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Abstract

In this paper, we provide a method to learn the directed structure of a Bayesian
network using data. The data is accessed by making conditional probability queries
to a black-box model. We introduce a notion of simplicity of representation of
conditional probability tables for the nodes in the Bayesian network, that we call
“low rankness”. We connect this notion to the Fourier transformation of real valued
set functions and propose a method which learns the exact directed structure of
a ‘low rank‘ Bayesian network using very few queries. We formally prove that
our method correctly recovers the true directed structure, runs in polynomial time
and only needs polynomial samples with respect to the number of nodes. We also
provide further improvements in efficiency if we have access to some observational
data.

1 Introduction

Motivation. Real-world systems are made of large number of constituent variables. Understanding
the interactions and relationships of these variables is key to understand the behavior of such systems.
Scientists and researchers from many domains have been using graphs to model and learn relationships
amongst variables of real-world systems for a long time. Bayesian networks are one of the most
important classes of probabilistic graphical models which are used to model complex systems. They
provide a compact representation of joint probability distributions among a set of variables.

Related work. Learning the structure of a Bayesian network from observational data is a well
known but an incredibly difficult problem to solve in the machine learning community. Due to its
popularity and applications, a considerable amount of work has been done in this field. Most of
these work use observational data to learn the structure. We can broadly divide these methods in
two categories. The methods in the first category use score maximization techniques to learn the
DAG from observational data. In this category, there are some heuristics based approaches such as
Friedman et al. (1999); Tsamardinos et al. (2006); Margaritis and Thrun (2000); Moore and Wong
(2003) which run in polynomial-time without offering any convergence/consistency guarantee. There
are also some exact but exponential time score maximizing exact algorithms such as Koivisto and
Sood (2004); Silander and Myllymäki (2006); Cussens (2008); Jaakkola et al. (2010). The methods
in the second category are independence test based methods such as Spirtes et al. (2000); Cheng et al.
(2002); Yehezkel and Lerner (2005); Xie and Geng (2008).

There have also been some work to learn the structure of a Bayesian network using interventional
data (Murphy, 2001; Tong and Koller, 2001; Eaton and Murphy, 2007; Triantafillou and Tsamardinos,
2015). Most of these works first find a Markov equivalence class from observational data and then
direct the edges using interventions. Unfortunately, the first step of finding Markov equivalence class
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remains NP-hard (Chickering, 1996). Hausar and Bühlmann (2012), He and Geng (2008), Kocaoglu
et al. (2017) have presented polynomial time methods to find an optimal set of interventions for
chordal DAGs. Bello and Honorio (2018) have proposed a method to learn a Bayesian network
using interventional path queries with logarithmic sample complexity. However, their method runs in
exponential time in terms of the number of parents.

In this paper, our work takes an intermediate path. We do not use pure observational or interventional
data directly. Rather, we assume that there exists a black-box which answers conditional probability
queries by outputting observational data. Our goal is to limit the number of such queries and learn
the directed structure of a Bayesian network. We propose a novel algorithm to achieve this goal. We
also provide a method to improve our results by having access to some observational data. We intend
to measure our performance based on the following criteria. 1. Correctness - We want to come up
with a method which correctly recovers the directed structure of a Bayesian network with provable
theoretical guarantees. 2. Computational efficiency - The method must run fast enough to handle
the high dimensional cases. Ideally, we want to have polynomial time complexity with respect to
the number of nodes. 3. Sample complexity - We would like to use as few samples as possible for
recovering the structure of the Bayesian network. As with the time complexity, we want to achieve
polynomial sample complexity with respect to the size of the network.

