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ABSTRACT

Gated recurrent units (GRUs) were inspired by the common gated recurrent unit, long short-term
memory (LSTM), as a means of capturing temporal structure with less complex memory unit archi-
tecture. Despite their incredible success in tasks such as natural and artificial language processing,
speech, video, and polyphonic music, very little is understood about the specific dynamic features
representable in a GRU network. As a result, it is difficult to know a priori how successful a GRU-
RNN will perform on a given data set. In this paper, we develop a new theoretical framework to
analyze one and two dimensional GRUs as a continuous dynamical system, and classify the dy-
namical features obtainable with such system. We found rich repertoire that includes stable limit
cycles over time (nonlinear oscillations), multi-stable state transitions with various topologies, and
homoclinic orbits. In addition, we show that any finite dimensional GRU cannot precisely repli-
cate the dynamics of a ring attractor, or more generally, any continuous attractor, and is limited to
finitely many isolated fixed points in theory. These findings were then experimentally verified in two
dimensions by means of time series prediction.

1 INTRODUCTION

Recurrent neural networks (RNNs) have been widely used to capture and utilize sequential structure in natural and
artificial languages, speech, video, and various other forms of time series. The recurrent information flow within
RNN implies that the data seen in the past has influence on the current state of the RNN, forming a mechanism for
having memory through (nonlinear) temporal traces. Unfortunately, training vanilla RNNs (which allow input data
to directly interact with the hidden state) to capture long-range dependences within a sequence is challenging due to
the vanishing gradient problem (Hochreiter, 1991). Several special RNN architectures have been proposed to mitigate
this issue, notably the long short-term memory (LSTM; Hochreiter & Schmidhuber (1997)) which explicitly guards
against unwanted corruption of the information stored in the hidden state until necessary. Recently, a simplification
of the LSTM called the gated recurrent unit (GRU; Cho et al. (2014)) has become wildly popular in the machine
learning community thanks to its performance in machine translation (Britz et al., 2017), speech (Prabhavalkar et al.,
2017), music (Choi et al., 2017), video (Dwibedi et al., 2018), and extracting nonlinear dynamics underlying neural
data (Pandarinath et al., 2018). As a variant of the vanilla LSTM, GRUs incorporate the use of forget gates, but lack
an output gate (Gers et al., 2000). While this feature reduces the number of required parameters, LSTM has been
shown to outperform GRU on neural machine translation (Britz et al., 2017). In addition, certain mechanistic tasks,
specifically unbounded counting, come easy to LSTM networks but not to GRU networks (Weiss et al., 2018). Despite
these empirical findings, we lack systematic understanding of the internal time evolution of GRU’s memory structure
and its capability to represent nonlinear temporal dynamics.

In general, a RNN can be written as ht+1 = f(ht,xt) where xt is the current input in a sequence indexed by t, f is a
point-wise nonlinear function, and ht represents the hidden memory state that carries all information responsible for
future output. In the absence of input, the hidden state ht can evolve over time on its own:

ht+1 = f(ht) (1)

where f(·) := f(·,0) for notational simplicity. In other words, we can consider the temporal evolution of memory
stored within RNN as a trajectory of a dynamical system defined by (1). Then we can use dynamical systems theory to
investigate the fundamental limits in the expressive power of RNNs in terms of their temporal features. We develop a
novel theoretical framework to study the dynamical features fundamentally attainable, in particular, given the particular
form of GRU. We then validate the theory by training GRUs to predict time series with prescribed dynamics.
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2 CONTINUOUS-TIME GATED RECURRENT UNIT

The GRU uses two internal gating variables: the update gate zt which protects the d-dimensional hidden state ht ∈ Rd
and the reset gate rt which allows overwriting of the hidden state and controls the interaction with the input xt ∈ Rp.

zt = σ(Wzxt+Uzht−1 + bz) (update gate) (2)
rt = σ(Wrxt+Urht−1 + br) (reset gate) (3)
ht = (1− zt)�tanh(Whxt+Uh(rt � ht−1 + bh)) + zt � ht−1 (hidden state) (4)

where Wz,Wr,Wh ∈ Rd×p and Uz,Ur,Uh ∈ Rd×d are the parameter matrices, bz,br,bh ∈ Rd are bias vectors,
� represents the Hadamard product, and σ(z) = 1/(1 + e−z) is the element-wise logistic sigmoid function. Note that
the hidden state is asymptotically contained within [−1, 1]d due to the saturating nonlinearities, implying if the state
is initialized outside of this trapping region, it must eventually enter it in finite time and remain in it for all later time.

Note that the update gate zt controls how fast each dimension at the hidden state decays, providing an adaptive time
constant for memory. Specifically, as limzt→0 ht = ht−1, GRUs can implement perfect memory of the past and
ignore xt. Hence, a d-dimensional GRU is capable of keeping a near constant memory through the update gate—near
constant since 0 < [zt]j < 1, where [·]j denotes j-th component of a vector. Moreover, the autoregressive weights
(mainly Uh and Ur) can support time evolving memory (Laurent & von Brecht (2016)) considered this a hindrance
and proposed removing all complex dynamic behavior in a simplified GRU).

To investigate the memory structure further, let us consider the dynamics of hidden state in the absence of input, i.e.
xt = 0,∀t, which is of the form (1). To utilize the rich descriptive language of continuous time dynamical system
theory, we consider the following continuous time limit of the (autonomous) GRU time evolution:

z(t) = σ(Uzh(t) + bz) (continuous update gate) (5)
r(t) = σ(Urh(t) + br) (continuous reset gate) (6)

ḣ = (z(t)− 1)� (h(t)− tanh(Uh(r(t)� h(t)) + bh)) (continuous hidden state dynamics) (7)

where ḣ ≡ dh(t)
dt . Since both σ(·) and tanh(·) are smooth, this continuous limit is justified. The update gate z(t)

again plays the role of a state-dependent time constant for memory decay. Furthermore, since 1 − z(t) > 0, it does
not change the topological structure of the dynamics (only speed). For the following theoretical analysis sections (3 &
4), we can safely ignore the effects of z(t). A derivation of the continuous-time GRU can be found in appendix A.

