
ADVECTIVENET: AN EULERIAN-LAGRANGIAN
FLUIDIC RESERVOIR FOR POINT CLOUD PROCESSING

Xingzhe He
Dartmouth College
Rutgers University ∗

Helen Lu Cao
Dartmouth College †

Bo Zhu
Dartmouth College ‡

ABSTRACT

This paper presents a novel physics-inspired deep learning approach for point
cloud processing motivated by the natural flow phenomena in fluid mechanics.
Our learning architecture jointly defines data in an Eulerian world space, using a
static background grid, and a Lagrangian material space, using moving particles.
By introducing this Eulerian-Lagrangian representation, we are able to naturally
evolve and accumulate particle features using flow velocities generated from a
generalized, high-dimensional force field. We demonstrate the efficacy of this
system by solving various point cloud classification and segmentation problems
with state-of-the-art performance. The entire geometric reservoir and data flow
mimics the pipeline of the classic PIC/FLIP scheme in modeling natural flow,
bridging the disciplines of geometric machine learning and physical simulation.

1 INTRODUCTION

features

+

flow

particle

Lagrangian advection

tn

tn+1

Eulerian velocity

Figure 1: We build an advective net-
work to create a fluidic reservoir with
hybrid Eulerian-Lagrangian represen-
tations for point cloud processing.

The fundamental mechanism of deep learning is to uncover
complex feature structures from large data sets using a hi-
erarchical model composed of simple layers. These data
structures, such as a uniform grid (Lecun et al., 1998), an
unstructured graph (Kipf & Welling, 2016), or a hierar-
chical point set (Qi et al., 2016a; 2017), function as ge-
ometric reservoirs to yield intricate underpinning patterns
by evolving the massive input data in a high-dimensional
parameter space. On another front, computational physics
researchers have been mastering the art of inventing geo-
metric data structures and simulation algorithms to model
complex physical systems (Gibou et al., 2019). Lagrangian
structures, which track the motion in a moving local frame
such as a particle system (Monaghan, 1992), and Eulerian
structures, which describe the evolution in a fixed world
frame such as a Cartersian grid (Fedkiw et al., 2001), are
the two mainstream approaches. Various differential oper-
ators have been devised on top of these data structures to
model complex fluid or solid systems.

Pioneered by E (2017) and popularized by many others, e.g., (Long et al., 2018; Chen et al., 2018;
Ruthotto & Haber, 2018), treating the data flow as the evolution of a dynamic system is connecting
machine learning and physics simulation. As E (2017) notes, there exists a mathematical equivalence
between the forward data propagation on a neural network and the temporal evolution of a dynamic
system. Accordingly, the training process of a neural network amounts to finding the optimal control
forces exerted on a dynamic system to minimize a specific energy form.

Point cloud processing is of particular interest under this perspective. The two main challenges:
to build effective convolution stencils and to evolve learned nonlinear features (Qi et al., 2016a;
∗xingzhe.he@rutgers.edu
†Helen.L.Cao.22@dartmouth.edu
‡bo.zhu@dartmouth.edu

1

Atzmon et al., 2018; Wang et al., 2019), can map conceptually to the challenges of devising world-
frame differential operators and tracking material-space continuum deformations when simulating
a PDE-driven dynamic system in computational physics. We envision that the key to solving these
challenges lies in the adaption of the most suited geometric data structures to synergistically handle
the Eulerian and Lagrangian aspects of the problem. In particular, it is essential to devise data
structures and computational paradigms that can accommodate global fast convolutions, and at the
same time track the non-linear feature evolution.

The key motivation of this work originates from physical computing that tackles its various frame-
dependent and temporally-evolved computational challenges by creating the most natural and effec-
tive geometric toolsets under the two different viewpoints. We are specifically interested in uncov-
ering the intrinsic connections between a point cloud learning problem and a computational fluid
dynamic (CFD) problem. We observe that the two problems share an important common thread
regarding their computational model, which both evolve Lagrangian particles in an Eulerian space
guided by the first principle of energy minimization. Such observations shed new insight into the 3D
point cloud processing and further opens the door for marrying the state-of-the-art CFD techniques
to tackle the challenges emerging in point cloud learning.