Contribution. Consider a binary node i of a Bayesian network with m parents. The conditional
probability table (CPT) of node i has 2m`1 entries. This number quickly becomes very large even
for modest values of m. To handle such large tables while still maintaining the effect of all the
parents, we introduce a notion of simplicity of representation of the CPTs, which we call “low
rankness”. Our intuition is that each CPT can be treated as summation of multiple simple tables,
each of them depending only on a handful of parents (say k parents where k is the rank of the CPT).
We connect this notion of rank of a CPT to the Fourier transformation of a specific real valued set
function (Stobbe and Krause, 2012) and use compressed sensing techniques (Rauhut, 2010) to show
that the Fourier coefficients of this set function can be used to learn the structure of the Bayesian
network. While doing so, we provide a method with theoretical guarantees of correctness, and which
works in polynomial time and sample complexity. Our method requires computation of conditional
probabilities from data. We do this by making queries to a black-box. One query consists of two
steps. The first step is the selection of variables, i.e., choosing a target variable and a set of variables
for conditioning. The second step is to assign specific values to the selected conditioning variables.
This process is similar to the process used in Bello and Honorio (2018); Kocaoglu et al. (2017), which
consider a particular selection of variables as one intervention. An actual setting of the variables
are considered as one experiment. For example, a selection of k binary variables can be assigned 2k

distinct values and can be queried in 2k different ways. Our setting is similar to an interventional
setting where a selection can be compared to an intervention and an assignment can be compared
to an experiment, although our method never queries the 2k distinct values, but a single random
assignment instead. Thus, we compare our results to the state-of-the-art interventional methods in
Table 1. It should be noted that the number of queries (or experiments in the interventional setting)
are a better metric for comparison than the number of selections (or interventions). This is because a
selection may involve only one node (Bello and Honorio, 2018) or multiple nodes (in this paper) and
thus could hide some complexity of the problem. Furthermore, the sample complexity of the problem
depends on the number of queries.

Table 1: Sample and time complexity, number of selections (interventions) and queries (experiments)
required for structure learning of binary Bayesian networks. Here n is the number of nodes, k is the
maximum size of the Markov blanket. The maximum number of parents of a node is Opkq.

Algorithms Sample Complexity Time Complexity Selections Queries

Our Work Blackbox - Opnk3 log4 nplog k Opn4k
?
n lognq Opnq Opnk3 log4 nq

(no observational data) ` log log nqq
Our Work Observational - Opnq Opn4

q Opnq Opnk3 log4 kq

(with observational data) Blackbox - Opnk3 log5 kq Opnk4
?
k log kq

Bello and Honorio (2018) Interventional - Opn22k lognq Opn22k lognq Opn2
q Opn22kq

Kocaoglu et al. (2017) Interventional - no guarantees Op2nkn2 log2 nq Oplognq Op2n lognq
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2 Preliminaries

In this section, we introduce formal definitions and notations. Let X “ tX1, X2, . . . , Xnu be a set of
random variables. For a set A, XA denotes the set of random variables Xi P X such that i P A. We
use the shorthand notation i to denote V ztiu. We define a Bayesian network on a directed acyclic
graph G “ pV,Eq where V denotes the set of vertices and E is a set of ordered pair of nodes, each
corresponding to a directed edge, i.e., if pa, bq P E then there is an edge aÑ b in G. The parents of
a node i,@i P V denoted by πGpiq, are set of all nodes j such that edge pj, iq P E. We also define
the Markov blanket MBGpiq for a node i as a set of nodes containing parents, children and parents of
children of node i. The nodes with no children are called terminal nodes.
Definition 1 (Bayesian network). Let G “ pV,Eq be a directed acyclic graph (DAG) and X “

tX1, X2, . . . , Xnu be a set of random variables such that Xi corresponds to a random variable at
node i P V,@i “ t1, . . . , nu. Let XπGpiq denote the set of random variables defined on the parents
of node i in DAG G. A Bayesian network B “ pG,Pq represents a joint probability distribution P
over the set of random variables X defined on the nodes of DAG G which factorizes according to
the DAG structure, i.e., PpX1, X2, . . . , Xnq “

śn
i“1 PpXi|XπGpiqq where PpXi|XπGpiqq denotes

conditional probability distribution (CPD) of node i given its parents in DAG G.

