that 0 < p,q,r < co and s < 00
satisfies s > (1/p — 1/r). Assume that m € N satisfies 0 < s < min(m,m — 1 + 1/p). Let
§=(1/p—1/r)y andv = (s — 8)/(20). Forany K > 1, let K* = [K (1 + -25)]. Then, for
N=2+1-27")"12KDg. 4, ifwe set

L=3+2logy (&) 45+ (s+ (£ = )4 + DE* +log([e(m + 141 + K)) | [logy(d v m)],

av

gdvm
C(d,m)
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W =W,N, S=[L-1)WZ+1]N, B=0O(N¥ +D0v1/p=s)4))
then it holds that

(i) Forp>r,  R.(®(L,W,S,B), MB;,([0,1]%) < 2~ KspQ/ min-D=1/0+, (62)
B . 2—KSD(1/7‘_1/‘1)+ < OO),
(ii) Forp <r,  R.(®(L,W,S,B), MB; ([0, 114) < {Q—KSDgiil/q)‘F - (6b)
K,d (r=

The proof is given in Appendix It holds that N ~ 2K K1 which implies 2~ % ~
N1 logdfl(N ) if N > d (see also the discussion right after Theorem |5/ in Appendix for
more details of calculation). Therefore, when r >> ¢, the approximation error can be evaluated as
O(N—*1og* =Y (N)) for L = O(log(N)), W = O(N) and S = O(Nlog(N)) for N € N in
which the effect of dimensionality d is much milder than that of Proposition[I] This means that the
curse of dimensionality is much eased in the mixed smooth space.

The obtained bound is far from obvious. Actually, it is better than any linear approximation meth-
ods as follows. Let the linear M-width introduced by |Tikhomirov| (1960) be Ay (MBS L") :=

p,q’
infry supsey(mps )y II1f — Ln(f)l|», where the infimum is taken over all linear oprators Ly with
E P,q
rank N from MB;  to L". The linear N-width of the m-Besov space has been extensively studied

as in the following proposition (see Lemma 5.1 of |Diing| (2011a), and |Romanyuk| (2001)).

Proposition 2. Let 1 < p,r < o0, 0 < ¢ < ooands > (1/p — 1/r)4. Then we have the following
asymptotic order of the linear width for the asymptotics N > d:

(a) Forp > 7,
(g<2<r<p<oo),
(N~ 'log® M (N))* (<1, p=r=00),
AN(MB; L") ~ (I<p=r<2qg<m),

(N—l logd—l(N))s(logd—l(N))l/r—l/fl (1 <p=r<2,¢> ,,.)7
(N~ og™ ! (N))* (log® (V) /271 D+ (2< ¢, 1 <r <2< p< ),
(b) For1 < p<r < oo,

( N~ log?~H(N))sHH/rmt/e 2<p,2<qg<n),
)\N(MB;,W LT) ~ {EN_I logd_lEN§;5+1/T_1/p(lOgd_1 (N))(l/'r—l/q)+ ET <9, )
Therefore, the approximation error given in Theorem [I| achieves the optimal linear width
(Nt log?1 (N))®) for several parameter settings of p, ¢, s. In particular, when p < r, the bound
in Theorem [T]is better than that of Proposition 2] This is because to prove Theorem [I} we used an
adaptive recovery technique instead of a linear recovery method. This implies that, by constructing
a deep neural network accurately, we achieve the same approximation accuracy as the adaptive one

which is better than that of linear approximation.

4 ESTIMATION ERROR ANALYSIS

In this section, we connect the approximation theory to generalization error analysis (estimation er-
ror analysis). For the statistical analysis, we assume the following nonparametric regression model:

yi = fozi)+& (i=1,....n),
where 2; ~ Px with density 0 < p(z) < R on [0,1]%, and & ~ N(0,02). The data D,, =
(x4, y;)"_; is independently identically distributed. We want to estimate f© from the data. Here, we

consider a regularized learning procedure:
n

f= ~ argmin Z(yl — f(x:))? (7
F:fe®(L,W,S,B) i=1

where f is the clipping of f defined by f = min{max{f, —F}, F'} for F > 0 which is realized by
ReLU units. Since the sparsity level is controlled by S and the parameter is bounded by B, this esti-

mator can be regarded as a regularized estimator. In practice, it is hard to exactly compute f. Thus,
we approximately solve the problem by applying sparse regularization such as L, -regularization and
optimal parameter search through Bayesian optimization. The generalization error that we present

here is an “ideal” bound which is valid if the optimal solution fis computable.
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4.1 ESTIMATION ERROR IN BESOV SPACES

In this subsection, we provide the estimation error rate of deep learning to estimate functions in
Besov spaces.

Theorem 2. Suppose that 0 < p,q < ccand s > d(1/p—1/2)4. If f° € B, ,(2) N L*°(Q) and.
[follps, < land | f°|lc < F for F > 1, then letting (W, L, S, B) be as in Propositionwith

N =< nﬁ, we obtain
> _ _2s
Ep,[[[f° - f||%2(Px)] < n” %4 log(n)?,

where Ep_ -] indicates the expectation w.r.t. the training data D,,.

The proof is given in Appendix [D} The condition || f°|| < F is required to connect the empirical
L?-norm L 3% | (f(x;) — f°(x:))? to the population L?-norm || f — fOlIZ2(pyy- It is known that

the convergence rate n_ﬁﬂ is mini-max optimal (Kerkyacharian & Picard, [1992; |Donoho et al.,
1996} Donoho & Johnstonel |1998}Giné & Nickl, 2015). Thus, it cannot be improved by any estima-
tor. Therefore, deep learning can achieve the minimax optimal rate up to log(n)3-order. The term
log(n)? could be improved to log(n)? by using the construction of |Petersen & Voigtlaender] (2017).
However, we don’t pursue this direction for simplicity.