3 STABILITY ANALYSIS OF A ONE DIMENSIONAL GRU

For a single GRU∗ (d = 1), (7) reduces to a one dimensional dynamical system where every variable is a scalar. The
expressive power of a single GRU is quite limited, as only three stability structures (topologies) exist (see appendix B):
(A) a single stable node, (B) a stable node and a half-stable node, and (C) two stable nodes separated by an unstable
node (see Fig. 1). The corresponding temporal features are (A) decay to a fixed value, (B) decay to a fixed value, but
from one direction halt at an intermediate value until perturbed, or (C) decay to one of two fixed values (bistability).
The bistability can be used to capture a binary latent state in the sequence. It should be noted that a one dimensional
continuous time autonomous system cannot exhibit oscillatory behavior, as is the case here (Hirsch et al., 2013).

0 0 0
stable �xed point

half-stable �xed point
unstable �xed point

A B C

Figure 1: Three possible types of one dimensional flow for a single GRU. When ḣ > 0, h(t) increases. This flow
is indicated by a rightward arrow. Nodes ({h | ḣ(h) = 0}) are represented as circles and classified by their stability
(Meiss, 2007).

The topology the GRU takes is determined by its parameters. If the GRU begins in a region of the parameter space
corresponding to (A), we can smoothly vary the parameters to transverse (B) in the parameter space, and end up at (C).

∗The number/dimension of GRUs referenced will indicate the dimension of the latent dynamics of a GRU network.
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This is commonly known as a saddle-node bifurcation. Speaking generally, a bifurcation is the change in topology
of a dynamical system, resulting from a smooth change in parameters. The point in the parameters space at which
the bifurcation occurs is called the bifurcation point, and we will refer to the fixed point that changes its stability at
the bifurcation point as the bifurcation fixed point. This corresponds to the parameters underlying (B) in our previous
example. The codimension of a bifurcation is the number of parameters which must vary in order to achieve the
bifurcation. In the case of our example, a saddle-node bifurcation is codimension-1 (Kuznetsov, 1998). Right before
transitioning to (B), from (A), the flow near where the half-stable node would appear can exhibit arbitrarily slow flow.
We will refer to these as slow points (Sussillo & Barak, 2012).

4 ANALYSIS OF A TWO DIMENSIONAL GRU

We will see that the addition of a second GRU opens up a substantial variety of possible topological structures when
compared with the use of a single GRU. For notational simplicity, we denote the two dimensions of h as x and y. We
visualize the flow fields defined by (7) in 2-dimension as phase portraits which reveal the topological structures of
interest. For starters, the phase portrait of two independent bistable GRUs can be visualized as Figure 2A. It clearly
shows 4 stable states as expected, with a total of 9 stable fixed points. This could be thought of as a continuous-
time continuous-space implementation of a finite state machine with 4 states (Fig. 2B). The 3 types of observed fixed
points—stable (sinks), unstable (sources), and saddle points—exhibit locally linear dynamics, however, the global
geometry is nonlinear and their topological structures can vary depending on their arrangement.
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Figure 2: Illustrative example of two independent bistable GRUs. (A) Phase portrait. The flow field ḣ = [ẋ, ẏ]>

is decomposed into direction (black arrows) and speed (color). Purple lines represent trajectories of the hidden state
which converge to one of the four stable fixed points. Note the four quadrants coincide with the basin of attraction for
each of the stable nodes. The fixed points appear when the x- and y-nullclines intersect. (B) The four stable nodes of
this system can be interpreted as a continuous analogue of 4-discrete states with input-driven transitions.

We explored stability structures attainable by two GRUs. Due to the relatively large number of observed topologies,
this section’s main focus will be on demonstrating all observed local dynamical features obtainable by two GRUs.
In addition, existence of two non-local dynamical features will be presented. A complete catalog of all observed
topologies can be found in the appendix C, along with the parameters of every phase portrait depicted in this paper.

Before proceeding, let us take this time to describe all the local dynamical features observed. In addition to the
previously mentioned three types of fixed points, two GRUs can exhibit a variety of bifurcation fixed points, resulting
from regions of parameter space that separate all topologies restricted to simple fixed points (i.e stable, unstable, and
saddle points). Behaviorally speaking, these fixed points act as hybrids between the previous three, resulting in a much
richer set of obtainable dynamics. These bifurcation fixed points fall into two categories, separated by codimension.
More specifically, two GRUs have been seen to feature both codimension-1 and codimension-2 bifurcation (fixed)
points. Beginning with codimension-1, we have the saddle-node bifurcation fixed point, as expected from its existence
in the single GRU case. We can further classify these points into two types. These can be thought of as both the fusion
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of a stable fixed point and a saddle point, and the fusion of an unstable fixed point and a saddle point. We will refer to
these fixed points as saddle-node bifurcation fixed points of the first kind and second kind respectively.

One type of codimension-2 bifurcation fixed point that has been observed in the two GRU system acts as the fusion
of all three simple fixed points. More specifically, these points arise from the fusion of a stable fixed point, unstable
fixed point, and two saddle points. All of these local structures are depicted in figure 3.

While the existence of simple fixed points was already demonstrated (see Fig. 2A). Figure 3A demonstrates the maxi-
mum number of fixed points observed in a two GRU system, for a given set of parameters. A closer look at this system
reveals its potential interpretation as a continuous analogue of 5-discrete states with input-driven transitions, similar
to that depicted in figure 2, implying additional GRUs are needed for any Markov process modeled in this manner,
requiring more than five discrete states. We conjecture that the system depicted in figure 3A is the only eleven fixed
point structure obtainable with two GRUs, as all observed structures containing the same number of fixed points are
topologically equivalent to one another.