We denote the domain of a random variable Xi,@i P t1, . . . , nu by dompXiq. The cardinality of a
set is denoted by notation | ¨ |. A Bayesian network B “ pG,Pq on discrete nodes is called a binary
Bayesian network if |dompXiq| “ 2,@i P t1, . . . , nu. For discrete nodes, PpXi|XπGpiqq is often
represented as a conditional probability table (CPT) with |dompXiq|

ś

jPπGpiq
| dompXjq| entries.

In this work, we will only focus on binary Bayesian networks. Next, we introduce a novel concept of
rank of a conditional probability distribution for a node of Bayesian network.
Definition 2 (Rank k conditional probability distribution). A node i P V of a Bayesian network
BpG,Pq is said to be rank k representable with respect to a set Apiq Ď V ztiu and probability
distribution P if,

PpXi “ xi|XApiq “ xApiqq “
ÿ

SĎtiuYApiq
1ď|S|ďk, iPS

QSpXS “ xSq,@xi P dompXiq, xApiq P dompXApiqq

(1)

where QS :
Ś

jPS dompXjq Ñ R is a function which depends only on the variables XS . A node i is
said to have rank k conditional probability table if it is rank k representable but is not rank k ´ 1
representable with respect to Apiq and P .

For example, a node i P V of a Bayesian network BpG,Pq is rank 2 representable with respect
to its parents πGpiq and P if we can write PpXi “ xi|XπGpiq “ xπGpiqq “ QipXi “ xiq `
ř

jPπGpiq
QijpXi “ xi, Xj “ xjq, where @xi P dompXiq, xj P dompXjq,@j P πGpiq. It is easy to

observe that any node i P V is always rank |Apiq|`1 representable with respect to a setApiq Ă V ztiu
and P . Also, rank k representations for a node i with respect to Apiq and P may not be unique. We
consider real-valued set functions on a set T of cardinality t defined as f : 2T Ñ R where 2T denotes
the power set of T . Let F be the space of all such functions, with corresponding inner product
xf, gy fi 2´t

ř

AP2T fpAqgpAq. The space F has a natural Fourier basis, and in our set function
notation the corresponding Fourier basis vectors are ψBpAq fi p´1q|AXB|. We define the Fourier
transformation coefficients of function f as f̂pBq fi xf, ψBy “ 2´t

ř

AP2T fpAqp´1q|AXB|. Using
Fourier coefficients, the function f can be reconstructed as:

fpAq “
ÿ

BP2T

f̂pBqψBpAq (2)

The Fourier support of a set function is the collection of subsets with nonzero Fourier coefficient:
supportpf̂q fi tB P 2T |f̂pBq ‰ 0u.

3 Method and Theoretical Analysis

In this section, we develop our method for learning the structure of a Bayesian network and provide
theoretical guarantees for correct and efficient learning. First we would like to mention some technical
assumptions.
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Assumption 1 (Availability of Black-box). For a Bayesian network BpG,Pq, we can submit a
conditional probability queryBBpi, A, xA, Nq to a black-box on any set of selected nodes i P V,A Ď
i and value xA, and receive N i.i.d. samples from the conditional distribution PpXi|XA “ xAq.
Assumption 2 (Faithfulness). The distribution over the nodes of the Bayesian network BpG,Pq
induced by pG,Pq exhibits no other independencies beyond those implied by the structure of G.
Assumption 3 (Low rank CPTs). Each node i P V in the Bayesian network BpG,Pq has rank 2
conditional probability tables with respect to πGpiq and P .

