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ABSTRACT

Recent improvements to Generative Adversarial Networks (GANs) have made it
possible to generate realistic images in high resolution based on natural language
descriptions such as image captions. However, fine-grained control of the image
layout, i.e. where in the image specific objects should be located, is still difficult to
achieve. We introduce a new approach which allows us to control the location of
arbitrarily many objects within an image by adding an object pathway to both the
generator and the discriminator. Our approach does not need a detailed semantic
layout but only bounding boxes and the respective labels of the desired objects
are needed. The object pathway focuses solely on the individual objects and is
iteratively applied at the locations specified by the bounding boxes. The global
pathway focuses on the image background and the general image layout. We
perform experiments on the Multi-MNIST, CLEVR, and the more complex MS-
COCO data set. Our experiments show that through the use of the object pathway
we can control object locations within images and can model complex scenes with
multiple objects at various locations. We further show that the object pathway
focuses on the individual objects and learns features relevant for these, while the
global pathway focuses on global image characteristics and the image background.

1 INTRODUCTION

Understanding how to learn powerful representations from complex distributions is the intriguing
goal behind adversarial training on image data. While recent advances have enabled us to generate
high-resolution images with Generative Adversarial Networks (GANs), currently most GAN models
still focus on modeling images that either contain only one centralized object (e.g. faces (CelebA),
objects (ImageNet), birds (CUB-200), flowers (Oxford-102), etc.) or on images from one specific
domain (e.g. LSUN bedrooms, LSUN churches, etc.). This means that, overall, the variance between
images used for training GANs tends to be low (Raj et al., 2017). However, many real-life images
contain multiple distinct objects at different locations within the image and with different relations to
each other. This is for example visible in the MS-COCO data set (Lin et al., 2014), which consists of
images of different objects at different locations within one image. In order to model images with
these complex relationships, we need models that can model images containing multiple objects
at distinct locations. To achieve this, we need control over what kind of objects are generated (e.g.
persons, animals, objects, etc.), the location, and the size of these objects. This is a much more
challenging task than generating a single object in the center of an image.

Current work (Karacan et al., 2016; Johnson et al., 2018; Hong et al., 2018b; Wang et al., 2018) often
approaches this challenge by using a semantic layout as additional conditional input. While this can
be successful in controlling the image layout and object placement, it also places a high burden on
the generating process since a complete scene layout must be obtained first. We propose a model
that does not require a full semantic layout, but instead only requires the desired object locations
and identities (see Figure 1). One part of our model, called the global pathway, is responsible for
generating the general layout of the complete image, while a second path, the object pathway, is used
to explicitly generate the features of different objects based on the relevant object label and location.
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The generator gets as input a natural language description of the scene (if existent), the locations
and labels of the various objects within the scene, and a random noise vector. The global pathway
uses this to create a scene layout encoding which describes high-level features and generates a global
feature representation from this. The object pathway generates a feature representation of a given
object at a location described by the respective bounding box and is applied iteratively over the
scene at the locations specified by the individual bounding boxes. We then concatenate the feature
representations of the global and the object pathway and use this to generate the final image.

The discriminator, which also consists of a global and object pathway, gets as input the image, the
bounding boxes and their respective object labels, and the textual description. The global pathway is
then applied to the whole image and obtains a feature representation of the global image features.
In parallel, the object pathway focuses only on the areas described by the bounding boxes and the
respective object labels and obtains feature representations of these specific locations. Again, the
outputs of both the global and the object pathway are merged and the discriminator is trained to
distinguish between real and generated images.

In contrast to previous work we do not generate a scene layout of the whole scene but only focus
on relevant objects which are placed at the specified locations, while the global consistency of the
image is the responsibility of the other part of our model. To summarize our model and contributions:
1) We propose a GAN model that enables us to control the layout of a scene without the use of a
scene layout. 2) Through the use of an object pathway which is responsible for learning features of
different object categories, we gain control over the identity and location of arbitrarily many objects
within a scene. 3) The discriminator judges not only if the image is realistic and aligned to the natural
language description, but also whether the specified objects are at the given locations and of the
correct object category. 4) We show that the object pathway does indeed learn relevant features for
the different objects, while the global pathway focuses on general image features and the background.

2 RELATED WORK

Having more control over the general image layout can lead to a higher quality of images (Reed et al.,
2016a; Hong et al., 2018b) and is also an important requirement for semantic image manipulation
(Hong et al., 2018a; Wang et al., 2018). Approaches that try to exert some control over the image
layout utilize Generative Adversarial Nets (Goodfellow et al., 2014), Refinement Networks (e.g. Chen
& Koltun (2017); Xu et al. (2018a)), recurrent attention-based models (e.g. Mansimov et al. (2016)),
autoregressive models (e.g. Reed et al. (2016c)), and even memory networks supplying the image
generation process with previously extracted image features (Zhang et al., 2018b).

One way to exert control over the image layout is by using natural language descriptions of the image,
e.g. image captions, as shown by Reed et al. (2016b), Zhang et al. (2018a), Sharma et al. (2018),
and Xu et al. (2018b). However, these approaches are trained only with images and their respective
captions and it is not possible to specifically control the layout or placement of specific objects within
the image. Several approaches suggested using a semantic layout of the image, generated from the
image caption, to gain more fine-grained control over the final image. Karacan et al. (2016), Johnson
et al. (2018), and Wang et al. (2018) use a scene layout to generate images in which given objects are
drawn within their specified segments based on the generated scene layout. Hong et al. (2018b) use
the image caption to generate bounding boxes of specific objects within the image and predict the
object’s shape within each bounding box. This is further extended by Hong et al. (2018a) by making
it possible to manipulate images on a semantic level. While these approaches offer a more detailed
control over the image layout they heavily rely on a semantic scene layout for the image generating
process, often implying complex preprocessing steps in which the scene layout is constructed.

The two approaches most closely related to ours are by Reed et al. (2016a) and Raj et al. (2017).
Raj et al. (2017) introduce a model that consists of individual “blocks” which are responsible for
different object characteristics (e.g. color, shape, etc.). However, their approach was only tested on
the synthetic SHAPES data set (Andreas et al., 2016), which has only comparatively low variability
and no image captions. Reed et al. (2016b) condition both the generator and the discriminator on
either a bounding box containing the object or keypoints describing the object’s shape. However, the
used images are still of relatively low variability (e.g. birds (Wah et al., 2011)) and only contain one
object, usually located in the center of the image. In contrast, we model images with several different
objects at various locations and apply our object pathway multiple times at each image, both in the
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Figure 1: Both the generator and the discriminator of our model consist of a global and an object
pathway. The global pathway focuses on global image characteristics, such as the background, while
the object pathway is responsible for modeling individual objects at their specified location.

generator and in the discriminator. Additionally, we use the image caption and bounding box label to
obtain individual labels for each bounding box, while Reed et al. (2016b) only use the image caption
as conditional information.