Here an important remark is that this minimax optimal rate cannot be achieved by any linear es-
timator. We call an estimator linear when the estimator depends on (y;)!_; linearly (it can be
non-linearly dependent on (x;)?;). Several classical methods such as the kernel ridge regression,
the Nadaraya-Watson estimator and the sieve estimator are included in the class of linear estimators
(e.g., kernel ridge regression is given as f(x) = k. x (kxx + Al)7'Y). The following proposition
given by [Donoho & Johnstone| (1998)); Zhang et al.| (2002)) states that the minimax rate of linear
estimators is lower bounded by n~{2s=2(1/p=1/2)+}/{2s+1-2(1/p=1/2)+} for 4 = 1 which is larger
than the minimax rate n~ 251 if p <2

Proposition 3 (Donoho & Johnstone| (1998)); Zhang et al.| (2002)). Suppose that d = 1 and the
input distribution Px is the uniform distribution on [0, 1]. Assume that s > 1/p, 1 < p,q < oo or
s =p=q=1. Then,

. —~ _2s—w
_inf sup  Ep, [[If° = fllZz(py)) 2 n 7
f: linear foeU(B; )

wherev = 2/(pA\2)—1and f runs over all linear estimators, that is, f depends on (yi)1q linearly.

When p < 2, the smoothness of the Besov space is somewhat inhomogeneous, that is, a function in
the Besov space contains spiky/jump parts and smooth parts (remember that when s =p =¢ =1
for d = 1, the Besov space is included in the set of functions with bounded total variation). Here, the
setting p < 2 is the regime where there appears difference between non-adaptive methods and deep
learning in terms of approximation accuracy (see Eq. (3)). On the other hand, the linear estimator
captures only global properties of the function and cannot capture variability of local shapes of the
function. Hence, the linear estimator cannot achieve the minimax optimal rate if the function has
spatially inhomogeneous smoothness. However, deep learning possesses adaptivity to the spatial
inhomogeneity.

Imaizumi & Fukumizu| (2018) has pointed out that such a discrepancy appears when the target
function is non-smooth. Interestingly, the parameter setting s > 1/p assumed in Proposition
ensures smoothness (see Eq. (2))). This means that non-smoothness is not necessarily required
to characterize the superiority of deep learning, but non-convexity of the set of target functions is
essentially important. In fact, the gap is coming from the property that the quadratic hull of the
model U (B[S) q) is strictly larger than the original set (Donoho & Johnstone, |1998).

4.2 ESTIMATION ERROR IN MIXED SMOOTH BESOV SPACES

Here, we provide the estimation error rate to estimate functions in mixed smooth Besov spaces.

Theorem 3. Suppose that0 < p,q < ocoands > (1/p—1/2)4. Letu = (1 —1/q) forp > 2 and
u=(1/2 = 1/q)y forp < 2. If f° € MB; () N L=(Q) and || f°||mp; , < 1 and || [l < F
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for F > 1, then letting (W, L, S, B) be as in Theorem we obtain
2(d—1)(uts

N __2s )
Ep, [I1f° = fll2(py)) S n~ =T log(n) ™ 2= log(n)’.
(Px)

Under the same assumption, if s > ulogy(e) is additionally satisfied, we also have

2s—2u logg (e)

Ep, [If° — J/C\H%Q(Px)] < n BFFO-20) gz () log(n)3.

The proof is given in Appendix [D] The risk bound (Theorem [3) indicates that the curse of dimen-
sionality can be eased by assuming the mixed smoothness compared with the ordinary Besov space
(n~ nta ). We show that this is almost minimax optimal in Theorem @ below. In the first bound, the
dimensionality d comes in the exponent of poly log(n) term. If u = 0, then the effect of d can be
further eased. Actually, in this situation (u = 0), the second bound can be rewritten as

[N T E—
n~ T FIHoER® log(n)?,

where the effect of the dimensionality d completely disappears from the exponent. This explains
partially why deep learning performs well for high dimensional data. Here, we again remark the
adaptivity of deep learning. Remind that this rate cannot be achieved by the linear estimator for
p < 2 when d = 1 by Proposition [3] Montanelli & Dul (2017) has analyzed the mixed smooth
Holder space with s < 2. However, our analysis is applicable to the m-Besov space which is more
general than the mixed smooth Holder space and the covered range of s, p, ¢ is much larger.

Minimax optimal rate for estimating a function in the m-Besov space Here, we show the min-
imax optimality of the obtained bound as follows.

Theorem 4. Assume that 0 < p,q < oo and s > (1/p — 1/2)4 and Px is the uniform distribution
over [0,1]%. Regarding d as a constant, the minimax learning rate in the asymptotics of n. — oo is
lower bounded as follows: There exists a constant Cy such that

F— o2 A -2t 2d-1(H1/271 /04
F=FN22(pyo)) = Can” 73T log(n) = =1 8)

inf sup Ep, |
f f”GU(MB;Yq)

where “inf” is taken over all measurable functions of the observations (xz;,y;)"_, and the expecta-
tion is taken for the sample distribution.

The proof is given in Appendix [E| Because of this theorem, our bound given in Theorem [3| achieves
the minimax optimal rate in the regime of p < 2 and 1/2 — 1/¢g > 0 up to log(n)® order. Even
outside of this parameter setting, the discrepancy between our upper bound and the minimax lower
bound is just a poly-log oder. See also Neumann|(2000) for some other related spaces and specific
examples such as p = ¢ = 2.