Assumption 1 implies the availability of observational data for all queries. This is analogous to the
standard assumption of availability of interventional data in interventional setting (Murphy, 2001;
He and Geng, 2008; Kocaoglu et al., 2017; Tong and Koller, 2001; Hausar and Bühlmann, 2012).
Assumption 2 is also a standard assumption (Kocaoglu et al., 2017; Tong and Koller, 2001; He and
Geng, 2008; Spirtes et al., 2000; Triantafillou and Tsamardinos, 2015) which ensures that we only
have those independence relations between nodes which come from d-separation. We also introduce
a novel Assumption 3 which ensure that CPTs of nodes have a simple representation. In the later
sections, we relate this to sparsity in the Fourier domain. We note that there is nothing special about
CPTs being rank 2 and our method can be extended for any rank k CPTs.

3.1 Problem Description

In this work, we address the following question:
Problem 1 (Recovering structure of a Bayesian network using black-box queries). Consider we have
access to a black-box which provides observational data for our conditional probability queries for a
faithful Bayesian network BpG,Pq with each node i having rank 2 CPT with respect to its parents
πGpiq and P . Can we recover the directed structure of G with theoretical guarantees of correctness
and efficiency in terms of time and sample complexity?

We show that it is indeed possible to do. We control the number of samples by controlling the number
of queries. We also show that it is possible to further reduce the sample complexity if we have access
to some observational data.

3.2 Theoretical Result

In this subsection, we state our theoretical results. We start by analyzing terminal nodes.

Analyzing Terminal Nodes. Since terminal nodes do not have any children, their Markov blanket
only contains their parents. Furthermore, if the Bayesian network is faithful then for any terminal
node t P V : PpXt|XπGptqq “ PpXt|XMBGptqq “ PpXt|Xtq. Thus, for any terminal node t P
V, PpXt|XπGptqq can be computed without explicitly knowing its parents. Next, we define a set
function which computes PpXt|XπGptqq. In particular, for an assignment xπGptq P t0, 1u

|πGptq|, we
are interested in computing PpXt “ 1|XπGptq “ xπGptqq. Note that PpXt “ 0|XπGptq “ xπGptqq

can simply be computed by subtracting PpXt “ 1|XπGptq “ xπGptqq from 1. Let t denote the set
V zttu. For node t and a set A Ď t, let xA P t0, 1un be an assignment such that xAi “ 1iPA,@i ‰ t
and xAt “ 0. We define a set function ft for each terminal node t P V as follows:

ftpAq “ QtpXt “ xAt q `
ÿ

jPπGptq

QtjpXt “ xAt , Xj “ xAj q, @A Ď t (3)

Note that Equation (3) precisely computes PpXt “ 1|XπGptq “ xAπGptqq and ftpAq “ ftpA X πtq.
Next, we prove that the Fourier support of ft only contains singleton sets of parents of node t.
Theorem 1. If nodes of a Bayesian network BpG,Pq have rank 2 with respect to their parents πGp.q
and P , then the Fourier coefficient f̂tpBq for function ft defined by equation (3) for any terminal
node t and a set B P 2t is given by:

f̂tpBq “

$

’

&

’

%

QtpXt “ 1q ` 1
2

ř

jPπGptq

`

QtjpXt “ 1, Xj “ 0q `QtjpXt “ 1, Xj “ 1q
˘

, B “ φ
1
2

`

QtjpXt “ 1, Xj “ 0q ´QtjpXt “ 1, Xj “ 1q
˘

, B “ tju,@j P πGptq

0, Otherwise
(4)
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(See Appendix A for detailed proofs.)