3 APPROACH

For our approach1, the central goal is to generate objects at arbitrary locations within a scene while
keeping the scene overall consistent. For this we make use of a generative adversarial network (GAN)
(Goodfellow et al., 2014). A GAN consists of two networks, a generator and a discriminator, where the
generator tries to reproduce the true data distribution and the discriminator tries to distinguish between
generated data points and data points sampled from the true distribution. We use the conditional
GAN framework, in which both the generator and the discriminator get additional information, such
as labels, as input. The generator G (see Figure 1) gets as input a randomly sampled noise vector z,
the location and size of the individual bounding boxes bboxi, a label for each of the bounding boxes
encoded as a one-hot vector lonehoti , and, if existent, an image caption embedding ϕ obtained with
a pretrained char-CNN-RNN network from Reed et al. (2016b). As a pre-processing step (A), the
generator constructs labels labeli for the individual bounding boxes from the image caption ϕ and the
provided labels lonehoti of each bounding box. For this, we concatenate the image caption embedding
ϕ and the one-hot vector of a given bounding box lonehoti and create a new label embedding labeli
by applying a matrix-multiplication followed by a non-linearity (i.e. a fully connected layer). The
resulting label labeli contains the previous label as well as additional information from the image
caption, such as color or shape, and is potentially more meaningful. In case of missing image captions,
we use the one-hot embedding lonehoti only.

The generator consists of two different streams which get combined later in the process. First, the
global pathway (B) is responsible for creating a general layout of the global scene. It processes
the previously generated local labels labeli for each of the bounding boxes and replicates them
spatially at the location of each bounding box. In areas where the bounding boxes overlap the
label embeddings labeli are summed up, while the areas with no bounding boxes remain filled with
zeros. Convolutional layers are applied to this layout to obtain a high-level layout encoding which is
concatenated with the noise vector z and the image caption embedding ϕ and the result is used to
generate a general image layout fglobal.

Second, the object pathway (C) is responsible for generating features of the objects flocali within
the given bounding boxes. This pathway creates a feature map of a predefined resolution using
convolutional layers which receive the previously generated label labeli as input. This feature map is
further transformed with a Spatial Transformer Network (STN) (Jaderberg et al., 2015) to fit into the

1Code can be found here: https://github.com/tohinz/multiple-objects-gan
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bounding box at the given location on an empty canvas. The same convolutional layers are applied
to each of the provided labels, i.e. we have one object pathway that is applied several times across
different labels labeli and whose output feeds onto the corresponding coordinates on the empty
canvas. Again, features within overlapping bounding box areas are summed up, while areas outside
of any bounding box remain zero.

As a final step, the outputs of the global and object pathways fglobal and flocali are concatenated along
the channel axis and are used to generate the image in the final resolution, using common GAN
procedures. The specific changes of the generator compared to standard architectures are the object
pathway that generates additional features at specific locations based on provided labels, as well as
the layout encoding which is used as additional input to the global pathway. These two extensions
can be added to the generator in any existing architecture with limited extra effort.

The discriminator receives as input an image (either original or generated), the location and size
of the bounding boxes bboxi, the labels for the bounding boxes as one-hot vectors lonehoti , and, if
existent, the image caption embedding ϕ. Similarly to the generator, the discriminator also possesses
both a global (D) and an object (E) pathway respectively. The global pathway takes the image
and applies multiple convolutional layers to obtain a representation fglobal of the whole image. The
object pathway first uses a STN to extract the objects from within the given bounding boxes and
then concatenates these extracted features with the spatially replicated bounding box label lonehoti .
Next, convolutional layers are applied and the resulting features flocali are again added onto an empty
canvas within the coordinates specified by the bounding box. Note, similarly to the generator we only
use one object pathway that is applied to multiple image locations, where the outputs are then added
onto the empty canvas, summing up overlapping parts and keeping areas outside of the bounding
boxes set to zero. Finally, the outputs of both the object and global pathways flocali and fglobal are
concatenated along the channel axis and we again apply convolutional layers to obtain a merged
feature representation. At this point, the features are concatenated either with the spatially replicated
image caption embedding ϕ (if existent) or the sum of all one-hot vectors lonehoti along the channel
axis, one more convolutional layer is applied, and the output is classified as either generated or real.

For the general training, we can utilize the same procedure that is used in the GAN architecture that
is modified with our proposed approach. In our work we mostly use the StackGAN (Zhang et al.,
2018a) and AttnGAN (Xu et al., 2018b) frameworks which use a modified objective function taking
into consideration the additional conditional information and provided image captions. As such, our
discriminator D and our generator G optimize the following objective function:

min
G

max
D

V (D,G) = E(x,c)∼pdata [logD(x, c)] + E(z)∼pz,(c)∼pdata [log(1−D(G(z, c), c))],

where x is an image, c is the conditional information for this image (e.g. labeli, bounding boxes
bboxi, or an image caption ϕ), z is a randomly sampled noise vector used as input for G, and pdata
is the true data distribution. Zhang et al. (2018a) and others use an additional technique called
conditioning augmentation for the image captions which helps improve the training process and the
quality of the generated images. In the experiments in which we use image captions (MS-COCO) we
also make use of this technique2.

4 EVALUATION AND ANALYSIS

For the evaluation, we aim to study the quality of the generated images with a particular focus on the
generalization capabilities and the contribution of specific parts of our model, in both controllable
and large-scale cases. Thus, in the following sections, we evaluate our approach on three different
data sets: the Multi-MNIST data set, the CLEVR data set, and the MS-COCO data set.

4.1 MULTI-MNIST

In our first experiment, we used the Multi-MNIST data set (Eslami et al., 2016) for testing the basic
functionality of our proposed model. Using the implementation provided by Eslami et al. (2016),
we created 50,000 images of resolution 64× 64 px that contain exactly three normal-sized MNIST
digits in non-overlapping locations on a black background.

2More detailed information about the implementation can be found in the Appendix.
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Figure 2: Multi-MNIST images generated by the model. Training included only images with three
individual normal-sized digits. Highlighted bounding boxes and yellow ground truth for visualization.

As a first step, we tested whether our model can learn to generate digits at the specified locations
and whether we can control the digit identity, the generated digit’s size, and the number of generated
digits per image. According to the results, we can control the location of individual digits, their
identity, and their size, even though all training images contain exactly three digits in normal size.
Figure 2 shows that we can control how many digits are generated within an image (rows A–B, for
two to five digits) and various sizes of the bounding box (row C). As a second step, we created an
additional Multi-MNIST data set in which all training images contain only digits 0–4 in the top half
and only digits 5–9 in the bottom half of the image. For testing digits in the opposite half, we can see
that the model is indeed capable of generalizing the position (row D, left), i.e. it can generate digits
0–4 in the bottom half of the image and digits 5–9 in the top half of the image. Nevertheless, we also
observed that this does not always work perfectly, as the network sometimes alters digits towards the
ones it has seen during training at the respective locations, e.g. producing a “4” more similar to a “9”
if in bottom half of the image, or generating a “7” more similar to a “1” if in top half of the image.

As a next step, we created a Multi-MNIST data set with images that only contain digits in the top
half of the image, while the bottom half is always empty. We can see (Figure 2, row D, right) that
the resulting model is not able to generate digits in the bottom half of the image (see Figure 6 in the
Appendix for more details on this). Controlling for the location still works, i.e. bounding boxes are
filled with “something”, but the digit identity is not clearly recognizable. Thus, the model is able to
control both the object identity and the object location within an image and can generalize to novel
object locations to some extent.