5 CONCLUSION

This paper investigated the learning ability of deep ReLU neural network when the target function
is in a Besov space or a mixed smooth Besov space. Based on the analysis for the Besov space, it
was shown that deep learning using the ReLU activation can achieve the minimax optimal rate and
outperform the linear method when p < 2 which indicates the spatial inhomogeneity of the shape
of the target function. The analysis for the mixed smooth Besov space showed that deep learning
can adaptively avoid the curse of dimensionality. The bound was derived by sparse grid technique.
All analyses in the paper adopted the cardinal B-spline expansion and the adaptive non-linear ap-
proximation technique, which allowed us to show the minimax optimal rate. The consequences of
the analyses partly support the superiority of deep leaning in terms of adaptivity and ability to avoid
curse of dimensionality. From more high level view point, these favorable property is reduced to its
high feature extraction ability.
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A PROOF OF LEMMA[I]

Proof of Lemmall] First note that Ny, (z) = — Zmﬂ( 1)7 (m;rl) (x — 4)7 (see Eq. (4.28) of
Mhaskar & Micchellil (1992)) for example). Thus, if we can make an approximation of 7(x)™, then

by taking a summation of those basis, we obtain an approximate of A;,, (). It is shown by Yarotsky’
(2017); Schmidt-Hieber| (2018) that, for D € N and any ¢ > 0, there exists a neural network

buats € O(L, W, S, B) with L = [1og2( k ) + 5][logy(D)], W = 64, S = LW?2 and B = 1
such that

sup
z€[0,1]P

Gmute (21, -, xp) = [ [ 2

and ¢u1¢(0,...,0) = 0 for y € RP such that HJD:1 y; = 0. Moreover, for any M > 0, we can
realize the function min{A/, max{z,0}} by a single-layer neural network ¢ rr)(7) = 1(x) —
n(x — M)(= min{M, max{z,0}}). Thus, for z € R, it holds that

Sup |¢mult ¢(O 1)($/M) ) ¢(071)(.17/M)) - (¢(071)('r/M))m| <e

z€[0,M

Now, NV, (z) = 0 for x & [0, m + 1] gives that

m—+1

Nole) = 33 3 (- o (G CT

m—+1

i Z (m i 1) (m + 1) 00— /1)) (@ = 3)/(m + 1))

Therefore, letting

jlasy m-+1 T—7 rT—7
_m' Z ( ] >¢mult<¢(0,1_mﬁrl)(M>,..-,¢(071_m1'+1) (Wl‘i’l>>7

m-times
we have that f(z) = 0 forall z < 0 and
1 fm+1 (m+1)m
su Noo(z) — flo)] < — _ +1 omtle
s W)~ @) < o Z( Dmrarmes LUEDE
2 m
< e(\/e)m e=:¢,

m+1/267m

mH (m‘H) in the

where we used Z G = 2m+1 and Stirling’s approximation m! > /2mm
second inequality. Hence, we also have that, forall z > m + 1,

m+1

)= oy o (" Jomr

14
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m+1—j m+1—j
X ¢mult <¢(071_mj+1) (?TH—l) ,...7¢(071_ﬁ) (m—i—l))
=: 4.

It holds that |6’| < ¢'. Since it is possible that ' # 0, we modify f(z) so that f(z) = 0 outside the
interval [0, m + 1]. Because of this and noting 0 < N, (z) < 1, we see that g(z) := ¢(0,1)(f(x) —
50 0.m41) () yields

sup ‘-/\/m(l') - g(x)| < 26/,

z€R

sup lg(z)| <1, g(x) =0 (Vo & [0,m + 1]).

Hence, by applying ¢nmu1¢ again, we finally obtain that
sup  [Mgo(x) = dmu(9(21), - -, g(2a))]

z€[0,1]4
d d
< sup Moo H sup Hg(xj) = Gmue(9(21), -, 9(xa))
z€[0,1]4 =1 a:E[O,l]d j=1
<2de’ +e.

We again applying ¢(o,1), we obtain that i(z) = ¢(0,1) © Pmuie(9(21), .- ., g(wa)) satisfies || Mg, —
h| o ey < 2d€'+€, h(xz) = Oforallz & [0,m~+1]%, and [|h||o < 1. Finally, by carefully checking
the network construction, it is shown that h € ®(L,W, S, B) with L = 3 + 2[log <3dvm) +

5][logy(d vV m)], W = 6dm(m + 2) + 2d, S = LW? and B = 2(m + 1)™. Hence, resetting
€4 2de’ +e=(1+ 2de (2jl )e, h becomes the desired M. O

B PROOF OF PROPOSITIONI]

For the order m € N of the cardinal B-spline bases, let J(k) = {—m, —m + 1,...,2%F —1,2F}d
and the quasi-norm of the coefficient (a ;) ; for k € Zy and j € J(k) be

ay l/q
_ ok(s—d/p) p\ M7
ek )k slles - =3 D ( > |04k,j|>
keZ., jeJ(k)

Lemma 2. Under one of the conditions @) in Propositionand the condition 0 < s < min(m, m—
1+1/p) where m € N is the order of the cardinal B-spline bases, for any f € B, ,(Q), there exists
fn that satisfies

1f = fallery S NI
for N > 1, and has the following form:

Z Y an M (e Z ZamMm (10)

k=0jeJ(k) k=K+1 i=1
where (j;)i*, C J(k), K = [Cilog(N)/d], K* = [logAN)v='] + K + 1, np =
[AN27VE=K)] (k= K+1,...,K*) ford = d(1/p—1/r); and v = (s — §)/(26) where the real
number constants C1; > 0 and \ > 0 are chosen to satisfy 22,61(21(2’c +m)d + ZkK:K_H ng < N
independently to N. Moreover, we can choose the coefficients (o, ;) to satisfy