Analyzing Non-Terminal Nodes. A similar analysis can be done for non-terminal nodes. However,
for a non-terminal node i we can not compute PpXi|XπGpiqq without explicitly knowing the parents
of node i. We will rather focus on computing PpXi|XMBGpiqq for non-terminal nodes which equals
to computing PpXi|Xiq which can be done from data. Similar to the previous case, we define a set
function gi for each non-terminal node i P V as follows:

gipAq “ QipXi “ xAi q `
ÿ

jPπGpiq

QijpXi “ xAi , Xj “ xAj q, @A Ď i (5)

We can define a corresponding set function fi which computes PpXi|XMBGpiqq for non-terminal
nodes. We do it in the following way:

fipAq “PpXi “ xAi |XMBGpiq “ xMBGpiqq

“
PpXi “ xAi |XπGpiq “ xAπGpiqq

ś

kPchildGpiq
PpXk “ xAk |XπGpkq “ xAπGpkqq

ř

Xi
PpXi “ xAi |XπGpiq “ xAπGpiqq

ś

kPchildGpiq
PpXk “ xAk |XπGpkq “ xπGpkqAq

(6)

where childGpiq is the set of children of node i in DAG G. We can again compute the Fourier support
for fi for each non-terminal node.
Theorem 2. If nodes of a Bayesian network BpG,Pq have rank 2 with respect to their parents πGp.q
and P , then the Fourier coefficient f̂ipBq for function fi defined by equation (6) for any non-terminal
node i and a set B P 2i is given by:

f̂ipBq “

#

0, |BzMBGpiq| ě 1
1

2n´1

ř

AP2V´i
gipAq

ś

kPchildGpiq
gkpAq

gipAq
ś

kPchildGpiq
gkpAq`gipAYtiuq

ś

kPchildGpiq
gkpAYtiuq

ψBpAq, otherwise

(7)

3.3 Algorithm

Our algorithm works on the principle that the terminal nodes are rank 2 with respect to their Markov
Blanket and P , while non-terminal nodes are not. This is true if for every non-terminal node there
exists a B P 2V such that |BzMBGpiq| “ 0 and f̂ipBq is nonzero. This is formalized in what
follows.
Assumption 4 (Non-terminal nodes are not rank 2). There exists a B P 2V for each non-terminal
node i, such that |B| “ 2, |BzMBGpiq| “ 0 and f̂ipBq as defined by Equation (7) is non-zero.

This distinction helps us to differentiate between terminal and non-terminal nodes. Note that the
set function fi is uniquely determined by its Fourier coefficients. Moreover, the Fourier support for
function fi is sparse. For terminal nodes, f̂ipBq is non-zero only for the empty set or the singleton
nodes, while for the non-terminal nodes, f̂ipBq is non-zero for B Ď MBGpiq. Thus, recovering
Fourier coefficients from the measurements of fi can be treated as recovering a sparse vector in R2i .
However, |2i| could be quite large. We avoid this problem by substituting fi by another function
gi P G2 where Gk “ tgi | @B P supportpgiq, |B| ď ku. Note that,

fipAjq “
ÿ

|Bk|“1

BkP2
i

f̂ipBkqψBkpAjq `
ÿ

|Bk|“2

BkP2
i

f̂ipBkqψBkpAjq `
ÿ

|Bk|ě3

BkP2
i

f̂ipBkqψBkpAjq (8)

and @gi P G2,

gipAjq “
ÿ

|Bk|“1

BkP2
i

f̂ipBkqψBkpAjq `
ÿ

|Bk|“2

BkP2
i

f̂ipBkqψBkpAjq (9)

It follows that for a terminal node i, gi “ fi as for terminal nodes fi P G1. For non-terminal nodes,
using results from Theorem 2, if B Ď MBGpiq then f̂ipBq ‰ 0 and therefore gi R G1. Now, let Ai
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be a collection of mi sets Aj P 2V´i chosen uniformly at random. We measure gipAjq for each
Aj P Ai and then using equation (2) we can write:

gipAjq “
ÿ

BkP2i,|Bk|ď2

p´1q|AjXBk|f̂ipBkq,@Aj P Ai (10)

Let gi P Rmi be a vector whose jth row is gipAjq and ĝi P Rn`p
n´1
2 q be a vector with elements of

form f̂ipBkq@Bk P ρi where

ρi “ tBk | Bk P 2i, |Bk| ď 2u (11)

is a set which contains supportpf̂iq. Then,

gi “Miĝi where, Mi P t´1, 1umiˆn such that Mi
jk “ p´1q|AjXBk| . (12)