To test the impact of our model extensions, i.e. the object pathway in both the generator and the
discriminator as well as the layout encoding, we performed ablation studies on the previously created
Multi-MNIST data set with three digits at random locations. We first disabled the use of the layout
encoding in the generator and left the rest of the model unchanged. In the results (Figure 2, row
E, left), we can see that, overall, both the digit identity and the digit locations are still correct, but
minor imperfections can be observed within various images. This is most likely due to the fact that
the global pathway of the generator has no information about the digit identity and location until its
features get merged with the object pathway. As a next test, we disabled the object pathway of the
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Figure 3: Images from the CLEVR data set. The left image of each pair shows the rendered image
according to specific attributes. The right image of each pair is the image generated by our model.

discriminator and left the rest of the model unmodified. Again, we see (row E, right) that we can
still control the digit location, although, again, minor imperfections are visible. More strikingly, we
have a noticeably higher error rate in the digit identity, i.e. the wrong digit is generated at a given
location, most likely due to the fact that there is not object pathway in the discriminator controlling
the object identity at the various locations. In comparison, the imperfections are different when only
the object pathway of the generator is disabled (row F, left). The layout encoding and the feedback
of the discriminator seem to be enough to still produce the digits in the correct image location, but
the digit identity is often incorrect or not recognizable at all. Finally, we tested disabling the object
pathway in both the discriminator and the generator (see row F, right). This leads to a loss of control
of both image location as well as identity and sometimes even results in images with more or fewer
than three digits per image. This shows that only the layout encoding, without any of the object
pathways, is not enough to control the digit identity and location. Overall, these results indicate
that we do indeed need both the layout encoding, for a better integration of the global and object
pathways, and the object pathways in both the discriminator and the generator, for optimal results.

4.2 CLEVR

In our second experiment we used more complex images containing multiple objects of different
colors and shapes. The goal of this experiment was to evaluate the generalization ability of our
object pathway across different object characteristics. For this, we performed tests similar to (Raj
et al., 2017), albeit on the more complex CLEVR data set (Johnson et al., 2017). In the CLEVR data
set objects are characterized by multiple properties, in our case the shape, the color, and the size.
Based on the implementation provided by Johnson et al. (2017), we rendered 25,000 images with a
resolution of 64× 64 pixels containing 2− 4 objects per image. The label for a given bounding box
of an object is the object shape and color (both encoded as one-hot encoding and then concatenated),
while the object size is specified through the height and width of the bounding box.

Similar to the first experiment, we tested our model for controlling the object characteristics, size,
and location. In the first row of Figure 3 we present the results of the trained model, where the left
image of each pair shows the originally rendered one, while the right image was generated by our
model. We can confirm that the model can control both the location and the objects’ shape and color
characteristics. The model can also generate images containing an arbitrary number of objects (forth
and fifths pair), even though a maximum of four objects per image was seen during training.

The CLEVR data set offers a split specifically intended to test the generalization capability of a model,
in which cylinders can be either red, green, purple, or cyan and cubes can be either gray, blue, brown,
or yellow during training, while spheres can have any of these colors. During testing, the colors
between cylinders and cubes are reversed. Based on these restrictions, we created a second data set
of 25,000 training images for testing our model. Results of the test are shown in the second row of
Figure 3 (again, left image of each pair shows the originally rendered one, while the right image was
generated by our model). We can see that the color transfer to novel shape-color combinations takes
place, but, similarly to the Multi-MNIST results, we can see some artifacts, where e.g. some cubes
look a bit more like cylinders and vice versa. Overall, the CLEVR experiment confirms the indication
that our model can control object characteristics (provided through labels) and object locations
(provided through bounding boxes) and can generalize to novel object locations, novel amounts of
objects per image, and novel object characteristic combinations within reasonable boundaries.
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Model Resolution IS ↑ FID ↓
GAN-INT-CLS Reed et al. (2016b) 64× 64 7.88± 0.07 60.62
StackGAN-V2 Zhang et al. (2018a) 256× 256 8.30± 0.10 81.59
StackGAN Zhang et al. (2018a) 256× 256 8.45± 0.031 74.05
PPGN Nguyen et al. (2017) 227× 227 9.58± 0.21
ChatPainter (StackGAN) Sharma et al. (2018) 256× 256 9.74± 0.02
Semantic Layout Hong et al. (2018b) 128× 128 11.46± 0.092

HDGan Zhang et al. (2018c) 256× 256 11.86± 0.18 71.27± 0.123

AttnGAN Xu et al. (2018b) 256× 256 23.61± 0.214 33.10± 0.113

StackGAN + Object Pathways (Ours)5 256× 256 12.12± 0.31 55.30± 1.78
AttnGAN + Object Pathways (Ours) 256× 256 24.76± 0.43 33.35± 1.15

1 Recently updated to 10.62± 0.19 in its source code.
2 When using the ground truth bounding boxes at test time (as we do) the IS increases to 11.94± 0.09.
3 FID score was calculated with samples generated with the pretrained model provided by the authors.
4 The authors report a “best” value of 25.89 ± 0.47, but when calculating the IS with the pretrained

model provided by the authors we only obtain an IS of 23.61. Other researchers on the authors’ Github
website report a similar value for the pretrained model.

5 We use the updated source code (IS of 10.62) as our baseline model.

Table 1: Comparison of the Inception Score (IS) and Fréchet Inception Distance (FID) on the MS-
COCO data set for different models. Note: the IS and FID values of our models are not necessarily
directly comparable to the other models, since our model gets at test time, in addition to the image
caption, up to three bounding boxes and their respective object labels as input.

4.3 MS-COCO

For our final experiment, we used the MS-COCO data set (Lin et al., 2014) to evaluate our model
on natural images of complex scenes. In order to keep our evaluation comparable to previous work,
we used the 2014 train/test split consisting of roughly 80,000 training and 40,000 test images and
rescaled the images to a resolution of 256× 256 px. At train-time, we used the bounding boxes and
object labels of the three largest objects within an image, i.e. we used zero to three bounding boxes
per image. Similarly to work by Johnson et al. (2018) we only considered objects that cover at least
2% of the image for the bounding boxes. To evaluate our results quantitatively, we computed both
the Inception Score (IS, larger is better), which tries to evaluate how recognizable and diverse objects
within images are (Salimans et al., 2016), as well as the Fréchet Inception Distance (FID, smaller is
better), which compares the statistics of generated images with real images (Heusel et al., 2017). As a
qualitative evaluation, we generated images that contain more than one object, and checked, whether
the bounding boxes can control the object placement. We tested our approach with two commonly
used architectures for text-to-image synthesis, namely the StackGAN (Zhang et al., 2017) and the
AttnGAN (Xu et al., 2018b), and compared the images generated by these and our models.

In the StackGAN, the training process is divided into two steps: first, it learns a generator for images
with a resolution of 64× 64 px based on the image captions, and second, it trains a second generator,
which uses the smaller images (64× 64 px) from the first generator and the image caption as input to
generate images with a resolution of 256×256 px. Here, we added the object pathways and the layout
encoding at the beginning of both the first generator and the second generator and used the object
pathway in both discriminators. The other parts of StackGAN architecture and all hyperparameters
remain the same as in the original training procedure for the MS-COCO data set. We trained the
model three times from scratch and randomly sampled 3 times 30,000 image captions from the test
set for each model. We then calculated the IS and FID values on each of the nine samples of 30,000
generated images and report the averaged values. As presented in Table 1, our StackGAN with added
object pathways outperforms the original StackGAN both on the IS and the FID, increasing the IS
from 10.62 to 12.12 and decreasing the FID from 74.05 to 55.30. Note, however, that this might also
be due to the additional information our model is provided with as it receives up to three bounding
boxes and respective bounding box labels per image in addition to the image caption.