I, )n,5ll65., S N1

B, ©)

BS‘

Proof of Lemma 2] [DeVore & Popov| (1988) constructed a linear bounded operator P, having the
following form:

Pe(f)(@) = Y ar; M () (11)

JjeJ(k)
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where oy, ; is constructed in a certain way, where for every f € LP([0,1]%) with 0 < p < oo, it
holds

If = Pe(H)llze < Cwpp(f,275). (12)
Let
pr(f) = Pr(f) = Pr-1(f), P-1(f) =0.
Then, it is shown that for 0 < p,q < oo and 0 < s < min(m,m — 1+ 1/p), f belongs to B, , if
and only if f can be decomposed into

=Y "mlf),
k=0

beiry = (Cpez, @ [prlle))V9 < oo in
bs(Lv)- Here, each pj can be expressed as pe(x) =

with the convergence condition ||(px(f))7,
particular, [|fllgs =~ [l(pr(f))7Zo
2jer) ay, ;M ;(x) for a coefficient (v ;)r,; which could be different from (ay ;)x,; appear-
ing in Eq. (TT). Hence, f € Bj , can be decomposed into

F=Y3 an;M{(x) (13)
k=0 jeJ (k)
with convergence in the sence of LP. Moreover, it is shown that |pg|lrr =~
(273 sxy law,j[P) /P and thus
115, = I(cks)k,;llb; - (14)

Based on this decomposition, Dting| (201 1b) proposed an optimal adaptive recovery method such that
the approximator has the form (I0) under the conditions for K, K*, n; given in the statement and
satisfies the approximation accuracy (9). This can be proven by applying the proof of Theorem 3.1 in
Diing| (2011D)) to the decomposition (13) instead of Eq. (3.8) of that paper. See also Theorem 5.4 of
Diing|(2011b). Moreover, the equivalence (]E[) gives the norm bound of the coefficient (ak, j). O

Proof of Proposition[I} Basically, we combine Lemma [I] and Lemma We substitute the ap-
proximated cardinal B-spline basis M into the decomposition of fy . Let the set of indexes
(k,j) € Z x Z that consists fy given in Eq. (I0) be En; ie., fy = Z(k DeBn ak_’jM,‘f,j. Accord-

ingly, we set f := >, o g My . For each z € RY, it holds that

n@@) = @I < D0l lIME (@) — M ()]

(k.j)EEN

e > lang[H{M;(2) # 0}

(k,j)EEN
< e(m+1)%(1 + K*)2K (@/p=s)+ 1 fllBs.,

< log(N)NW +d™D(@/p=5)1 | 1]

IN

s
By

where we used the definition of K* in the last inequality. Therefore, for each f € U(B; ,([0,1]%)),
it holds that

~ ~ -1 -1
1f = Fller SUf = Inller + 1 fx = Fllor S log(N)NWHE D@ f g, e 4 N2/,

By taking € to satisfy log(N)N® '+d D/p=9)rc < N=s/1 (e, e <
N—/d=( " 4+d7)(d/p=5)+ |og(N)~1), then we obtain the approximation error bound.

Next, we bound the magnitude of the coefficients. Each coefficient o satisfies |o x| <
ok(@/P=)4||f|| g, < 2Rd/p=s) < NOTHATDE/P=5)s for k< K*. Finally, the magni-
tudes of the coefficients hidden in M ,i ; are evaluated. Remembering that M, ,Z”J(x) = M(2Fz; —
G1s-- 224 — jq), we see that we just need to bound the quantity 2% (k < K*). However, this is
bounded by 28 < NV~ '+47" for k < K*. Hence, we obtain the assertion. O
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C PROOF OF THEOREMI]

C.1 PREPARATION: SPARSE GRID

Here, we give technical details behind the approximation bound. The analysis utilizes the so called
sparse grid technique Smolyak| (1963) which has been developed in the function approximation
theory field.

As we have seen in the above, in a typical B-spline approximation scheme, we put the basis functions
My (x) ona “regular grid” for k = 1,..., K and (j1,...,ja) € J(k), and take its superposition as
(@) & 3ok 2 jesr) @M} (2), which consists of O(2K?) terms (see Eq. (10)). Hence,

the number of parameters O(254) is affected by the dimensionality d in an exponential order. How-
ever, to approximate functions with mixed smoothness, we do not need to put the basis on the whole
range of the regular grid. Instead, we just need to put them on a sparse grid which is a subset of the
regular grid and has much smaller cardinality than the whole set. The approximation algorithm uti-
lizing sparse grid is based on Smolyak’s construction (Smolyak, |1963) and its applications to mixed
smooth spaces (Dung, [1990; 1991} [1992; [Temlyakovl, [1982; [1993aib). |Diing| (2011a) studied an
optimal non-adaptive linear sampling recovery method for the mixed smooth Besov space based on
the cardinal B-spline bases. We adopt this method, and combining this with the adaptive technique
developed in Dling| (201 1b)), we give the following approximation bound using a non-linear adaptive
method to obtain better convergence for the setting p < 7.