Also note that for terminal nodes ĝi is sparse with |πGpiq| ` 1 non-zero elements for terminal
nodes and at max

`

k
2

˘

` k ` 1 non-zero elements for non-terminal nodes where k “ |MBGpiq|.
Equation (12) can be solved by any standard compressed sensing techniques to recover the parents of
the terminal nodes. Using this formulation and the fact that terminal nodes have non-zero Fourier
coefficients on empty or singleton sets, we can provide an algorithm to identify the terminal nodes and
their corresponding parents. We can use this algorithm repeatedly to identify the complete structure
of the Bayesian network until the last two nodes where we can not apply our algorithm. Algorithm 1
identifies the parents for each node and consequently the directed structure of the Bayesian network.

Algorithm 1: getParentspV q

Input :Nodes V “ t1, 2, . . . , nu
Output :Recovered parent set π̂ : V Ñ 2V

S Ð V ;
while |S| ě 3 do

T, π̂ “ getTerminalNodespSq ;
S Ð SzT ;

end
for i P S do

π̂piq “ φ;
end

Algorithm 2: getTerminalNodespSq

Input :Nodes S Ď t1, 2, . . . , nu
Output :Set of terminal nodes T and their parents

π̂ : T Ñ 2S

T Ð φ, π̂piq Ð φ @i P S ;
for node i P S, j P t1, . . . ,miu do

Choose Aj P 2Sztiu uniformly at random ;
Compute
fipAjq “ PpXi “ 0|XSztiu “ x

Aj
Sztiuq ;

Compute Mi
jk for Bk P ρi (Eq (11) (12)) ;

Solve for βi using compressed sensing (Eq
(13)) ;

if βipBq “ 0 for all |B| ą 1 then
T Ð T Y tiu ;
π̂piq Ð YB:βipBq‰0B ;

end
end

4 Analysis in Finite Sample Regime

So far our results have been in the population setting where we assumed that we had access to the true
conditional probabilities. However, generally this is not the case and we have to work with a finite
number of samples from the black-box. In this section, we provide theoretical results for different
finite sample regimes.

4.1 Without access to any observational data

In this setting, we assume that we only have access to a black-box which outputs observational
data for our conditional probability queries. One selection of nodes consists of fixing Xi and then
measuring Xi for each node i. We need only 1 selection for each node. Thus the total number of
selections for all the nodes is n. One query amounts to fixing Xi to a particular xi. Note that while
2n´1 such queries are possible for each selection on each node, we only conduct mi queries for each
node i.
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Number of Queries. We measure gipAjq by querying for fipAjq. Let |fipAjq ´ gipAjq| ď
εj ,@Aj P Ai for some εj ą 0. Once we have the noisy measurements of gipAjq, we can get a good
approximation of ĝi by solving the following optimization problem for each node i.

βi “ min
ĝiPR|ρi|

}ĝi}1 s.t.}Miĝi ´ fi}2 ď ε where ε “
d

ÿ

AjPAj

ε2j . (13)

Theorem 3. Suppose ĝi is constructed by computing ĝipBkq using Bk from a fixed collection ρi as
defined in Equation (11). Furthermore, suppose gi is computed by selecting mi sets Aj uniformly at
random from 2i. We define the matrix Mi as in equation (12). Then there exist universal constants
C1, C2 ą 0 such that if, mi ě maxpC1|supportpĝiq| log4

pn `
`

n´1
2

˘

q, C2|supportpĝiq| log 1
δ q and

βi is solved using equation (13). Then with probability at least 1 ´ δ, we have }βi ´ ĝi}2 ď
C3

ε?
mi

for some universal constant C3 ą 0. If the minimum non-zero element of |ĝi| is greater
than 2C3

ε?
mi

then βi recovers ĝi up to the signs. Furthermore, if Assumption 4 is satisfied then
|βipBq| ď C3

ε?
mi
,@B P ρi, |B| “ 2 if and only if i is a terminal node and π̂piq “ tB | |B| “

1, |βipBq| ą C3
ε?
mi
u correctly recovers the parents of the terminal node i, i.e., π̂piq “ πGpiq.