We also extended the AttnGAN by Xu et al. (2018b), the current state-of-the-art model on the
MS-COCO data set (based on the Inception Score), with our object pathway to evaluate its impact on
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Figure 4: Examples of images generated from the given caption from the MS-COCO data set. A)
shows the original images and the respective image captions, B) shows images generated by our
StackGAN+OP (with the corresponding bounding boxes for visualization), and C) shows images
generated by the original StackGAN (Zhang et al., 2017)3

a different model. As opposed to the StackGAN, the AttnGAN consists of only one model which is
trained end-to-end on the image captions by making use of multiple, intermediate, discriminators.
Three discriminators judge the output of the generator at an image resolution of 64× 64, 128× 128,
and 256× 256 px. Through this, the image generation process is guided at multiple levels, which
helps during the training process. Additionally, the AttnGAN implements an attention technique
through which the networks focus on specific areas of the image for specific words in the image
caption and adds an additional loss that checks if the image depicts the content as described by
the image caption. There, in the same way as for the StackGAN, we added our object pathway at
the beginning of the generator as well as to the discriminator that judges the generator outputs at a
resolution of 64× 64 px. All other discriminators, the higher layers of the generator, and all other
hyperparameters and training details stay unchanged. Table 1 shows that adding the object pathway
to the AttnGAN increases the IS of our baseline model (the pretrained model provided by the authors)
from 23.61 to 24.76, while the FID is roughly the same as for the baseline model.

To evaluate whether the StackGAN model equipped with an object pathway (StackGAN+OP) actually
generates objects at the given positions we generated images that contain multiple objects and
inspected them visually. Figure 4 shows some example images, more results can be seen in the
Appendix in Figures 7 and 9. We can observe that the StackGAN+OP indeed generates images in
which the objects are at appropriate locations. In order to more closely inspect our global and object
pathways, we can also disable them during the image generation process. Figure 5 shows additional
examples, in which we generate the same image with either the global or the object pathway disabled
during the generation process. Row C of Figure 5 shows images in which the object pathway was
disabled and, indeed, we observe that the images contain mostly background information and objects
at the location of the bounding boxes are either not present or of much less detail than when the
object pathway is enabled. Conversely, row D of Figure 5 shows images which were generated when
the global pathway was disabled. As expected, areas outside of the bounding boxes are empty, but we
also observe that the bounding boxes indeed contain images that resemble the appropriate objects.
These results indicate, as in the previous experiments, that the global pathway does indeed model
holistic image features, while the object pathway focuses on specific, individual objects.

When we add the object pathway to the AttnGAN (AttnGAN + OP) we can observe similar results4.
Again, we are able to control the location and identity of objects through the object pathway, however,
we observe that the AttnGAN+OP, as well as the AttnGAN in general, tends to place objects
corresponding to specific features at many locations throughout the image. For example, if the
caption contains the word “traffic light” the AttnGAN tends to place objects similar to traffic lights
throughout the whole image. Since our model only focuses on generating objects at given locations,
while not enforcing that these objects only occur at these locations, this behavior leads to the result
that the AttnGAN+OP generates desired objects at the desired locations, but might also place the
same object at other locations within the image. Note, however, that we only added the object pathway

3Generated with the model from: https://github.com/hanzhanggit/StackGAN-Pytorch
4Examples of images generated by the AttnGAN+OP can be seen in the Appendix in Figures 8 and 10.
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Figure 5: Examples of images generated from the given caption from the MS-COCO data set. A)
shows the original images and the respective image captions, B) shows images generated by our
StackGAN+OP (with the corresponding bounding boxes for visualization) with the object pathway
enabled, C) shows images generated by the our StackGAN+OP when the object pathway is disabled,
and D) shows images generated by the our StackGAN+OP when the global pathway is disabled.

to the lowest generator and discriminator and that we might gain even more control over the object
location by introducing object pathways to the higher generators and discriminators, too.

In order to further evaluate the quality of the generations, we ran an object detection test on the
generated images using a pretrained YOLOv3 network (Redmon & Farhadi, 2018). Here, the goal is
to measure how often an object detection framework, which was trained on MS-COSO as well, can
detect a specified object at a specified location5. The results confirm the previously made observations:
For both the StackGAN and the AttnGAN the object pathway seems to improve the image quality,
since YOLOv3 detects a given object more often correctly when the images are generated with an
object pathway as opposed to images generated with the baseline models. The StackGAN generates
objects at the given bounding box, resulting in an Intersection over Union (IoU) of greater than 0.3
for all tested labels and greater than 0.5 for 86.7% of the tested labels. In contrast, the AttnGAN
tends to place salient object features throughout the image, which leads to an even higher detection
rate by the YOLOv3 network, but a smaller average IoU (only 53.3% of the labels achieve an IoU
greater than 0.3). Overall, our experiments on the MS-COCO data set indicate that it is possible to
add our object pathway to pre-existing GAN models without having to change the overall model
architecture or training process. Adding the object pathway provides us with more control over the
image generation process and can, in some cases, increase the quality of the generated images as
measured via the IS or FID.

4.4 DISCUSSION

Our experiments indicate that we do indeed get additional control over the image generation process
through the introduction of object pathways in GANs. This enables us to control the identity and
location of multiple objects within a given image based on bounding boxes and thereby facilitates the
generation of more complex scenes. We further find that the division of work on a global and object
pathway seems to improve the image quality both subjectively and based on quantitative metrics such
as the Inception Score and the Fréchet Inception Distance.

The results further indicate that the focus on global image statistics by the global pathway and the
more fine-grained attention to detail of specific objects by the object pathway works well. This is
visualized for example in rows C and D of Figure 5. The global pathway (row C) generates features
for the general image layout and background but does not provide sufficient details for individual
objects. The object pathway (row D), on the other hand, focuses entirely on the individual objects and
generates features specifically for a given object at a given location. While this is the desired behavior

5See Appendix for more details on the procedure and the exact results.
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of our model it can also lead to sub-optimal images if there are not bounding boxes for objects that
should be present within the image. This can often be the case if the foreground object is too small
(in our case less than 2% of the total image) and is therefore not specifically labeled. In this case,
the objects are sometimes not modeled in the image at all, despite being prominent in the respective
image caption, since the object pathway does not generate any features. We can observe this, for
example, in images described as “many sheep are standing on the grass”, where the individual sheep
are too small to warrant a bounding box. In this case, our model will often only generate an image
depicting grass and other background details, while not containing any sheep at all.

Another weakness is that bounding boxes that overlap too much (empirically an overlap of more than
roughly 30%) also often lead to sub-optimal objects at that location. Especially in the overlapping
section of bounding boxes we often observe local inconsistencies or failures. This might be the result
of our merging of the different features within the object pathway since they are simply added to each
other at overlapping areas. A more sophisticated merging procedure could potentially alleviate this
problem.Another approach would be to additionally enhance the bounding box layout by predicting
the specific object shape within each bounding box, as done for example by Hong et al. (2018b).

Finally, currently our model does not generate the bounding boxes and labels automatically. Instead,
they have to be provided at test time which somewhat limits the usability for unsupervised image
generation. However, even when using ground truth bounding boxes, our models still outperform
other current approaches that are tested with ground truth bounding boxes (e.g. Hong et al. (2018b))
based on the IS and FID. This is even without the additional need of learning to specify the shape
within each bounding box as done by Hong et al. (2018b). In the future, this limitation can be avoided
by extracting the relevant bounding boxes and labels directly from the image caption, as it is done for
example by Hong et al. (2018b), Xu et al. (2018a), and Tan et al. (2018).