The addition of bifurcation fixed points opens the door to dynamically realize more sophisticated models. Take for
example the four state system depicted in figure 3B. If the hidden state is set to initialize in the first quadrant of
phase space, the trajectory will flow towards the codimension-2 bifurcation fixed point at the origin. Introducing noise
through the input will stochastically cause the trajectory to approach the stable fixed point at (-1,-1) either directly, or
by first flowing into one of the two saddle-node bifurcation fixed points of the first kind. Models of this sort can be
used in a variety of applications, such as neural decision making (Wong & Wang (2006), Churchland & Cunningham
(2014)).
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Figure 3: Existence of all observed simple fixed points and bifurcation fixed points with two GRUs, depicted in phase
space. Orange and pink lines represent the x and y nullclines respectively. Purple lines indicate various trajectories of
the hidden state. Direction of the flow is determined by the black arrows, where the colormap underlaying the figure
depicts the magnitude of the velocity of the flow in log scale.

We will begin our investigation into the non-local dynamics observed with two GRUs by showing the existence of
homoclinic orbits. A trajectory initialized on a homoclinic orbit will approach the same fixed point in both forward
and backward time. We observe that two GRUs can exhibit one or two bounded planar regions of homoclinic orbits for
a given set of parameters, as shown in figure 4A and 4B respectively. Any trajectory initialized in one of these regions
will flow into the codimension-2 bifurcation fixed point at the origin, regardless of which direction time flows in. This
featured behavior enables the accurate depiction of various models, including neuron spiking (Izhikevich, 2007).

In regards to the second non-local dynamic feature, it can be shown that two GRUs can exhibit an Andronov-Hopf
bifurcation, whereby a stable fixed point bifurcates into an unstable fixed point surrounded by a limit cycle. Behav-
iorally speaking, a limit cycle is a type of attractor, in the sense that there exists a defined basin of attraction. However,
unlike a stable fixed point, where trajectories initialized in the basin of attraction flow towards a single point, a limit
cycle pulls trajectories into a stable periodic orbit around the unstable fixed point at its center. To demonstrate this
phenomenon, let (8) define the parameters of (7).

Uz, Ur, bz, br, bh = 0, Uh =
3

2

[
cosα − sinα
sinα cosα

]
(8)

where α ∈ R+.

If α = π
3 , the system has a single stable fixed point (stable spiral), as depicted in figure 5A. If we continuously

decrease α, the system undergoes an Andronov-Hopf bifurcation approximately about α = π
3.8 . As α continuously

decreases, the orbital period increases, and as the nullclines can be made arbitrarily close together, the length of this
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Figure 4: Two GRUs exhibit bounded regions of homoclinic orbits. 4C and 4D represent the hidden state as a function
of time, for a single initial condition within the homoclinic region(s) of the single and double homoclinic region cases
respectively (denoted by solid black trajectories in each corresponding phase portrait).

orbital period can be set arbitrarily, up to machine accuracy. Figure 5B shows an example of a relatively short orbital
period, and figure 5C depicts the behavior seen for slower orbits.
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Figure 5: Two GRUs exhibit an Andronov-Hopf bifurcation, where the parameters are defined by (8). When α = π
3

the system exhibits a single stable fixed point at the origin (Fig. 5A). If α decreases continuously, a limit cycle emerges
around the fixed point, and the fixed point changes stability (Fig. 5B). Allowing α to decrease further increases the
size and orbital period of the limit cycle (Fig. 5C). The bottom row represents the hidden state as a function of time,
for a single trajectory (denoted by black trajectories in each corresponding phase portrait)

With finite-fixed point topologies and global structures out of the way, the next logical question to ask is, can two GRUs
exhibit an infinite number of fixed points (countable or uncountable)? Such behavior is often desirable in models that
require stationary attraction to non-point structures, such as line attractors and ring attractors. The short answer to this
question is no.
Lemma 1. Any two dimensional GRU can only have finitely many simple fixed points.
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This follows from Lefschetz theory (Guillemin & Pollack, 2010). The detailed proof can be found in appendix D, and
is intended to give the reader intuition behind the result presented in the claim extended to aribitrary dimensional GRU
in theorem 1.

Theorem 1. Any finite dimensional GRU can only have finitely many simple fixed points and bifurcation fixed points.

Proof. By definition of simple fixed points, the Jacobian of the dynamics at those fixed points have nonzero real parts,
making them Lefschetz fixed points. Since GRU dynamics is asymptotically bounded on the compact set [−1, 1]d,
where d is the number of GRUs, it follows from Lefshetz theory (Guillemin & Pollack, 2010) that there are finitely
many simple fixed points. Furthermore, by construction, a bifurcation fixed point can only exist within a stability
structure if and only if there exists a separate topology, such that the simple fixed points making up each bifurcation
fixed point exist isolated from one another. Therefore, there can only exist finitely many isolated bifurcation fixed
points.

This eliminates the possibility of having countably many fixed points. Next, we show that there cannot be uncountably
many non-isolated fixed points.

Theorem 2. Any finite dimensional GRU cannot have a continuous attractor.

Proof. We provide a sketch of a proof. Let h∗ ∈ Rd be a fixed point of a d-dimensional GRU, that is,
h∗ − tanh(Uh(r(h∗) � h∗) + bh) = 0. Now for any unit norm vector k ∈ Sd−1, and for any δ > 0, we can
show that there exist an ε > 0 such that, ‖ḣ(h∗ + δk)− ḣ(h∗)‖ = ‖ḣ(h∗ + δk)‖ > ε. This can be argued by taking
three cases into consideration, (a) Urk = 0 and Uh(σ(br)� k) 6= 0, (b) Urk = 0 and Uh(σ(br)� k) = 0, and (c)
Urk 6= 0. In each case, it reverts to a 1-dimensional problem where it can be trivially shown to have no continuous
attractor around h∗ along direction k. Thus, we conclude that there is no continuous attractor in any direction.