To this end, this paper conducts a preliminary exploration to establish an Eulerian-Lagrangian flu-
idic reservoir that accommodates the learning process of point clouds. The key idea of the proposed
method is to solve the point cloud learning problem as a flow advection problem jointly defined in
a Eulerian world space and a Lagrangian material space. The defining characteristic distinguishing
our method from others is that the spatial interactions among the Lagrangian particles can evolve
temporally via advection in a learned flow field, like their fluidic counterpart in a physical circum-
stance. This inherently takes advantage of the fundamental flow phenomena in evolving and sepa-
rating Lagrangian features non-linearly (see Figure 1). In particular, we draw the idea of Lagrangian
advection on an Eulerian reservoir from both the Particle-In-Cell (PIC) method (Evans & Harlow,
1957) and the Fluid-Implicit-Particle (FLIP) method (Brackbill et al., 1987), which are wholly rec-
ognized as ’PIC/FLIP’ in modeling large-scale flow phenomena in both computational fluids, solids,
and even visual effects. We demonstrate the result of this synergy by building a physics-inspired
learning pipeline with straightforward implementation and matching the state-of-the-art with this
framework.

The key contributions of our work include:

• An advective scheme to mimic the natural flow convection process for feature separation;
• A fluid-inspired learning paradigm with effective particle-grid transfer schemes;
• A fully Eulerian-Lagrangian approach to process point clouds, with the inherent advantages

in creating Eulerian differential stencils and tracking Lagrangian evolution;
• A simple and efficient physical reservoir learning algorithm.

2 RELATED WORKS

This section briefly reviews the recent related work on point cloud processing. According to data
structures used for building the convolution stencil, the methods can be categorized as Lagrangian
(using particles only), Eulerian (using a background grid), and hybrid (using both). We also review
the physical reservoir methods that embed network training into a physical simulation process.

Lagrangian Lagrangian methods build convolution operators on the basis of local points. Exam-
ples include PointNet (Qi et al., 2016a), which conducts max pooling to combat any disorganized
points, PointNet++ (Qi et al., 2017), which leverages farthest point sampling to group particles,
and a set of work (Wang et al., 2019; Xu et al., 2018; Li et al., 2018b;a; Jiang et al., 2018) based
on k-nearest neighbors. Beyond the mesh-free approaches, researchers also seek to build effective
point-based stencils by establishing local connectivities among points. Most significantly, geometric
deep learning (Bruna et al., 2013; Bronstein et al., 2016) builds convolution operators on top of a
mesh to uncover the intrinsic features of objects’ geometry. In particular, we want to highlight the
work on dynamic graph CNN (Wang et al., 2019), which builds directed graphs in an extempora-
neous fashion in feature space to guide the point neighbor search process, which shares similarities
with our approach.

2

segmentation

classification

P:
k features

P:
k features

…1 2 j
G:

k features
P:

k features

…1 2 j+1
P:

k features

…1 2 4

a b c d e f g
MLP

jth loop: particle position and feature update

G: u v w
k features

Figure 2: Workflow overview: a) The feature vector for each particle is initialized by a 1× 1 con-
volution; b) Particles are embedded in an Eulerian grid; c) Features are interpolated from particles to
the grid, denoted as IG

P ; d) 3D convolution is applied on the grid to calculate the generalized forces
and grid features; e) A velocity field is generated on the background grid; f) Particles advect in the
Eulerian space using the interpolated velocities; grid features are interpolated to particles, denoted
as IP

G , and appended to its feature vector; g) Particles aggregate. The workflow consists of one
loop to update the particle positions and features iteratively with temporal evolution. Finally, the
Lagrangian features are fed into a fully-connected network for classification and segmentation.