5 CONCLUSION

With the goal of understanding how to gain more control over the image generation process in GANs,
we introduced the concept of an additional object pathway. Such a mechanism for differentiating
between a scene representation and object representations allows us to control the identity, location,
and size of arbitrarily many objects within an image, as long as the objects do not overlap too strongly.
In parallel, a global pathway, similar to a standard GAN, focuses on the general scene layout and
generates holistic image features. The object pathway, on the other hand, gets as input an object label
and uses this to generate features specifically for this object which are then placed at the location
given by a bounding box The object pathway is applied iteratively for each object at each given
location and as such, we obtain a representation of individual objects at individual locations and of
the general image layout (background, etc.) as a whole. The features generated by the object and
global pathway are then concatenated and are used to generate the final image output. Our tests on
synthetic and real-world data sets suggest that the object pathway is an extension that can be added to
common GAN architectures without much change to the original architecture and can, along with
more fine-grained control over the image layout, also lead to better image quality.
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A IMPLEMENTATION DETAILS

Here we provide some more details about the exact implementation of our experiments.

A.1 MULTI-MNIST AND CLEVR

To train our GAN approach on the Multi-MNIST (CLEVR) data set we use the Stage-I Generator
and Discriminator from the StackGAN MS-COCO architecture6. In our following description an
upsample block describes the following sequence: nearest neighbor upsampling with factor 2, a
convolutional layer with X filters (filter size 3 × 3, stride 1, padding 1), batch normalization, and
a ReLU activation. The bounding box labels are one-hot vectors of size [1, 10] encoding the digit
identity (CLEVR: [1, 13] encoding object shape and color). Please refer to Table 2 for detailed
information on the individual layers described in the following. For all leaky ReLU activations alpha
was set to 0.2.

In the object pathway of the generator we first create a zero tensor OG which will contain the
feature representations of the individual objects. We then spatially replicate each bounding box label
into a 4× 4 layout of shape (10, 4, 4) (CLEVR: (13, 4, 4)) and apply two upsampling blocks. The
resulting tensor is then added to the tensor OG at the location of the bounding box using a spatial
transformer network.

In the global pathway of the generator we first obtain the layout encoding. For this we create a
tensor of shape (10, 16, 16) (CLEVR: (13, 16, 16)) that contains the one-hot labels at the location
of the bounding boxes and is zero everywhere else. We then apply three convolutional layers, each
followed by batch normalization and a leaky ReLU activation. We reshape the output to shape
(1, 64) and concatenate it with the noise tensor of shape (1, 100) (sampled from a random normal
distribution) to form a tensor of shape (1, 164). This tensor is then fed into a dense layer, followed by
batch normalization and a ReLU activation and the output is reshaped to (−1, 4, 4). We then apply
two upsampling blocks to obtain a tensor of shape (−1, 16, 16).
At this point, the outputs of the object and the global pathway are concatenated along the channel
axis to form a tensor of shape (−1, 16, 16). We then apply another two upsampling blocks resulting
in a tensor of shape (−1, 64, 64) followed by a convolutional layer and a TanH activation to obtain
the final image of shape (−1, 64, 64).
In the object pathway of the discriminator we first create a zero tensor OD which will contain the
feature representations of the individual objects. We then use a spatial transfomer network to extract
the image features at the locations of the bounding boxes and reshape them to a tensor of shape
(1, 16, 16) (CLEVR: (3, 16, 16)). The one-hot label of each bounding box are spatially replicated to a
shape of (10, 16, 16) (CLEVR: (13, 16, 16)) and concatenated with the previously extracted features
to form a tensor of shape (11, 16, 16) (CLEVR: (16, 16, 16)). We then apply a convolutional layer,
batch normalization and a leaky ReLU activation to the concatenation of features and label and, again,
use a spatial transformer network to resize the output to the shape of the respective bounding box
before adding it to the tensor OD.

In the global pathway of the discriminator, we apply two convolutional layers, each followed by
batch normalization and a leaky ReLU activation and concatenate the resulting tensor with the output
of the object pathway. After this, we again apply two convolutional layers, each followed by batch
normalization and a leaky ReLU activation. We concatenate the resulting tensor with the conditioning
information about the image content, in this case, the sum of all one-hot vectors. To this tensor
we apply another convolutional layer, batch normalization, a leaky ReLU activation, and another
convolutional layer, to obtain the final output of the discriminator of shape (1).

Similarly to the procedure of StackGAN and other conditional GANs we train the discriminator to
classify real images with correct labels (the sum of one-hot vectors supplied in the last step of the
process) as real, while generated images with correct labels and real images with (randomly sampled)
incorrect labels should be classified as fake.

6 https://github.com/hanzhanggit/StackGAN-Pytorch
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A.2 MS-COCO

StackGAN-Stage-I For training the Stage-I generator and discriminator (images of size 64× 64
pixels) we follow the same procedure and architecture outlined in the previous section about the
training on the Multi-MNIST and CLEVR data sets. The only difference is that we now have image
captions as an additional description of the image. As such, to obtain the bounding box labels we
concatenate the image caption embedding7 and the one-hot encoded bounding box label and apply
a dense layer with 128 units, batch normalization, and a ReLU activation to it, to obtain a label of
shape (1, 128) for each bounding box. In the final step of the discriminator when we concatenate the
feature representation with the conditioning vector, we use the image encoding as conditioning vector
and do not use any bounding box labels at this step. The rest of the training proceeds as described
in the previous section, except that the bounding box labels now have a shape of (1, 128). All other
details can be found in Table 2.

StackGAN-Stage-II In the second part of the training, we train a second generator and discrimina-
tor to generate images with a resolution of 256× 256 pixels. The generator gets as input images with
a resolution of 64× 64 pixels (generated by the trained Stage-I generator) and the image caption and
uses them to generate images with a 256× 256 pixels resolution. A new discriminator is trained to
distinguish between real and generated images.

On the Stage-II generator we perform the following modifications we use the same procedure as
in the Stage-I generator to obtain the bounding box labels. To obtain an image encoding from the
generated 64×64 image we use three convolutional layers, each followed by batch normalization and
a ReLU activation to obtain a feature representation of shape [−1, 16, 16]. Additionally, we replicate
each bounding box label (obtained with the dense layer) spatially at the locations of the bounding
boxes on an empty canvas of shape [128, 16, 16] and then concatenate it along the channel axis
with the image encoding and the spatially replicated image caption embedding. As in the standard
StackGAN we then apply more convolutional layers with residual connections to obtain the final
image embedding of shape [−1, 16, 16], which provides the input for both the object and the global
pathway.

The generator’s object pathway gets as input the image encoding described in the previous step.
First, we create a zero tensor OG which will contain the feature representations of the individual
objects. We then use a spatial transformer network to extract the features from within the bounding
box and reshapes those features to [−1, 16, 16]. After this, we apply two upsample blocks and then
use a spatial transformer network to add the features to OG within the bounding box region. This is
done for each of the bounding boxes within the image.

The generator’s global pathway gets as input the image encoding and uses the same convolutional
layers and upsampling procedures as the original StackGAN Stage-II generator. The outputs of the
object and global pathway are merged at the resolution of [−1, 64, 64] by concatenating the two
outputs along the channel axis. After this, we continue using the standard StackGAN architecture to
generate images of shape [3, 256, 256].