Before we state the theorem, we define an quasi-norm of a set of coefficients o, ; € R for k € Zi
andj € J2 (k) :={-m,—m+1,...,2" — 1,28} x ... x {=m,—m +1,...,2F — 1,2k} a5

q\ 1/q
p) 1/p

Theorem 5. Suppose that 0 < p,q,r < 0o and s > (1/p — 1/r)4. Assume that the order m € N
of the cardinal B-spline satisfies 0 < s < min(m,m — 1+ 1/p). Let 6 = (1/p — 1/r)4. Then, for
any f € MB;, () and K > 0, there exists R (f) such that Ry (f) can be represented as

Rk (f)(z) = Z Z Oék,ng,j(ﬂf)Jr Z Zo‘k,jfk)M;ijg’“)(x)’
=1

kezt: je€Jg (k) kezi: =
k<K K<|[klh <K*

[ (k).

s = | S 2<s—1/p)nku1( 3 Jany

kez? JETL (k)

s

where K* = [K(1 4+ 25)], (j(k))?:’”‘1 C JL(k), and ny, = [2K~ i;‘;(l\kHlfK)], and satisfies the

i
following properties:
(i) Forp >,

—Ks 1/ min(r,1)—1
I = Ric(Dlle £ 27 DR D70 f -

(ii) Forp <,

2K DUV fllagp,  (r < o0),

_Ksp(1-1
2K DU flass, (= o0).

If = Re(H)llr S {

Moreover, the coefficients (cu,;)k,; can be taken to hold ||(cu;)k,jllmvs , S | f | ms; -

The proof is given in Appendix The total number of cardinal B-spline bases consisting of
Ry (f) can be evaluated as

K+d-1
K+1
S G ERD DR
kK <| k|1 <K*
28D g+ 25Dy g $25Dica (. Eq. (T7)).

17
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Here, D 4 can be evaluated as

Dga SKY or Dgg S d-.
Therefore, the total number of bases can be evaluated as

K min{ K41, ak}

which is much smaller than 2¢ which is required to approximate functions in the ordinal Besov
space (see Lemma[2). In this proposition, K controls the resolution and as M goes to infinity, the
approximation error goes to 0 exponentially fast. A remarkable point in the proposition is in the
construction of Ry (f) in which the superposition is taken over ||k||; < M instead of U(kHOO <
K* = O(K). Hence, the number of terms appearing in the summation is at most O (2% K~1)

while the full grid takes O(2%9) terms. This represents how the mixed smoothness is 1mportant to
ease the curse of dimensionality.

Several aspects of the m-Besov space such as the optimal [V-term approximation error and Kol-
mogorov widths have been extensively studied in the literature (see a comprehensive survey (Diing
et al., 2016)). An analogous result is already given by Ding (2011a) in which s > 1/p is
assumed and a linear interpolation method is investigated. However, our result only requires
s > (1/p — 1/q)+. This difference comes from a point that our analysis allows nonlinear adap-
tive interpolation instead of (linear) non-adaptive sampling considered in Diing| (201 1a). Because of
this, our bound is better than the optimal rate of linear methods (Galeev, [1996; Romanyuk], [2001)
and non-adaptive methods (Diing}, |[1990; |1991}; |1992; Temlyakovl, [1982; |1993aib) especially in the
regime of p < r (Diing| (1992) also deals with adaptive methods but does not cover p < r for
adaptive method). See Proposition [2] for comparison.

C.2 PROOF OF THEOREM[3]

Proof of Theorem[] Fork = (ki,...,ka) € Z4,let P’ () ./ f(z) be the function operating P, defined
in (TI) to f as a function of x; with other components ;1: i (7 # 1) fixed, and let
d

pr= [P - PO E (15)

i=1
Then, pi can be expressed as py(2) = 3¢ ja 1) ak,jM,‘jj(:v).

Let T(l) =1- P(l) and || f||,; be the LP-norm of f as a function of x; with other components

zj (j 7é i) fixed (1e if p < oo, ||flly; = [|f(x)[Pdz;), then Eq. (I2) gives
0 flp < s 1ALl
bi <2k
Thus, by applying the same argument again, it also holds

NTETD Flpillpg ST sup AT (T, ) llpa

|hi| <2 ki

D,J
= sup ||||Tx, A,TL:( Mp.jllp: (. the definition of AZ’f and Fubini’s theorem)

|hi| <27 ki )
< s sw JIAFAD()

~
|hi|<27Fi |p; <27k

for ¢ # j. Thus, applying the same argument recursively, for u C [d], it holds that

[179¢

SN

Swp,(f,27),
P
for k € Zi(u). Therefore since pr, = Hd (Tlgi)_1 - T,S)) f =

Zuc[d](—l)W (HzEu T,S) Hzgu ) f, by letting e = {7 | k; > 0}, we have that

e s | (TR0 TIE ) 1| £ 30 w2 € S 27

uC|[d] 1€EU iZu » uC[d] eCu

18
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where k¥ :=k; (i € u)and k¥ :=k; — 1 (i € u), & = {i | k* > 0}, and (k") is a vector such that
(k")a,; = k¥ fori € and (k")s,; = 0 fori ¢ 4. Now let

1/q
() kllog (20) = ( (2a|k“1HpkHLp)q>

d
kezd

for p,, € LP(Q) (k € Z4). Hence, if we set ar, = >, w},‘_’p(f,2’ku) fork € Z% and e = {i |
k; > 0}, we have that

1)k llog ey < 1l(ax)

On the other hand, following the same line of Theorem 2.1 (ii) of Dling (2011a), we also obtain the
opposite inequality || f||ams , = [[(ak)llve (£r) S [1(Pk)kllbe £y (note that the analogous inequality

ve (L) = || [l ms; -

to Lemma 2.3 of | Diing| (201 1a) also holds in our setting by replacing ¢s with p; and wS(f, 2_"'),, by
wy )
Therefore, f € MBY , if and only if (pk)k621 given by Eq. (I3) satisfies | (px)llps (1r) < 00 and
f can be decomposed into f = > kezd Pk where convergence is in MB,) . Moreover, it holds that
I fllabg, = [|(Pr)kllbg (£r)- This can be shown by Theorem 2.1 of Ding|(2011a). Moreover, by the
quasi-norm equivalence ||py ||, =~ 2*”’““1/”(2jeﬂ (k) ok ;|P) /P, we also have l[(k,5 )k, llmbe, =~
£l mBg,-

If p > 7, the assertion can be shown in the same manner as Theorem 3.1 of Duing (201 1a)).