Eulerian Eulerian approaches leverage background discretizations to perform computation. The
most successful Eulerian method is the CNN (Lecun et al., 1998), which builds the convolution op-
erator on a 2D uniform grid. This Eulerian representation can be used to process 3D data by using
multiple views (Su et al., 2015; Qi et al., 2016b; Feng et al., 2018) and extended to 3D volumetric
grids (Maturana & Scherer, 2015; Qi et al., 2016b; Z. Wu, 2015). Grid resolution is the main per-
formance bottleneck for 3D CNN methods. Adaptive data structures such as Octree (Riegler et al.,
2016; Wang et al., 2017; 2018), Kd-tree (Klokov & Lempitsky, 2017), and multi-level 3D CNN
(Ghadai et al., 2018) were invented to alleviate the problem. Another example of Eulerian structures
is Spherical CNN (Cohen et al., 2018) that projects 3D shapes onto a spherical coordinate system to
define equivalent rotation convolution. In addition to these voxel-based, diffusive representations,
shapes can also be described as a sharp interface modeled as an implicit level set function (Hu et al.,
2017; Park et al., 2019; Mescheder et al., 2019). For each point in the space, the level set function
acts as a binary classifier checking whether the point is inside the shape or not.

Hybrid There have been recent attempts to transfer data between Lagrangian and Eulerian rep-
resentations for efficient convolution implementation. These data transfer methods can be one-way
(Wang et al., 2017; Klokov & Lempitsky, 2017; Tchapmi et al., 2017; Le & Duan, 2018), in which
case the data is mapped from points to grid cells permanently, or two-way (Su et al., 2018; Atzmon
et al., 2018; Liu et al., 2019; Groueix et al., 2018), in which case data is pushed forward from parti-
cle to grid for convolution and pushed backward from grid to particle for evolution. Auto-encoders
on point clouds (Fan et al., 2016; Achlioptas et al., 2017; Yang et al., 2017; Yu et al., 2018; Zhao
et al., 2019) can be also regarded as a hybrid approach, where encoded data is Eulerian and decoded
data is Lagrangian. In addition, we want to mention the physical reservoir computing techniques
that focus on the leverage of the temporal, physical evolution to solve learning problems, e.g., see
(Jaeger, 2001) and (Maass et al., 2002). Physical reservoir computing is demonstrating successes
in various applications (Jalalvand et al., 2015; Jaeger, 2002; Hauser et al., 2012; Lukoševičius &
Jaeger, 2009; Tanaka et al., 2019).

3 ALGORITHM

PIC/FLIP overview Before describing the details of our method, we begin with briefly surveying
the background of the PIC/FLIP method. PIC/FLIP uses a hybrid grid-particle representation to
describe fluid evolution. The particles are used for tracking materials, and the grid is used for dis-
cretizing space. Properties such as mass, density, and velocity are carried on particles. Each simula-
tion step consists of four substeps: particle-to-grid transfer IG

P , grid force calculation (Projection),
grid-to-particle transfer IP

G , and moving particles (Advection). In the IG
P step, the properties on each

particle are interpolated onto a background grid. In the Projection step, calculations such as adding
body forces and enforcing incompressibility are conducted on the background grid. After this, the
velocities on grid nodes are interpolated back onto particles, i.e., IP

G . Finally, particles move to their
new positions for the next time step using the updated velocities (Advection). As summarized above,
the key philosophy of PIC/FLIP is to carry all features on particles and to perform all differential

3

calculations on the grid. The background grid functions as a computational paradigm that can be
established extemporaneously when needed. Data will transfer from particle to grid and then back
to particle to finish a simulation loop.

Our proposed approach follows the same design philosophy as PIC/FLIP by storing the learned
features on particles and conducting differential calculations on the grid. The Lagrangian features
will evolve with the particles moving in an Eulerian space and interact with local grid nodes. As
shown in Figure 2, the learning pipeline mimics the PIC/FLIP simulation loop in the sense that
Lagrangian particles are advected passively in an Eulerian space guided by a learned velocity field.