The Stage-II discriminator’s object pathway first creates a zero tensor OD which will contain the
feature representations of the individual objects. It gets as input the image (resolution of 256× 256
pixels) and we use a spatial transformer network to extract the features from the bounding box and
reshape those features to a shape of [3, 32, 32]. We spatially replicate the bounding box label (one-hot
encoding) to a shape of [−1, 32, 32] and concatenate it with the extracted features along the channel
axis. This is then given to the object pathway which consists of two convolutional layers with batch
normalization and a LeakyReLU activation. The output of the object pathway is again transformed to
the width and height of the bounding box with a spatial transformer network and then added to OD.
This procedure is performed with each of the bounding boxes within the image (maximum of three
during training).

The Stage-II discriminator’s global pathway consists of the standard StackGAN layers, i.e. it gets
as input the image (256×256 pixels) and applies convolutional layers with stride 2 to it. The outputs
of the object and global pathways are merged at the resolution of [−1, 32, 32] by concatenating the

7Downloaded from https://github.com/reedscot/icml2016
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two outputs along the channel axis We then apply more convolutional with stride 2 to decrease the
resolution. After this, we continue in the same way as the original StackGAN.

AttnGAN On the AttnGAN8 we only modify the training at the lower layers of the generator
and the first discriminator (working on images of 64× 64 pixels resolution). For this, we perform
the same modifications as described in the StackGAN-Stage-I generator and discriminator. In the
generator we obtain the bounding box labels in the same way as in the StackGAN, by concatenating
the image caption embedding with the respective one-hot vector and applying a dense layer with 100
units, batch normalization, and a ReLU activation to obtain a bounding box label. In contrast to the
previous architectures, we follow the AttnGAN implementation in use the gated linear unit function
(GLU) as standard activation for our convolutional layers in the generator.

In the generator’s object pathway we first create a zero tensor OG of shape (192, 16, 16) which
will contain the feature representations of the individual objects. We then spatially replicate each
bounding box label into a 4× 4 layout of shape (100, 4, 4) and apply two upsampling blocks with
768 and 384 filters (filter size=3, stride=1, padding=1). The resulting tensor is then added to the
tensor OG at the location of the bounding box using a spatial transformer network.

In the global pathway of the generator we first obtain the layout encoding in the same way as
in the StackGAN-I generator, except that the three convolutional layers of the layout encoding
now have 50, 25, and 12 filters respectively (filter size=3, stride=2, padding=1). We concatenate it
with the noise tensor of shape (1, 100) (sampled from a random normal distribution) and the image
caption embedding to form a tensor of shape (1, 248). This tensor is then fed into a dense layer with
24,576 units, followed by batch normalization and a ReLU activation and the output is reshaped to
(768, 4, 4). We then apply two upsampling blocks with 768 and 384 filters to obtain a tensor of shape
(192, 16, 16).

At this point the outputs of the object and the global pathways are concatenated along the channel
axis to form a tensor of shape (384, 16, 16). We then apply another two upsampling blocks with 192
and 96 filters, resulting in a tensor of shape (48, 64, 64). This feature representation is then used by
the following layers of the AttnGAN generator in the same way as detailed in the original paper and
implementation.

In the object pathway of the discriminator we first create a zero tensor OD which will contain the
feature representations of the individual objects. We then use a spatial transfomer network to extract
the image features at the locations of the bounding boxes and reshape them to a tensor of shape
(3, 16, 16). The one-hot label of each bounding box is spatially replicated to a shape of (−1, 16, 16)
and concatenated with the previously extracted features. We then apply a convolutional layer with
192 filters (filter size=4, stride=1, padding=1), batch normalization and a leaky ReLU activation to
the concatenation of features and label and, again, use a spatial transformer network to resize the
output to the shape of the respective bounding box before adding it to the tensor OD.

In the global pathway of the discriminator we apply two convolutional layers with 96 and 192
filters (filter size=4, stride=2, padding=1), each followed by batch normalization and a leaky ReLU
activation and concatenate the resulting tensor with the output of the object pathway. After this, we
again apply two convolutional layers with 384 and 768 filters (filter size=4, stride=2, padding=1),
each followed by batch normalization and a leaky ReLU activation. We concatenate the resulting
tensor with the spatially replicated image caption embedding. To this tensor we apply another
convolutional layer with 768 filters (filter size=3, stride=1, padding=1), batch normalization, a leaky
ReLU activation, and another convolutional layer with one filter (filter size=4, stride=4, padding=0),
to obtain the final output of the discriminator of shape (1). The rest of the training and all other
hyperparameters and architectural values are left the same as in the original implementation.

8https://github.com/taoxugit/AttnGAN
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Multi-MNIST CLEVR MS-COCO-I MS-COCO-II

Optimizer Adam (beta1 = 0.5, beta2 = 0.999)
Learning Rate 0.0002 0.0002 0.0002 0.0002
Schedule: halve every

10 20 20 20
x epochs

Training Epochs 20 40 120 110
Batch Size 128 128 128 40
Weight Initialization N (0, 0.02) N (0, 0.02) N (0, 0.02) N (0, 0.02)
Z-Dim / Img-Caption-Dim 100 / 10 100 / 13 100 / 128 100 / 128
Generator
Image Encoder

Conv (fs=3, s=1, p=1) 192
Conv (fs=4, s=2, p=1) 384
Conv (fs=4, s=2, p=1) 768
Concat with image

(1024, 16, 16)caption and bbox labels
Conv (fs=3, str=1, pad=1) 768
4 × Res. (fs=3, s=1, p=1) 768

Object Pathway
OG Shape (256, 16, 16) (192, 16, 16) (384, 16, 16) (192, 64, 64)
Upsample (fs=3, s=1, p=1) 512 384 768 384
Upsample (fs=3, s=1, p=1) 256 192 384 192
Output Shape (256, 16, 16) (192, 16, 16) (384, 16, 16) (192, 64, 64)

Global Pathway
Layout Encoding

Conv (fs=3, s=2, p=1) 64 64 64
Conv (fs=3, s=2, p=1) 32 32 32
Conv (fs=3, s=2, p=1) 16 16 16

Dense Layer Units 16,384 12,288 24,576
Upsample (fs=3, s=1, p=1) 512 384 768 384
Upsample (fs=3, s=1, p=1) 256 192 384 192
Output Shape (256, 16, 16) 192, 16, 16) (384, 16, 16) (192, 64, 64)

Concat outputs of object
(512, 16, 16) (384, 16, 16) (768, 16, 16) (384, 64, 64)and global pathways

Upsample (fs=3, s=1, p=1) 128 96 192 96
Upsample (fs=3, s=1, p=1) 64 48 96 48
Conv (fs=3, s=1, p=1) 1 3 3 3

Generator Output (1, 64, 64) (3, 64, 64) (3, 64, 64) (3, 256, 256)
Discriminator

Object Pathway
OD Shape (128, 16, 16) (96, 16, 16) (192, 16, 16) (192, 32, 32)
Conv (fs=4, s=1, p=1) 128 96 192 192
Conv (fs=4, s=1, p=1) 192
Output Shape (128, 16, 16) (96, 16, 16) (192, 16, 16) (192, 32, 32)

Global Pathway
Conv (fs=4, s=2, p=1) 64 48 96 96
Conv (fs=4, s=2, p=1) 128 96 192 192
Conv (fs=4, s=2, p=1) 384
Output Shape (128, 16, 16) (96, 16, 16) (192, 16, 16) (384, 32, 32)