Despite this limitation, an approximation of a line attractor can be created using two GRUs. This approximation can
be made arbitrarily close to an actual line attractor on a finite region in phase space, thereby satisfying computational
needs on an arbitrary interval when scaled. We will refer to this phenomenon as a pseudo-line attractor. Figure 6
depicts an example of such an attractor.
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Figure 6: Two GRUs exhibit a pseudo-line attractor. Nullclines intersect at one point, but are close enough on a
finite region to mimic an analytic line attractor in practice. 6A and 6B depict the phase portrait, on [−1.5, 1.5]2 and
[−0.2, 0.2]2 respectively.

We conclude this section with a discussion of slow points in the two GRU system. As a logical extension to the
single GRU system, slow points occur where the nullclines are sufficiently close together, but do not intersect, as
demonstrated in figure 7. Given the previously discussed classes of dynamic behavior for two GRUs, slow points can
only exist so long as the potential for a saddle-node bifurcation fixed point is possible in the location of the desired
slow point, given an appropriate change in parameters, as they result from the collision and annihilation of two fixed
points. This observation is consistent with the single GRU case, as slow points can only exist for a single fixed point.
This would imply that given the one fixed point case, a maximum of five slow points are possible. However, this would
imply that there must exist a six fixed point case by which five of the six fixed points exist at saddle-node bifurcation
fixed points, which has not been observed (see appendix C). Despite this shortcoming, four simultaneous slow points
are obtainable, as shown in figure 5C.
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Figure 7: An example of a slow point about the origin, obtainable with two GRUs. Initial conditions satisfying y < −x
are attracted to the slow point at the origin before a secondary attraction to the sink. 7A depicts the phase portrait of
the system, and 7B shows the dynamics of the hidden state for a single initial condition (denoted by a black trajectory
on 7A).

5 NUMERICAL EXPERIMENTS

As a means to put our theory to practice, in this section we explore several examples of time series prediction of
continuous time planar dynamical systems using two GRUs. Results from the previous section indicate what dynamical
features can be learned by this RNN, and suggest cases by which training will fail. All of the following computer
experiments consist of an RNN, by which the hidden layer is made up of two GRUs, followed by a linear output layer.
The network is trained to make a 29-step prediction from a given initial observation, and no further input through
prediction. As such, to produce accurate predictions, the RNN must rely solely on the hidden layer dynamics.

We train the network to minimize the following multi-step loss function:

L(θ) =
1

T

Ntraj∑
i=1

T∑
k=1

‖ŵi(k;wi(0))−wi(k)‖22 (9)

where θ are the parameters of the GRU and linear readout, T = 29 is the prediction horizon, wi(t) is the i-th time
series generated by the true system, and ŵ(k;w0) is k-step the prediction given w0.

The hidden states are initialized at zero for each trajectory. The RNN is then trained for 4000 epochs, using ADAM
(Kingma & Ba, 2014) in whole batch mode to minimize the loss function, i.e., the mean square error between the
predicted trajectory and the data. Ntraj = 667 time series were used for training. Figure 8 depicts the experimental
results of the RNN’s attempt at learning each dynamical system we describe below.

5.1 LIMIT CYCLE

To test if two GRUs can learn a limit cycle, we use a simple nonlinear oscillator called the FitzHugh-Nagumo Model.
The FitzHugh-Nagumo model is defined by:

ẋ = x− x3

3
− y + Iext, τ ẏ = x+ a− by (10)

where in this experiment we will chose τ = 12.5, a = 0.7, b = 0.8, and Iext = N (0.7, 0.04). Under this choice of
model parameters, the system will exhibit an unstable fixed point (unstable spiral) surrounded by a limit cycle (Fig. 8).
As shown in section 4, two GRUs are capable of representing this topology. The results of this experiment verify this
claim (Fig. 8), as two GRUs can capture topologically equivalent dynamics.

5.2 LINE ATTRACTOR

As discussed in section 4, two GRUs can exhibit a pseudo-line attractor, by which the system mimics an analytic line
attractor. We will use the simplest representation of a planar line attractor:

ẋ = −x, ẏ = 0 (11)
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Figure 8: Training 2-dim GRUs. (top row) Phase portraits of target dynamical systems. Red solid line represents
1-dimensional attractor. See main text for each system. (middle row) GRU dynamics learned from corresponding
29-step forecasting tasks. Note that the prediction is an affine transformation of the hidden state. (bottom row) An
example time series generated through closed-loop prediction of the trained GRU (denoted by a black trajectory). Note
that GRU fails to learn the ring attractor.

This system will exhibit a line attractor along the y-axis, at x = 0 (Fig. 8). Trajectories will flow directly perpendicular
towards the attractor. We added white Gaussian noiseN (0, 0.1I) in the training data. While the hidden state dynamics
of the trained network do not perfectly match that of an analytic line attractor, there exists a subinterval near each of
the fixed points acting as a pseudo-line attractor (Fig. 8). As such, the added affine transformation (linear readout) can
scale and reorient this subinterval as is required by a given problem, thereby mimicking a line attractor.

5.3 RING ATTRACTOR

For this experiment, a dynamical system representing a standard ring attractor of radius one is used:

ẋ = −(x2 + y2 − 1)x, ẏ = −(x2 + y2 − 1)y (12)

This system exhibits an attracting ring, centered around an unstable fixed point. We added Gaussian noiseN (0, 0.1I)
to the training data.

Two GRUs will not be able to accurately capture the system’s continuous attractor dynamics as expected from theo-
rem 3. The results of this experiment are demonstrated in figure 8. As expected, the RNN fails to capture the proper
dynamical features of the ring attractor. Rather, the hidden state dynamics fall into an observed finite fixed point
topology (see case xxix in appendix C). In addition, we robustly see this over multiple initializations, and the quality
of approximation improves as the dimensionality of GRU increases (Fig. 9).
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Figure 9: Learning curve (training loss) for ring attractor (left) and the FitzHugh-Nagumo (right) dynamics. Note that
the performance of the ring attractor improves as the dimensinoality of the GRU increases unlike the FHN dynamics.
Four network sizes (2, 4, 8, 16 dimensional GRU) were trained 3 timeswith different initializations. Initial learning
rate for ADAM was tuned using Bayesian optimization procedure.