Initialization We initialize a particle system P and a background grid G as the Lagrangian and
Eulerian representations respectively for processing point clouds. We use the subscript p to refer to
particle indices and i to refer to the grid nodes. For the Lagrangian portion, the particle system has
n particles, with each particle Pp carrying its position xp ∈ R3, velocity vp ∈ R3, mass mp ∈ R,
and a feature vector fp ∈ Rk (k = 64 initially). The particle velocity is zero at the beginning. The
particle mass mp = 1 will keep constant over the entire evolution. To initialize the feature vector
fp, we first put the particles in a grid with size N3. For each cell, we calculate 1) the center of mass
of all the particles in the cell, and 2) the normalized vector pointing from each particle to the this
mass center. For each particle, we concatenate these two vectors to the initial feature vector. This
process is repeated for N = 2, 4, 6, 8, 10, 12. The resulting feature vector with the length of 6 × 6
are fed into a multi-layer perceptron (MLP) to generate the feature vector fp.

For the Eulerian part, we start with a 3D uniform grid G to represent the bounding box of the
particles. The resolution of the grid is N3 (N = 16 for most of our cases). At the beginning, the
particle system and its bounding box are normalized to the space of [−1, 1]3. Each grid node Gi of
G stores data interpolated from the particles.

Particle-grid transfer Both the interpolation from grid to particle and particle to grid are executed
using tri-linear interpolation, which is a common scheme for property transfer in simulation and
learning code.

Generalized grid forces With the feature vectors transferred from particles to grid nodes, we
devise a 3D CNN on the grid to calculate a generalized force field based on the Eulerian features. The
network consists of three convolution layers, with each layer as a combination of 3D convolution,
batch norm, and ReLU. The input of the network is a vector field F(kj)×N×N×N composed of the
feature vectors on all grid nodes, with k as the feature vector size (64 by default) and j as the iteration
index in the evolution loop (see Figure 2). The output is a convoluted vector field F(kj)×N×N×N

c
with the same size as F.

We use Fc for two purposes: 1) To interpolate Fc from the grid back onto particles and append it to
the current feature vector in order to enrich its feature description; 2) To feed Fc into another single-
layer network to generate the new Eulerian velocity field V for the particle advection. Specifically,
this V is interpolated back onto particles in the same way as the feature interpolation to update the
particle positions for the next iteration (see Advection for details).

Advection The essence of an advection process is to solve the advection equation with the La-
grangian form Dv/Dt = 0 or the Eulerian form ∂v/∂t+ v · ∇v = 0. The advection equation de-
scribes the passive evolution of particle properties within a flow field. With the learned grid velocity
field in hand, we will update the particle velocity following the conventional scheme of PIC/FLIP.
Specifically, the new velocity is first updated by interpolating the Eulerian velocity to particles (the
PIC step):

vn+1
PIC = IP

G (vn+1
g) (1)

Then, we interpolate the difference between the new and the old Eulerian velocity:

vn+1
FLIP = vn

p + IP
G (vn+1

g − IG
P (vn

p)), (2)

and then add them to the particle with a weight α (=0.5 in default.):

vn+1
p = α ∗ vn+1

PIC + (1− α) ∗ vn+1
FLIP (3)

4

With the updated velocity on each particle from the IP
G interpolation, the particle’s position for

the next time step can be updated using a standard time integration scheme (explicit Euler in our
implementation):

xn+1
p = xn

p + vn+1
p ∆t. (4)

Boundary conditions We apply a soft boundary constraints by adding an penalty term in the
objective function to avoid particles moving outside of the grid:

φb =
1

n

∑
p

max(0, ‖xp‖2 − 1) (5)

where xp represents the pth particle in the whole batch and n is the number of particles in the whole
batch. We penalize on all the particles that run outside the grid.