Concat outputs of object
(256, 16, 16) (192, 16, 16) (384, 16, 16) (576, 32, 32)and global pathways

Conv (fs=4, s=2, p=1) 256 192 384 768
Conv (fs=4, s=2, p=1) 512 384 768 1,536
Conv (fs=4, s=2, p=1) 3,072
Conv (fs=3, s=1, p=1) 1,536
Conv (fs=3, s=1, p=1) 768
Concat with

(522, 4, 4) (397, 4, 4) (896, 4, 4) (896, 4, 4)conditioning vector
Conv (fs=3, s=1, p=1) 512 384 768 768
Conv (fs=4, s=4, p=0) 1 1 1 1

Table 2: Overview of the individual layers used in our networks to generate images of resolution
64× 64 / 256× 256 pixels. Values in brackets (C, H , W ) represent the tensor’s shape. Numbers in
the columns after convolutional, residual, or dense layers describe the number of filters / units in that
layer. (fs=x, s=y, p=z) describes filter size, stride, and padding for that convolutional / residual layer.
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B ADDITIONAL EXAMPLES OF MULTI-MNIST RESULTS: TRAINING AND
TEST SET OVER COMPLEMENTARY REGIONS

1, 3, 76, 4, 99, 3, 55, 9, 53, 4, 6

6, 3, 56, 9, 91, 2, 18, 4, 69, 4, 1

5, 9, 18, 0, 94, 5, 54, 4, 67, 2, 6

9, 0, 06, 7, 13, 4, 20, 3, 72, 7, 8

9, 7, 21, 6, 13, 7, 94, 1, 55, 5, 3

9, 2, 17, 6, 44, 2, 14, 8, 32, 2, 4

6, 5, 45, 9, 69,4, 53, 0, 11, 0, 7

3, 8, 27, 3, 04, 3, 94, 8, 1 9, 6, 6

Figure 6: Systematic test of digits over vertically different regions. Training set included three
normal-sized digits only in the top half of the image. Highlighted bounding boxes and yellow ground
truth for visualization. We can see that the model fails to generate recognizable digits once their
location is too far in the bottom half of the image, as this location was never observed during training.

C ADDITIONAL EXAMPLES OF MS-COCO RESULTS: STACKGAN
Figure 7 shows results of text-to-image synthesis on the MS-COCO data set with the StackGAN
architecture. Rows A show the original image and image caption, rows B show the images generated
by our StackGAN + Object Pathway and the given bounding boxes for visualization, and rows
C show images generated by the original StackGAN (pretrained model obtained from https:
//github.com/hanzhanggit/StackGAN-Pytorch). The last block of examples (last row)
show typical failure cases of our model, where there is no bounding box for the foreground object
present. As a result our model only generates the background, without the appropriate foreground
object, even though the foreground object is very clearly described in the image caption. Figure 9
provides similar results but for random bounding box positions. The first six examples show images
generated by our StackGAN where we changed the location and size of the respective bounding
boxes. The last three examples show failure cases in which we changed the location of the bounding
boxes to “unusual” locations. For the image with the child on the bike, we put the bounding box of
the bike somewhere in the top half of the image and the bounding box for the child somewhere in the
bottom part. Similarly, for the man sitting on a bench, we put the bench in the top and the man in the
bottom half of the image. Finally, for the image depicting a pizza on a plate, we put the plate location
in the top half of the image and the pizza in the bottom half.

D ADDITIONAL EXAMPLES OF MS-COCO RESULTS: ATTNGAN
Figure 8 shows results of text-to-image synthesis on the MS-COCO data set with the AttnGAN
architecture. Rows A show the original image and image caption, rows B show the images generated
by our AttnGAN + Object Pathway and the given bounding boxes for visualization, and rows
C show images generated by the original AttnGAN (pretrained model obtained from https:
//github.com/taoxugit/AttnGAN). The last block of examples (last row) show typical
failure cases, in which the model does generate the appropriate object within the bounding box, but
also places the same object at multiple other locations within the image. Similarly as for StackGAN,
Figure 10 shows images generated by our AttnGAN where we randomly change the location of the
various bounding boxes. Again, the last three examples show failure cases where we put the locations
of the bounding boxes at “uncommon” positions. In the image depicting the sandwiches we put
the location of the plate in the top half of the image, in the image with the dogs we put the dogs’
location in the top half, and in the image with the motorbike we put the human in the left half and the
motorbike in the right half of the image.
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Figure 7: Additional StackGAN examples – refer to page 17 for information about the figure.
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Figure 8: Additional AttnGAN examples – refer to page 17 for more information about the figure.
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A group of people 
standing on top of a 
snow covered slope

A

B

A red double decker 
bus on the street 
next to a car

A herd of zebra 
running around 
a dirt field

A young child holding 
onto a kite while 
standing on a green 
grass covered field

Adjacent computer 
screens near the 
keyboard show 
different displays

A

B

A sandwich with 
meat, vegetables 
and dressing is 
sitting on a plate

A

B

A young man 
sitting on top of 
a white bench

A big slice of 
cheese pizza 
on a white plate

A little boy riding 
his bike and 
wearing a helmet

Figure 9: StackGAN examples with random locations – refer to page 17 for more information.

A desk with several 
monitors under it and 
two computers and a 
laptop on top of the desk

A

B

A group of sheep 
walking down a path 
with a few stopping to 
eat grass along the side

An open lap top 
computer on a wooden 
desk and two note 
pads also on the desk

A busy road in London 
shows several red busses 
and smaller cars as pedes-
trians walk next to them

A man with a nametag 
in a suit and tie and two 
women holding glasses 
on each side of him

A

B

A man kneeling down 
in the snow next to 
his small son on skis

Two sandwiches on whole
wheat bread filled with
meat cheddar cheese
slices alfalfa sprouts and
green leafy lettuce

A

B

A man on a path with a
child on his back walking
two dogs with other
people in the background

A man a motorcycle
that is on a road that
has grass fields on both
sides and a stop sign

Figure 10: AttnGAN examples with random locations – refer to page 17 for more information.
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Label Occurrences Words in captions

Person 13773 person, people, human,
man, men, woman,
women, child

Dining table 3130 table, desk
Car 1694 car, auto, vehicle, cab
Cat 1658 cat
Dog 1543 dog
Bus 1198 bus
Train 1188 train
Bed 984 bed
Pizza 906 pizza
Horse 874 horse
Giraffe 828 giraffe
Toilet 797 toilet
Bear 777 bear
Bench 732 bench

Label Occurrences Words in captions

Umbrella 727 umbrella
Elephant 708 elephant
Chair 632 chair, stool
Zebra 627 zebra
Boat 627 boat
Bird 610 bird
Aeroplane 602 plane
Bicycle 600 bicycle
Surfboard 595 surfboard
Kite 593 kite
Truck 561 truck
Stop sign 522 stop
TV Monitor 471 tv, monitor, screen
Sofa 467 sofa, couch
Sandwich 387 sandwich
Sheep 368 sheep

Table 3: Words that were used to identify given labels in the image caption for the YOLOv3 object
detection test.