6 CONCLUSION

Our analysis shows the rich but limited classes of dynamics the GRU can approximate in one, two, and arbitrary
dimensions. We developed a new theoretical framework to analyze GRUs as a continuous dynamical system, and
showed that two GRUs can exhibit a variety of expressive dynamic features, such as limit cycles, homoclinic orbits,
and a substantial catalog of stability structures and bifurcations. However, we also showed that finitely many GRUs
cannot exhibit the dynamics of an arbitrary continuous attractor. These claims were then experimentally verified in
two dimensions. We believe these findings also unlock new avenues of research on the trainability of recurrent neural
networks. Although we have analyzed GRUs only in 1- and 2- dimensions in near exhaustive, we believe that the
insights extends to higher-dimensions. We leave rigorous analysis of higher-dimensional GRUs as future work.
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A CONTINUOUS TIME SYSTEM DERIVATION

We begin with the fully gated GRU as a discrete time system, where the input vector xt has been set equal to zero, as
depicted in (13) - (15), where � is the Hadamard product, and σ is the sigmoid function.

zt = σ(Uzht−1 + bz) (13)
rt = σ(Urht−1 + br) (14)

ht = zt � ht−1 + (1− zt)� tanh (Uh(rt � ht−1) + bh) (15)
We recognize that (15) is a forward Euler discretization of a continuous time dynamical system. This allows us to
consider the underlying continuous time dynamics on the basis of the discretization. The following steps are a walk
through of the derivation:

Since zt is a bounded function on R ∀t, there exists a function z̃t, such that zt + z̃t = 1 at each time step (due to the
symmetry of zt, z̃t is the result of vertically flipping zt about 0.5, the midpoint of its range). As such, we can rewrite
(15) with z̃t as depicted in (16).

ht = (1− z̃t)� ht−1 + z̃t � tanh (Uh(rt � ht−1) + bh) (16)
where,

z̃t = σ(Ũzht−1 + b̃z) (17)
ht = ht−1 − z̃t � ht−1 + z̃t � tanh (Uh(rt � ht−1) + bh) (18)
ht − ht−1 = −z̃t � (ht−1 − tanh (Uh(rt � ht−1) + bh)) (19)

Let h(t) ≡ ht−1. As a result, we can say z̃t ≡ z̃(t) and rt ≡ r(t), as depicted in (20).
h(t+ 1)− h(t) = −z̃(t)� (h(t)− tanh (Uh(r(t)� h(t)) + bh)) (20)

where,
z̃(t) = σ(Ũzh(t) + b̃z) (21)
r(t) = σ(Urh(t) + br) (22)

Let ∆t define an arbitrary time interval. Then (20) becomes,
h(t+ ∆t)− h(t) = −z̃(t)� (h(t)− tanhUh(r(t)� h(t)) + bh)∆t (23)

Dividing both sides of the equation by ∆t yields (24).
h(t+ ∆t)− h(t)

∆t
= −z̃(t)� (h(t)− tanhUh(r(t)� h(t)) + bh) (24)

If we take the limit as ∆t→ 0, we get the analogous continuous time system to (13) - (15),

ḣ = −z̃(t)� (h(t)− tanh (Uh(r(t)� h(t)) + bh)) (25)

where ḣ ≡ dh(t)
dt

Finally, we can rewrite (25) as follows:

ḣ = (z(t)− 1)� (h(t)− tanh (Uh(r(t)� h(t)) + bh)) (26)
where

z(t) = σ(Uzh(t) + bz) (27)

B SINGLE GRU FIXED POINT PROOFS

The fixed points of our continuous time system (25) exist where the derivative ḣ = 0. In the single GRU case, the
Hadamard product reduces to standard scalar multiplication, yielding,

0 = (z(t)− 1)[h∗ − tanh (Uhr(t)h
∗ + bh)] (28)

where z(t) and r(t) are defined by (27) and (22) respectively, and h∗ ∈ R represents a solution of (28).

We can divide out z(t) − 1, indicating that the update gate does not play a part in the stability of the system. For
simplicity, lets expand r(t) in (28) by its definition (22).

0 = tanh (Uhσ(Urh
∗ + br)h

∗ + bh)− h∗ (29)
where Uh, bh, Ur, br ∈ R.

11
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Lemma 2. for all Uh, bh, Ur, br, there exists h∗ such that (29) is satisfied.

Proof. The hyperbolic tangent function is continuous and bounded on R, having a range of (−1, 1). −h(t) ≡ −h
is monotonic and achieves all values on R, as −h is bijective on R. Thus, their sum is unbounded and obtains every
value on R at least once. By the intermediate value theorem, there is at least one point h∗ such that (29) is satisfied,
regardless of the choice of parameters Uh, bh, Ur, br.

Lemma 3. There exists a set of parameters Uh, bh, Ur, br such that there exists one, two, or three solutions to (29).

Proof. We will prove this lemma by showing the existence of each case. Let Ur = 80, br = 40, and Uh = −60. We
then allow bh to vary. The existence of each of the three cases are shown in figure 1.

If bh = −1, there exists a single solution to (29). If bh decreases continuously, a second root appears and splits in
two. Analogously, the system (25) goes through a saddle-node bifurcation, where a half-stable fixed point appears,
and splits into a stable/unstable fixed point pair.

Theorem 3. For any choice of parameters Ur, br, Uh, bh, there can only exist one, two, or three solutions to (29), and
all solutions exist on the interval (-1,1).