Applying this recursively shows the correctness of Algorithm 1.

The sparsity for each node would be less than or equal to
`

k
2

˘

` k ` 1. Thus the num-
ber of queries needed for each node (using arguments from Theorem 3) would be of order
Opmaxpk2 log4 n, k2 log 1

δ qq. At the first iteration, we query all the nodes. From the next iteration
onwards, we query for only the nodes which had terminal nodes as their children,i.e., for a maximum
of k nodes. Thus the total number of queries needed would be Opmaxpnk3 log4 n, nk3 log 1

δ qq. We
can recover parents for terminal nodes using Theorem 3.

Sample and Time Complexity. The sample complexity is Opmaxpnk
3 log4 n
ε2 plog k `

log log nq, nk
3

ε2 log 1
δ plog k` log log nqq and the time complexity is Opn4k

?
n log nq (See Appendix

B for details).

4.2 With Access to Some Observational Data

In this setting, we have access to some observational data as well. We can use the observational data
to figure out the Markov blanket of each node which helps us reduce number of selected variables in
the conditional probability queries. Once we have the Markov blanket, we only select the nodes in
MBGpiq for each query. We need only 1 selection for each node. Thus the total number of selections
for all nodes does not exceed n.

Using Observational Data. Recall that P is the true joint distribution over the nodes of a Bayesian
network BpG,Pq. We define a collection of distributions P over the nodes of the Bayesian network
as: P “

 

P is faithful to G. |P pXi|Xlq “ PpXi|Xlq,@i, l P t1, . . . , nu
(

Computing the Markov Blanket from Observational Data. Consider a probability distribution
P̂ P P on the nodes of the Bayesian network such that each node i is rank 2 with respect to MBGpiq

and P̂ . This allows us to recover the Markov blanket of the node using the observational data.

Theorem 4. If there exists a probability distribution P̂ P P such that each node i is rank 2 with
respect to MBGpiq and P̂ , then the Markov blanket of a node i can be recovered by solving the
following system of equations:

PpXi “ 0, Xl “ 0q “ Q̃ipXi “ 0qPpXl “ 0q `
ÿ

jP´i
j‰l

Q̃ijpXi “ 0, Xj “ 0qPpXj “ 0, Xl “ 0q

` Q̃ilpXi “ 0, Xl “ 0qPpXl “ 0q, @ l “ t1, . . . , nu, l ‰ i

PpXi “ 0q “ Q̃ipXi “ 0q `
ÿ

jP´i
j‰l

Q̃ijpXi “ 0, Xj “ 0qPpXj “ 0q
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which can be written in a more compact form:

y “ Aq (14)

where y P Rn and A P Rnˆn and q P Rn. The entries of y are indexed by l “ t1 . . . nu such that
yl “ PpXi “ 0, Xl “ 0q when l ‰ i and yl “ PpXi “ 0q when l “ i. The entries of A are indexed
by l, j P t1, . . . , nu, where Alj “ PpXl “ 0, Xj “ 0q for l ‰ i, j ‰ i, j ‰ l and , Alj “ PpXl “ 0q

when l “ j, l ‰ i, Alj “ PpXl “ 0q for l ‰ i, j “ i, Alj “ PpXj “ 0q for l “ i, j ‰ i and Alj “ 1

for l “ i, j “ i. The entries of q are indexed by j P t1, . . . , nu such that qj “ Q̃ijpXi “ 0, Xj “ 0q

for j ‰ i and qj “ Q̃ipXi “ 0q for j “ i.