E OBJECT DETECTION ON MS-COCO IMAGES

To further inspect the quality of the location and recognizability of the generated objects within
an image, we ran a test on object detection using a YOLOv3 network Redmon & Farhadi (2018)
that was also pretrained on the MS-COCO data set9. We use the Pytorch implementation from
https://github.com/ayooshkathuria/pytorch-yolo-v3 to get the bounding box
and label predictions for our images. We follow the standard guidelines and keep all hyperparameters
for the YOLOv3 network as in the implementation. We picked the 30 most common training labels
(based on how many captions contain these labels) and evaluate the models on these labels, see
Table 3.

In the following, we evaluate how often the pretrained YOLOv3 network recognizes a specific object
within a generated image that should contain this object based on the image caption. For example,
we expect an image generated from the caption “a young woman taking a picture with her phone”
to contain a person somewhere in the image and we check whether the YOLOv3 network actually
recognizes a person in the generated image. Since the baseline StackGAN and AttnGAN only receive
the image caption as input (no bounding boxes and no bounding box labels) we decided to only use
captions that clearly imply the presence of the given label (see Table 3). We chose this strategy in
order to allow for a fair comparison of the resulting presence or absence of a given object. Specifically,
for a given label we choose all image captions from the test set that contain one of the associated
words for this label (associated words were chosen manually, see Table 3) and then generated three
images for each caption with each model. Finally, we counted the number of images in which the
given object was detected by the YOLOv3 network. Table 4 shows the ratio of images for each label
and each model in which the given object was detected at any location within the image.

Additionally, for our models that also receive the bounding boxes as input, we calculated the
Intersection over Union (IoU) between the ground truth bounding box (the bounding box supplied
to the model) and the bounding box predicted by the YOLOv3 network for the recognized object.
Table 4 presents the average IoU (for the models that have an object pathway) for each object in the
images in which YOLOv3 detected the given object. For each image in which YOLOv3 detected
the given object, we calculated the IoU between the predicted bounding box and the ground truth
bounding box for the given object. In the cases in which either an image contains multiple instances
of the given object (i.e. multiple different bounding boxes for this object were given to the generator)
or YOLOv3 detects the given object multiple times we used the maximum IoU between all predicted
and ground truth bounding boxes for our statistics.

9Pretrained weights from the author, acquired via: https://pjreddie.com/darknet/yolo/
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Figure 11: Distribution of recall and IoU values in the YOLOv3 object detection test.

Figure 11 visualizes how the IoU and recall values are distributed for the different models, and Table 4
summarizes the results with the 30 tested labels. We can observe that the StackGAN with object
pathway outperforms the original StackGAN when comparing the recall of the YOLOv3 network, i.e.
in how many images with a given label the YOLOv3 network actually detected the given object. The
recall of the original StackGAN is higher than 10% for 26.7% of the labels, while our StackGAN
with object pathway results in a recall greater than 10% for 60% of the labels. The IoU is greater
than 0.3 for every label, while 86.7% of the labels result an IoU of greater than 0.5 (original images:
100%) and 30% have an IoU of greater than 0.7 (original images: 96.7%). This indicates that we can
indeed control the location and identity of various objects within the generated images.

Compared to the StackGAN, the AttnGAN achieves a much greater recall, with 80% and 83.3%
of the labels having a recall of greater than 10% for the original AttnGAN and the AttnGAN with
object pathway respectively. The difference in recall values between the original AttnGAN and the
AttnGAN with object pathway is also smaller, with our AttnGAN having a higher (lower) recall than
the original AttnGAN (we only count cases where the difference is at least 5%) in 26.7% (13.3%)
of the labels. The average IoU, on the other hand, is a lot smaller for the AttnGAN than for the
StackGAN. We only achieve an IoU greater than 0.3 (0.5, 0.7) for 53.3% (3.3%, 0%) of the labels.
As mentioned in the discussion (subsection 4.4), we attribute this to the observation that the AttnGAN
tends to place seemingly recognizable features of salient objects at arbitrary locations throughout the
image. This might attribute to the overall higher recall but may negatively affect the IoU.

Overall, these results further confirm our previous experiments and highlight that the addition of the
object pathway to the different models does not only enable the direct control of object location and
identity but can also help to increase the image quality. The increase in image quality is supported by
a higher Inception Score, lower Fréchet Inception Distance (for StackGAN) and a higher performance
of the YOLOv3 network in detecting objects within generated images.
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Label Orig. Img. StackGAN StackGAN + OP AttnGAN AttnGAN + OP
Recall IoU Recall Recall IoU Recall Recall IoU

Person .943 .824 .355 .451± .019 .624± .012 .598 .610± .008 .276± .006
Dining table .355 .774 .007 .022± .004 .734± .011 .069 .045± .022 .490± .018
Car .433 .792 .012 .047± .007 .622± .020 .006 .063± .010 .144± .043
Cat .715 .821 .021 .104± .100 .622± .008 .423 .430± .066 .350± .012
Dog .703 .819 .068 .150± .007 .601± .004 .450 .488± .048 .311± .007
Bus .747 .877 .161 .393± .031 .794± .009 .352 .416± .032 .374± .006
Train .900 .835 .133 .310± .033 .700± .007 .393 .438± .110 .355± .036
Bed .775 .789 .032 .141± .018 .701± .001 .539 .552± .030 .505± .002
Pizza .912 .842 .119 .485± .101 .786± .004 .444 .660± .054 .395± .016
Horse .933 .842 .129 .330± .048 .585± .039 .532 .619± .027 .300± .006
Giraffe .972 .857 .173 .467± .035 .606± .030 .472 .650± .084 .365± .030
Toilet .898 .826 .005 .122± .021 .690± .010 .201 .220± .021 .224± .011
Bear .381 .859 .015 .120± .018 .720± .036 .319 .303± .028 .357± .010
Bench .828 .798 .001 .030± .008 .627± .034 .094 .094± .031 .308± .018
Umbrella .912 .762 .001 .023± .009 .578± .030 .060 .063± .017 .154± .053
Elephant .940 .867 .060 .414± .069 .688± .033 .350 .500± .141 .353± .006
Chair .757 .755 .014 .039± .004 .488± .039 .070 .093± .005 .225± .001
Zebra .972 .875 .732 .781± .023 .686± .017 .870 .766± .063 .315± .022
Boat .795 .709 .077 .010± .011 .594± .021 .168 .202± .027 .206± .020
Bird .837 .781 .059 .097± .027 .500± .066 .322 .357± .042 .250± .020
Aeroplane .912 .812 .125 .223± .043 .667± .026 .499 .415± .010 .320± .035
Bicycle .825 .760 .007 .053± .020 .558± .052 .170 .191± .013 .233± .024
Surfboard .873 .780 .030 .067± .019 .459± .056 .104 .110± .025 .143± .016
Kite .772 .633 .029 .057± .028 .426± .086 .260 .162± .068 .120± .018
Truck .887 .832 .082 .243± .062 .717± .022 .378 .367± .027 .393± .019
Stop Sign .527 .874 .001 .261± .057 .780± .011 .070 .124± .048 .101± .014
TV Monitor .818 .833 .037 .264± .005 .765± .016 .529 .435± .314 .243± .066
Sofa .878 .794 .012 .087± .024 .628± .044 .170 .191± .057 .329± .028
Sandwich .792 .796 .045 .139± .049 .628± .014 .340 .370± .054 .318± .031
Sheep .943 .727 .004 .091± .006 .460± .011 .250 .304± .037 .116± .022

Table 4: Results of YOLOv3 detections on generated and original images. Recall provides the fraction
of images in which YOLOv3 detected the given object. IoU (Intersection over Union) measures the
maximum IoU per image in which the given object was detected.
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