Proof. We begin with the argument of the hyperbolic tangent function in (29),

Uhσ(Urh+ br)h+ bh (30)

Taking the derivative of (30) yields,

Uh(1 + e−Urh−br ) + UhUrhe
−Urh−br

(1 + e−Urh−br )2
(31)

Setting (31) to zero and simplifying will allow us to find the nontrivial critical points of (30), as shown in (32). Note
that if Uh = 0, (30) is equal to bh ∀h, yielding no critical points.

1 + e−Urh−br (1 + Urh) = 0 (32)

Let x ≡ e−br and ĥ ≡ Urh, and solve (32) for ĥ.

ĥ = −W (
1

xe
)− 1 (33)

where W is principal branch of the Lambert W function. Therefore, (30) has exactly one local maximum or minimum,
so long as Uh 6= 0.

Now consider,
tanh (Uhσ(Urh+ br)h+ bh) (34)

The hyperbolic tangent function preserves intervals of monotonic behavior in its argument. Therefore, (34) has at most
one local maximum or minimum.

We take into account the fact that the hyperbolic tangent function bounds its argument on the interval (-1,1). If there
exists a subset S = [a, 1], for some a ∈ [−1, 1) such that (34) is increasing, then there exists a k ∈ S such that when
h = k (35) and (36) hold.

d

dh
(tanh (Uhσ(Urh+ br)h+ bh)− h) = 0 (35)

d

dh
(tanh (Uhσ(Urh+ br)h+ bh)− h) < 0,∀h > k (36)

This result in conjunction with the previous two lemmas completes the proof.
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C ALL TOPOLOGICAL STABILITY STRUCTURES OBSERVED WITH TWO GRUS

Table 2 depicts all observed topologies of multiple-fixed point structures using two GRUs. Figure 10 displays an
example of a phase portrait from a two GRU system for each case listed in 2. Note that all fixed points are denoted by
a red dot, regardless of classification. Table 3 lists the parameters used for each of the observed cases. Note that all
the update gate parameters are set to zero.

Each case in this paper was discovered by hand by considering the geometric constraints on the structure of nullclines
for both the decoupled and coupled system (i.e reset gate inactive and active respectively). An exhaustive analysis on
the one dimensional GRU allowed for a natural extension into the two dimensional decoupled GRU. Upon establishing
a set of base cases (a combinatorial argument regarding all possible ways the decoupled nullclines [topologically
conjugate to linear and cubic polynomials] can intersect) From these base cases, the reset gate can be used as a means
of bending and manipulating structure of the decoupled nullclines in order to obtain new intersection patterns in the
coupled system.

Table 1: Parameters Used for all Phase Portraits in Section 4

Figure Uh11 Uh12 Uh21 Uh22 Ur11 Ur12 Ur21 Ur22 bh1 bh2 br1 br2
2 3 0 0 3 0 0 0 0 0 0 0 0
3a 2 0 0 2 5 8 8 5 0 0 5 5
3b 2 0 0 2 -1 0 0 -1 0 0 0 0
3c 2 0 0 2 1 -2 3 1 -0.06 0 0.2 -0.85
4a 2 0 0 2 5 9 5 9 0 0 0 0
4b 2 0 0 2 5 9 9 5 0 0 0 0
5a 1.5 -2.598 2.598 1.5 0 0 0 0 0 0 0 0
5b 2.4271 -1.7634 1.7634 2.4271 0 0 0 0 0 0 0 0
5c 2.9665 -0.4471 0.4471 2.9665 0 0 0 0 0 0 0 0
6a 0.1 -0.1 -1 0 0 0 0 0 0 0 0 0
7a 2 2 2 2 100 100 100 100 0.01 0 0 0

13
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Table 2: Multiple Fixed Point Stability Structures Obtainable with two GRUs

Case Fixed
Points Sinks Sources Saddle

Points

Saddle Point
and Stable

Node Collisions

Saddle Point
and Unstable

Node Collisions

Codim. 2
Bifurcation

Point

Figure
Reference

i 2 1 - - 1 - - 10i
ii 3 2 - 1 - - - 10ii
iii 3 1 - - 2 - - 10iii
iv 4 1 - - 2 - 1 10iv
v 4 2 - 1 - - 1 10v
vi 4 2 - 1 - 1 - 10vi
vii 4 2 - 1 1 - - 10vii
viii 4 1 - - 3 - - 10viii
ix 5 2 1 2 - - - 10ix
x 5 3 - 2 - - - 10x
xi 5 3 - 1 - 1 - 10xi
xii 5 2 - 1 - 2 - 10xii
xiii 5 2 - 1 1 1 - 10xiii
xiv 5 - 1 - 4 - - 10xiv
xv 6 2 - 1 2 1 - 10xv
xvi 6 3 - 2 - 1 - 10xvi
xvii 6 2 1 2 1 - - 10xvii
xviii 6 3 - 2 - - 1 10xviii
xix 6 2 1 2 - 1 - 10xix
xx 6 3 - 2 1 - - 10xx
xxi 6 1 1 1 3 - - 10xxi
xxii 7 3 1 3 - - - 10xxii
xxiii 7 2 2 3 - - - 10xxiii
xxiv 7 4 3 - - - - 10xxiv
xxv 7 2 1 2 2 - - 10xxv
xxvi 7 3 - 2 2 - - 10xxvi
xxvii 7 3 - 2 1 1 - 10xxvii
xxviii 8 4 - 3 - 1 - 10xxviii
xxix 8 3 1 3 1 - - 10xxix
xxx 8 3 - 2 2 1 - 10xxx
xxxi 9 4 1 4 - - - 10xxxi
xxxii 9 3 1 3 2 - - 10xxxii
xxxiii 9 5 - 4 - - - 10xxxiii
xxxiv 10 4 1 4 1 - - 10xxxiv
xxxv 10 5 - 4 - 1 - 10xxxv
xxxvi 11 5 1 5 - - - 10xxxvi
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(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

(x) (xi) (xii)