For terminal nodes, existence of P̂ P P as P P P is guaranteed. To ensure that P̂ P P also exists for
non-terminal nodes, we make the following assumption:

Assumption 5. The population matrix A P Rnˆn as defined in equation (14) is positive definite.

This assumption is not strong. We can, in fact, show that A is a positive semidefinite matrix.

Lemma 1. The population matrix A as defined in equation (14) is a positive semidefinite matrix.

We can solve Equation (14) to get Q̃i and Q̃ij . The Markov blanket of node i is computed by
MBGpiq “ tj| Q̃ij ‰ 0u. To this end, we prove that:

Lemma 2. If Q̃ijp¨, ¨q,@j P t1, . . . , nu, j ‰ i is computed by solving system of linear equations (14)
and P̂ P P is faithful to G then Q̃ijp¨, ¨q ‰ 0,@j P t1, . . . , nu, j ‰ i if and only if j P MBGpiq.

Once we know the Markov blanket for each node i, the queries in Algorithm 2 can be changed from
fipAjq “ PpXi “ 0|XSztiu “ x

Aj
Sztiuq to fipAjq “ PpXi “ 0|XSXMBi “ x

Aj
SXMBi

q which helps
in reducing the sample and time complexity.

Number of Queries. Again, let |MBGpiq| ď k,@i P t1, . . . , nu. The sparsity for each node would
be less than or equal to

`

k
2

˘

` k ` 1. Thus number of queries needed for each node (using arguments
from Theorem 3) would be of order Opmaxpk2 log4 k, k2 log 1

δ q. As before, these queries are repeated
nk times. Thus the total number of queries needed would be Opmaxpnk3 log4 k, nk3 log 1

δ qq.

Sample and Time Complexity. We use the following lemma to get the sample complexity for the
observational data.
Lemma 3. N “ Op lognε2 q i.i.d observations are sufficient to measure elements of A and y, ε close
to their true value. That is |A ´ Â| ď ε and |y ´ ŷ| ď ε, for some ε ą 0 with probability at least
1´ 2 expplogp

`

n
2

˘

` 3nq ´ Nε2

2 q for some ε ą 0 where Â and ŷ are the empirical measurements of
A and y respectively and | ¨ ´ ¨ | denotes componentwise comparison for matrices.

At this point, it remains to be shown that we can still recover the Markov blanket for the nodes using
the noisy measurements of unary and pairwise marginals. Below, we prove that this is true as long as
A is well conditioned.
Lemma 4. Let Â and ŷ be the empirical measurements of A and y as defined in equation (14)
respectively such that |Â ´ A| ď ε and |ŷ ´ y| ď ε for some ε ą 0, where | ¨ ´ ¨ | denotes
componentwise comparison for matrices. Let q̂ be the solution to the system of linear equations given
by ŷ “ Âq̂ and ηκ8pAq ď 1, then q̂ recovers q up to signs as long as N “ Opnq i.i.d. measurements
are used to measure Â and maxi |qi|

mini |qi|
ď

1´ηκ8pAq
4ηκ8pAq

, where κ8pAq fi }A}8}A
´1
}8 is the condition

number of A and η “ maxp nε
řn´1
j“1 PpXj“0q`1

, ε
PpXn“0q q.

The time complexity of computing the Markov Blanket is Opn4q. The sample complexity for the
black-box queries is Opmaxpnk

3 log5 k
ε2 , nk

3

ε2 log 1
δ log kqq and the time complexity is Opnk4

?
k log kq

(See Appendix C for details).

For synthetic experiments validating our theory, please See Appendix D.
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Concluding Remarks. In this paper, we provide a novel method with theoretical guarantees to
recover directed structure of a Bayesian network using black-box queries. We further improve our
results when we have access to some observational data. We developed a theory for rank 2 CPTs
which can easily be extended to a more general rank k CPTs. It would be interesting to see if we
can provide similar results for a Bayesian network with low rank CPTs using pure observational or
interventional data.
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