For the setting of p < r, we need to use an adaptive approximation method. In the following, we
assume p < r. For a given K, by choosing K* appropriately later, we set

R (f)(x) = > o+ > Gr(pr),

keZi:Hk\hSK keZl:K<||k|1<K*

where G, (py) is given as

d
Grlpr) = Y any M ()
1<i<ny,
JE (k)] . . . . .
where (o j,) ‘i:’;( )lis the sorted coefficients in decreasing order of their absolute value: |ay j,| >

lag j,| > - > |ak’jw,‘%(k)\ |. Then, it holds that

Ik = Gr(@e)llr < llpullp2° 1 1ng2,

where ¢ := (1/p — 1/r) (see the proof of Theorem 3.1 of Diing| (2011b) and Lemma 5.3 of Diing
(2011a)). Moreover, we also have

Il < [lpg 20111

for k € Z<4 with ||k[|; > K*.

Here, we define N as
N = [log,(K)].
Lete = (s — 0)/(26), and
K*=[K(1+1/e)],

and ny, = [2K—<U*=5)] for k € 74 with K + 1 < ||k[|; < K*.
Then, by Lemma 5.3 of Diing| (2011a), we have that

IF=RBeDi- S Y. e =Gt + Y Ilpellze

K<||k|1 <K* K*<||kll1
S Ul Y M) a6
K<||k|l1<K* K*<||k|l1
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In the following, we require an upper bound of (kjﬁzl). Hence, we evaluate this quantity before-
hand. This can be upper bounded by the Stering’s formula as

E+d—1\ _ 2e 1\* EoO\T
70 (12 < Dy
(d1>_27r(+ k)(+d 1) < Dia

=Dk,d

Let £ > 0 be a positive real number satisfying 1 + £ > K*/K. We can see that £ can be chosen as
& =1/e+ o(1). Then, we have that

. . . d—1
(1+ 985 0+ 35)"! (1+ &K 1 K*
D+ q= Dk, SR a1 < Pk SR = Ve
14+ SH)E 1+ 729) 1+ %) I+5%5  (@-1D)(1+5%5)
d—I\5¥"% g1+ K\ d—1\% i
<D 1+ —— _ =D 1+ —— 1
< K,d(+ K) (d—1+K> K,d(-i- K) (1+9¢)
S DK’de(d_l)g(l +£)d_1 ~ DK,d- (17)
(a) Suppose that ¢ < r and r < co. Then
If = R (DT = If = R (H)llz>
SRS DR -2l 1O S S S el TP P (- Eq. (T6))
K<||k|l1<K* K*<|| k|1
=S S A O [ P S N AL P
K<|lk|1 <K* K=<||k|l1
< N%a9-(s=0)Kq Z [2~ (s=0=0) Ikl —K) oslikllx ||, || Lp]9 + 27 9(s— KT Z (25160 || o )2
K<||k|l1 <K~ <1 K*<||k|l1

S (N2 B0 pomGmRD fi

< (V) £

(b) Suppose that ¢ > r and r < oo. Then, lettingv = ¢/r (> 1)andv' =1/(1—-1/v) =q/(¢—7)
(note that £ + 1 = 1), we have

If =ReDz- S > Rl + Y0 27 pyl|ze)” (. Eq. (16)

K<kl <K* K*<|[kl1

< N—Org=(s=0)Kr Z [2*(8*5*56)(%“1fK)gsHkHl||pk||Lp]r+ Z [QSHkHI||pk||Lp]T(2*(5*5)‘“9“1)7‘
K<|lk|1<K* K*<||k|lx

S A S D DR e P

K<kl <K*

n Z [anknlHpkHLp]r2—<s—a)<||kn1—K*>r}
K<l

1/v

S(N—62—(s—6)K+2—(s—6)K*)7- Z [QS\IkIthkHLp]ru+ Z [2s\|kll1”pk”m]ru
K<kl <K* K*<|kllx

1/v
[2~ (8—5—56)(%”1—1()]7"1/ + Z [2—(8—5)(%“1—1{*)]7”/
K<||k|\1<K* K*<|[k[l1

S (N0 (0K o=y piin o DROIT=19 (- Eq. (D)
—sp1/r—1 r
SN D/ ' fllhi -
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(c) Suppose that » = oco. Then, similarly to the analysis in (b), we can evaluate

If = R (f)llzr

< N9~ (s=0)K Z [2—(8—5—66)(Hk||1—K)QSHkIh||pk||Lp]_|_ Z [QSI\k\h||pk||Lp](2—(s—5)HkH1)

K<|k|l1<K* K=<||kl|l1
< (N752*(576)K + 2*(576)K*)D2;1/4)+ ”f”MBZ‘q

SNDEM D fllps

C.3 PROOF OF THEOREM[I]

Let Z%(e) = {k € Z%{ | ki = 0,i ¢ e} and for k € Z%(e), we define
27k = (27ka .., 27Me) e RIS where {i1,...,i} = e. By defining [|(gx)x

Ea—
by

1/q .
(Zkezj(e) (25I1Flx |gk|)q) for a sequence (gk)kezi(e)v then it holds that

| flmBge ~ Z l(ws, (f£,27%))k

eC{l,....d}

by
Then, we can prove Theorem [I|based on Theorem 3] as follows.