Figure 10: Thirty six multiple fixed-point topologies obtainable with two GRUs, depicted in phase space. Orange and
pink lines represent the x and y nullclines respectively. Red dots indicate fixed points. Each subfigure contains 64
purple lines, indicating trajectories in forward time, whose initial conditions were chosen to be evenly spaced on the
vertices of a square grid on [−1.5, 1.5]2. Direction of the flow is determined by the black arrows, and the underlaying
color map represents the magnitude of the velocity of the flow in log scale.
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(xiii) (xiv) (xv)

(xvi) (xvii) (xviii)

(xix) (xx) (xxi)

(xxii) (xxiii) (xxiv)

Figure 10: Thirty six multiple fixed-point topologies obtainable with two GRUs, depicted in phase space. Orange and
pink lines represent the x and y nullclines respectively. Red dots indicate fixed points. Each subfigure contains 64
purple lines, indicating trajectories in forward time, whose initial conditions were chosen to be evenly spaced on the
vertices of a square grid on [−1.5, 1.5]2. Direction of the flow is determined by the black arrows, and the underlaying
color map represents the magnitude of the velocity of the flow in log scale.
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(xxv) (xxvi) (xxvii)

(xxviii) (xxix) (xxx)

(xxxi) (xxxii) (xxxiii)

(xxxiv) (xxxv) (xxxvi)

Figure 10: Thirty six multiple fixed-point topologies obtainable with two GRUs, depicted in phase space. Orange and
pink lines represent the x and y nullclines respectively. Red dots indicate fixed points. Each subfigure contains 64
purple lines, indicating trajectories in forward time, whose initial conditions were chosen to be evenly spaced on the
vertices of a square grid on [−1.5, 1.5]2. Direction of the flow is determined by the black arrows, and the underlaying
color map represents the magnitude of the velocity of the flow in log scale.
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Table 3: Parameters of each multiple fixed-point stability structure example

Case Uh11 Uh12 Uh21 Uh22 Ur11 Ur12 Ur21 Ur22 bh1 bh2 br1 br2
i 2 2 2 2 100 100 100 100 0 0 0 0
ii 2 2 2 2 0 0 0 0 0 0 0 0
iii 1.2 0 0 2 5 12 8 5 0 0 -0.22 -0.5
iv 2 0 0 2 -1 0 0 -1 0 0 0 0
v 2 0 0 2 1 -1 1 1 0 0 0 0
vi 2 0 0 2 1 -2 3 1 -0.06 0 0.2 -0.85
vii 2 0 0 4 1 -2 3 1 -0.06 0 -0.3 -0.42
viii 1.2 0 0 2 5 20.5 8 5 0 0 -0.275 -3.3
ix 3 3 0 3 0 0 0 0 0 0 0 0
x 6 0 0 6 0 -2 0 0 0 0 -1.695 0
xi 6 0 0 6 0 1 0 0 0 0 -2.5 0
xii 2 0 0 2 1 -2 3 1 -0.055 0 -0.1 -0.02
xiii 2 0 0 4 1 -2 3 1 -0.06 0 -0.085 -0.22
xiv 2.9674 -0.4409 0.4409 2.9674 0 0 0 0 0 0 0 0
xv 6 0 0 2 -1 0 0 0 0 0 0 0
xvi 2 0 0 2 1 -2 3 1 -0.06 0 -0.08 3
xvii 2 0 0 2 1 -2 3 1.1 -0.06 0 0.2 0
xviii 2 0 0 2 3 2 2 3 0 0 0 0
xix 10 0 0 6 -3 5 -5 3 0 0 -3 -3
xx 1.2 0 0 2 -17 35 10 -8 0 0 1.2 -1.2
xxi 2.9763 -0.376 0.376 2.9763 0 0 0 0 0.0315 0 -0.015 -0.015
xxii 6 0 0 6 0 -2 0 0 0 0 0 0

xxiii0 3 0 0 3 -3 -5 -5 -3 0 0 -2 -2
xxiv 1.5 0 0 2 -4 -7 8 5 0 0 -0.4 -1.2
xxv 2 0 0 3 12.4 11.6 -8 -5 0 0 1.8 7
xxvi 3 0 0 3 5.175 9 9 5.175 0.3 0.3 3.95 3.95
xxvii 7 0 0 3 6 3 9 6 0.62 0.373 4 3.4
xxviii 6 0 0 10 0 0 -5 -8 -0.08 0 0 -2
xxix 2 0 0 3 -10 -11.6 8 5 0 0 4 4.8
xxx 3 0 0 3 5.26 9 9 5.26 0.25 0.25 3.95 3.95
xxxi 3 0 0 3 0 0 0 0 0 0 0 0
xxxii 2 0 0 2 5 8 8 5 0 0 4.4 4.4
xxxiii 3 0 0 3 6 9 9 6 0.3 0.3 3.75 3.75
xxxiv 1 0 0 1 5 8 8 5 0 0 4.4 4.9
xxxv 3 0 0 3 6 9 9 6 0.24 0.24 3.95 3.95
xxxvi 2 0 0 2 5 8 8 5 0 0 5 5
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D PROOF OF LEMMA 1

We begin this proof by showing that all fixed points obtainable with two GRUs are Lefschetz fixed points. To show
this is the case let (37) expand our previous notation. We set all elements in Uz and bz to zero, as the update gate plays
no part in the topology of (7) (shown in appendix B).

Uh =

[
Uh11 Uh12
Uh21 Uh22

]
, Ur =

[
Ur11 Ur12
Ur21 Ur22

]
, bh =

[
bh1
bh2

]
, br =

[
br1
br2

]
(37)

We can now rewrite (7) expanded in terms of the individual elements of Uh, Ur, bh, and br, as shown in (38) and (39).

ẋ = −1

2
[x− tanh(

Uh11x

1 + e−(Ur11x+Ur12y+br1)
+

Uh12y

1 + e−(Ur21x+Ur22y+br2)
+ bh1)] (38)

ẏ = −1

2
[y − tanh(

Uh21x

1 + e−(Ur11x+Ur12y+br1)
+

Uh22y

1 + e−(Ur21x+Ur22y+br2)
+ bh2)] (39)

If 0 is not an eigenvalue of the Jacobian matrix of (38) and (39) at a fixed point, the fixed point is said to be Lefshetz.
Let Fx = dẋ

dx , Fy = dẋ
dy , Gx = dẏ

dx , and Fy = dẏ
dy .

where

Fx = −1

2
(1− sech2

(
Uh11x

e−Ur11x−Ur12y−br1 + 1
+

Uh12y

e−Ur21x−Ur22y−br2 + 1
+ bh1

)
γFx) (40)

γFx =
Uh11Ur11xe

−Ur11x−Ur12y−br1

(e−Ur11x−Ur12y−br1 + 1)
2 +

Uh11
e−Ur11x−Ur12y−br1 + 1

+
Uh12Ur21ye

−Ur21x−Ur22y−br2

(e−Ur21x−Ur22y−br2 + 1)
2 (41)

Fy =
1

2
sech2

(
Uh11x

e−Ur11x−Ur12y−br1 + 1
+

Uh12y

e−Ur21x−Ur22y−br2 + 1
+ bh1

)
γFy (42)

γFy =
Uh11Ur11xe

−Ur11x−Ur12y−br1

(e−Ur11x−Ur12y−br1 + 1)
2 +

Uh12
e−Ur21x−Ur22y−br2 + 1

+
Uh12Ur21ye

−Ur21x−Ur22y−br2

(e−Ur21x−Ur22y−br2 + 1)
2 (43)

Gx =
1

2
sech2

(
Uh21x

e−Ur11x−Ur12y−br1 + 1
+

Uh22y

e−Ur21x−Ur22y−br2 + 1
+ bh2

)
γGx (44)

γGx =
Uh21Ur11xe

−Ur11x−Ur12y−br1

(e−Ur11x−Ur12y−br1 + 1)
2 +

Uh21
e−Ur11x−Ur12y−br1 + 1

+
Uh22Ur21ye

−Ur21x−Ur22y−br2

(e−Ur21x−Ur22y−br2 + 1)
2 (45)

Gy = −1

2
(1− sech2

(
Uh21x

e−Ur11x−Ur12y−br1 + 1
+

Uh22y

e−Ur21x−Ur22y−br2 + 1
+ bh2

)
γGy) (46)

γGy =
Uh21Ur11xe

−Ur11x−Ur12y−br1

(e−Ur11x−Ur12y−br1 + 1)
2 +

Uh22
e−Ur21x−Ur22y−br2 + 1

+
Uh22Ur21ye

−Ur21x−Ur22y−br2

(e−Ur21x−Ur22y−br2 + 1)
2 (47)

Let J denote the Jacobian matrix of (38) and (39).

J =

[
Fx Fy
Gx Gy

]
(48)

Note that we can rewrite (38) and (39) as follows:

ẋ = −1

2
[x− tanh(f(x, y, θ))] (49)

ẏ = −1

2
[y − tanh(g(x, y, θ))] (50)

where θ represents the set of parameters, f(x, y, θ) = Uh11x
1+e−(Ur11x+Ur12y+br1) + Uh12y

1+e−(Ur21x+Ur22y+br2) + bh1, and

g(x, y, θ) = Uh21x
1+e−(Ur11x+Ur12y+br1) + Uh22y

1+e−(Ur21x+Ur22y+br2) + bh2

An ordered pair (x, y) is a fixed point of (49) and (50) if and only if (51) and (52) hold.

0 = −1

2
[x− tanh(f(x, y, θ))] (51)
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0 = −1

2
[y − tanh(g(x, y, θ))] (52)

As such, we can say the following:
x = tanh(f(x, y, θ)) = u(x, y, θ) (53)
y = tanh(g(x, y, θ)) = v(x, y, θ) (54)

If we let λ represent the eigenvalues of (48), the characteristic equation of (48) is as follows:

λ2 +λ(−1− sech2(f(x, y, θ))
∂f

∂x
− sech2(g(x, y, θ))

∂g

∂y
) +

1

4
(1− sech2(f(x, y, θ))sech2(g(x, y, θ))

∂f

∂y

∂g

∂x
) (55)

We can rewrite (55) in terms of u(x, y, θ) and v(x, y, θ) as shown in (56)

λ2 + λ(−1− ux − vy) +
1

4
(1− uyvx) (56)

where ux ≡ ∂u
∂x , uy ≡ ∂u

∂y , vx ≡ ∂v
∂x , vy ≡ ∂v

∂y . We can use the quadratic formula to solve for λ.

λ =
1 + ux + vy

2
±

√
u2x + 2ux + 2uxvy + 2vy + v2y + uyvx

2
(57)

Setting λ = 0 and simplifying yields the following constraint:

|uyvx| = 1 (58)

which can be realized as follows:

sech2(f(x, y, θ))sech2(g(x, y, θ)) =
1

∂f
∂y

∂g
∂x

(59)

We observe that sech2(f(x, y, θ))sech2(g(x, y, θ)) ∈ (0, 1), which implies that ∂f
∂y

∂g
∂x ∈ (1,∞) However, from

(53) and (54), we see that f(x, y, θ) = tanh−1(x) and g(x, y, θ) = tanh−1(y) at a critical point. Which implies
∂f
∂y

∂g
∂x = 0 /∈ (1,∞). Therefore λ 6= 0 ∀θ.

This implies that (38) and (39) is a Lefschetz map. Since (38) and (39) are asymptotically bound to (−1, 1)2, we can
always find a finite time t0 such that x, y ∈ (−1, 1)2 ∀t > t0. Therefore, for every trajectory initialized outside of the
trapping region, we can always find a point on [−1, 1]2 that arises as the transition of that initial condition flowing into
the trapping region. This implies that (38) and (39) can be thought of as existing on a compact set, and therefore has a
finite number of simple fixed points Guillemin & Pollack (2010).
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