Proof of Theorem|[I] The result is immediately follows from Theorem[5] Let the set of indexes of
(k, j) consisting of R be Ex: Rk (f) = 321 jyem aleg{j(m). As in the proof of Proposition
we approximate Ry (f) by a neural network given as

flo)y=" Y angMi;(2).
(k,j)EEK
Each coefficient «; j satisfies |oj x| < 2”’““1(1/1”*5”\\]””1\43;(1 < 2K (1/p=9)+  The difference

~

between Ry (f) and f can be evaluated as

IR (f) = f@) < D lawlIM(z) — M ()]
(k,j)EEK

<e Y o |1{M{;(x) # 0}
(k,j)EEK
Se(m+1)*(1+ K*)Dge- 2% P75 | £l pps .
Therefore, by taking e so that e(m + 1)%(1 + K*) Dy~ 425 (/P=9)+ < 27K+ 5 satisfied, it holds
that
|Ric(f) — flx)| S 275

—K*(s+(1/p—s)+1)
le(m+1)]4(1+K*)

By the inequality Dy~ 4 < e T4 it suffices to let € < ©
E(K) is bounded as

Z 2“<H§illl)+ Z ng

k=0,...,K kK <||k| <K*

K+d-1 s=s k+d—1
<2K+1< ) + Z 2K—25(H—K)( )
d—1 K<n<K* d—1

. The cardinality of

§2K+1DK7(1 + 2K(1 _ 27%)71DK*,(1 § (2 + (1 _ 2752;56)*1)2KDK*7d = N.

Since each unit M, ,i j requires width Wy, the whole width becomes W = NW,. The number of
nonzero parameters to construct M, ,f’ ; is bounded by S = (L—-1)WZN + N.
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Finally, the magnitudes of the coefficients hidden in M, ,g{ ; are evaluated. Remembering that
Mg (x) = M (221 —ji,. .., 2524 — jq), here maximum of 2%/ is bounded by 24" < NU+1/v),
Hence, we obtain the assertion. Similarly, it holds that | | < NQ+L/v){Iv(l/p=s)+} O

D PROOFS OF THEOREMS 2] AND 3]

Proof of Theorem[2] We use Proposition 4, We just need to evaluate the covering number of F =
{f|fev(L,W,S B)}for (L, W,S, B) given in Theoremwhere / is the clipped function for a

given f. Note that the covering number of F is not larger than that of ¥ (L, W, S, B). Hence, it is
sufficient to evaluate that of ¥(L, W, S, B). From Lemma the covering number is obtained as

log N (8, F, || - [loo) S N log(N)[log(N)?* + log(6~")].

From Proposition|T] it holds that
170 = Rac(£)ll2 S N7
Note that ) )
1F = flzacpey S IF = Foll2-

for any f : [0,1]¢ — R because p(x) < R. Therefore, by applying Proposition@with 6 =1/n,we
have that

N log(N)(log(N)? + log(n)) 1 (18)

Ep,|

F= FollZagen) S N72/1 4 -

Here, the right hand side is minimized by setting N =< nzEa up to log(n)3-order, and then have an
upper bound of the RHS as

n- 7 log(n)3.

This gives the assertion. O

Proof of Theorem[3] The proof follows the almost same line as the proof of Theorem 2} By noting
S = O0@2%Dkq), L = O(K) and W = O(25 Dk 4), Lemmagives an upper bound of the
covering number as

log N(8, F, || - lso) < 25 Dge a[ K% log(2K D 4) 4 log(67Y)] < 2K Dge o (K3 + log(1/6)).

Letting = 2, we have that
17 = Ri (f°)]l2 S 27" Dk 4
where u = (1 —1/q)4 forp > 2andu = (1/2 — 1/q) 4 forp < 2.
Then, by noting that
1f = £ ey S I = FOII3
for any f : [0,1]% — R, and by applying Proposition@with 0 = 1/n, we have that

25D K3 4+ log(6—! 1
CRIUSRAT G B RS

Ep,[lIlf — fo||2L2(PX)] S 2_2SKD%§L,d + -

Here, we use the following evaluations for D 4: (a) Dc.q < K971, and (b) Dx g < [e(1+ %)]K.
(a) For the evaluation, Dy 4 < K71, we have an upper bound of the right hand side of Eq. (T9) as

- 2K K4=1(K3 +log(n))
n

which is minimized by setting K = (ﬁ logy(n) + % log, log(n)] up to loglog(n)-

order. In this situation, we have the generalization error bound as

2—25KK2u(d—l

9

. (d=1)(uts)
n= T log(n)% log(n)?.
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(b) For the evaluation, Dg 4 < [e(1 + £)]% < efe?, Eq. (I9) gives an upper bound of

2725[(62’&}{ + 2K6K(K2 + log(n)) )
n

1

Then, the right hand side is minimized by K = [ T (I=2u)Tog,

oy log, (n)]. Then, we have that

_ 2s—2ulogo (e)
n~ 1+2s+(—2u) loga(e) 1Og(n)2.

This gives the assertion. O

E MINIMAX OPTIMALITY

Proof of TheoremMH] First note that since Px is the uniform distribution, it holds that || - || 2(py) =
| - Il 22(j0,174)- The e-covering number N (¢, G, L*(Px)) with respect to L?(Px ) for a function class

G is the minimal number of balls with radius ¢ measured by L?(Px )-norm needed to cover the set
G (van der Vaart & Wellner, [1996). The §-packing number M (4, G, L?(Px)) of a function class
G with respect to L*(Px) norm is the largest number of functions {f,..., fa¢} € G such that
Ilfi = fillL2(py) > 0 foralli # j. Itis easily checked that

N(6/2,G,L*(Px)) < M(8,G,L*(Px)) < N(6,G, L*(Px)). (20)

For a given 6, > 0 and &, > 0, let Q be the §,, packing number M (4,,, U(MB; ), L*(Px)) of
U(MB s q) and NV be the ¢,, covering number of that. Raskutti et al.| (2012) utlhzed the techniques

developed by [Yang & Barron| (1999) to show the following inequality in their proof of Theorem
2(b):

: O bl T g
lnf sup H|f f* ||L2(PX)] inf sup ?P[”f*f ||2L2(PX) > 07/2]
[ f*eU(MBg, ) f f*eu(MBg )
LB (] o) + gne + log(2)
-2 log( )
Thus by taking d,, and &,, to satisfy
n 2
< log(N 21
810g( ) < log(Q), (22)
410g( ) < log(@), (23)

the minimax rate is lower bounded by . This can be achieved by properly setting &, > ,,. Now,
for given N with respect to d,, > 0, M = log(N) satisfies

571 2, M™$ IOg(M)(d_l)(S+1/2_1/q)+
(Theorem 6.24 of |Diing et al.[(2016)). Hence, it suffices to take

2(d—1)(s+1/2—1/q) 4.

2s 2(d-1)(s+1/2-1/9) ¢
En = 0y >~ n~ %+ log(n) 2531 , (25)

which gives the assertion.

F AUXILIARY LEMMAS

Let the e-covering number with respect to L?(Px) for a function class G be N(e, G, L?(Px)) as
defined in the proof of Theorem 4]
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Proposition 4 (Schmidt-Hieber| (2018)). Let F be a set of functions. Let fbe the least squares
estimator in F:

f=argmin " (y; — f(2:)).
e ;( )
Assume that || f°||cc < F and all f € F satisfies || f|loo < F for some F > 1. If 6 > 0 satisfies
NG, F,| - lleo) = 3, then it holds that

log N (6, F, || - |l oo
BNGF I ) ,

n

Ep, [If=F*Iz2e)) < C [IL S = fOllEa(py) + (F2 +0%) O(F +0)|,

where C'is a universal constant.

Proof of Proposition 4] This is almost direct consequence of Lemma 10 of |[Schmidt-Hieber (201 Sﬂ
The only difference is the assumption of || f||cc < F for f € F and f = f° while Lemma 10 of
Schmidt-Hieber| (2018)) assumed 0 < f(x) < F” for F/ > 1. However, this can be easily fixed by
shifting the function value by +F then the range of f is modified to [0, 2F]. Then, our situation is
reduced to that of Lemma 10 of |Schmidt-Hieber| (2018) by substituting F’ < 2F. O

Lemma 3 (Covering number evaluation). The covering number of ®(L, W, S, B) can be bounded
by

log N'(8, (L, W, S, B), || - [|sc) < Slog(6~'L(BV 1)*~H (W +1)*)
< 2SLlog((BV1)(W +1)) + Slog(6~'L).

Proof of Lemma[3] Given a network f € ®(L, W, S, B) expressed as
f(x) = (W(L)n(-) + b(L)) 0.0 (W(l)x + M),

let
Ak(f)(x) = n o (W(k_l)n() + b(k_l)) O-+--0 (W(l)m + b(l))’

and
Bi(f)(@) = WEn() + 60 o0 (WHE(z) 4 58),
for k = 2,...,L. Corresponding to the last and first layer, we define Br11(f)(z) = = and

A1(f)(xz) = z. Then, it is easy to see that f(z) = Bry1(f) o WF) - +b,)) o A(f)(z). Now,
suppose that a pair of different two networks f,g € ®(L, W, S, B) given by

f(z) = WEp)+E)o- oWz 16D, g(z) = WE () +5E) Yo- - -0 (WD g 45D,

has a parameters with distance d: |[W() — VV(Z)/HOo < 6 and |[p — b(e)/”OO < 4. Now, not that
AL (F)lloo < max; [WE VA1 (Nl + 109 V]oo < WBAj—1(f)lloc + B < (B V

DWW+ D[ Ag—1(F)lloo < (BV1)*L(W + 1)k, and similarly the Lipshitz continuity of By, (f)
with respect to || - || oo-norm is bounded as (BW )L =% *1. Then, it holds that

[f(z) = g()]

L
=13 Brsi(g) o WE - 450) 0 Ax(£) () — Brya(g) o WP 45®)) 0 Ag(f)(2)
k=1

(BW)EFV® - 1539) 0 A (£)(z) — (WD 458y 0 Ay (£) (@)oo

M=

<
k

Il
-

(BWHYL=ksw (B v DFY W + 1Pt 1]

M=

<
k

Il
—

>We noticed that there exit some technical flaws in the proof of the lemma, e.g., an incorrect application of
the uniform bound to derive the risk of an estimator. However, these flaws can be fixed and the statement itself
holds with a slight modification.
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L
< (BW)ETRS(B Y D)FTH W + 1)F < SL(BV )ETH W + 1",
k=1

Thus, for a fixed sparsity pattern (the locations of non-zero parameters), the covering number is
bounded by (§/[L(BV 1)X~ (W + l)L])fs. There are the number of configurations of the spar-

sity pattern is bounded by ((ng)L) < (W + 1)E5. Thus, the covering number of the whole space
® is bounded as

(W + )55 {6/[L(BV )XYW + 1)E]}

which gives the assertion.

T [0TLB V)P 4+ 1),
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