We also design the gather penalty and the diffusion objectives to enhance the particle diffusion and
clustering effects during evolution (specifically for the segmentation application):

φg =
1

2

∑
l

∑
m

max(0, 1− ‖cl − cm‖) (6)

φd =
1

n

∑
l

∑
p

‖cl − xlp‖ (7)

where cl and cm are the centers of particles of label l and m and xlp is the pth particle with label l.

4 NETWORK ARCHITECTURE

The global architecture of our network is shown in Figure 3. Our model starts from a point cloud
with the position of each point. After an initialization step ending with a two-layer MLP (64,64),
each point carries a feature vector of length 64. These features are fed into the advection module to
exchange information with neighbors. The generated features have two uses: to generate the velocity
for each particle, and to be used along with the new advected particle position to collect information
from neighbors. This process repeats for a few times to accumulate features in the feature space and
to aggregate particles in the physical space.

Advection module The data flow inside the advection module starts with particles, passes through
layers of grids, then sinks back to particles. This module takes the position and the feature vector as
input. The feature vectors are first fed into an MLP to reduce its dimensions to 32, which saves com-
putational time and prevents over-fitting. Then, we apply three layers of convolution that are each a
combination of 3D convolution, batch norm, and ReLU, with a hidden-layer size as (32,16,32) on the
grid, to obtain a high-dimensional, generalized force field on the grid. Afterwards, a velocity field is
generated from this force field by another two-layer network. The velocity field is then interpolated
back to particles for Lagrangian advection. Additionally, to generate the output feature vector, the
input and output features (with 32-dimension each) are concatenated together and appended to the
original feature vector. The output of the advection module is a set of particles with new positions
and new features that are ready to process for the next iteration as in Figure 2.

5 EXPERIMENTS

We conducted three parts of experiments, including the ablation tests and the applications for classi-
fication and segmentation. We implemented the system in PyTorch (see the submitted source code)
and conducted all the tests on a single RTX 2080 Ti GPU. In the ablation tests, we evaluated the
functions of the advection module, temporal resolution, grid resolution, and the functions of the
PIC/FLIP scheme on ModelNet10 (Z. Wu, 2015) and ShapeNet (Yi et al., 2016). For classification,
we tested our network on ModelNet40 and its subset ModelNet10. We used the class prediction
accuracy as our metric. For segmentation, we tested our network on ShapeNet (Yi et al., 2016) and
S3DIS data set (Armeni et al., 2016). We used mean Intersection over Union (mIoU) to evaluate our
method and compare with other benchmarks.

5

(p
 x

 3
)

in
pu

t p
oi

nt
s

Advection
Module

MLP(64, 64)

(p
 x

 3
6)Feature

generation

MLP(1024)

(p
 x

 1
02

4) MLP(512, 256, c)max pooling

10
24 c

MLP(256, 128, c)

(p
, c

)

cl
as

sif
ic

at
io

n
ou

tp
ut

 sc
or

es
se

gm
en

ta
tio

n
ou

tp
ut

 sc
or

es

replace

(p
 x

 (i
*6

4)
)

(p
 x

 ((
i+

1)
*6

4)
))

For i from 1 to T

repeat

Advection Module

P2G
interpolation (g

 x
 3

2)

Conv3d
(32, 16, 32)

(g
 x

 3
2)

(p
 x

 3
2)

MLP(32)

(p
 x

 3
2)

(p
 x

 (i
*1

28
))

(p
 x

 ((
i+

1)
*6

4)
))

Conv3d
(16, 3)

(g x 3)PIC/FLIP

(p x 3)
velocity
(p x 3)

G2P
interpolation

in
pu

t f
ea

tu
re

s

input points

Figure 3: Network architectures: The top diagram demonstrates the global architecture of our net-
work with detailed information for tensor dimensionality and modular connectivity. The blue box is
for particle states and the orange box indicates grid states. The dotted green box is the module gen-
erating the initial Lagrangian features. The dotted red box is for the functional module of advection
(see the bottom diagram). The states are connected with multi-layer perceptrons (black arrows in
the diagram). Each MLP has a number of hidden layers with a different number of neurons (spec-
ified by the numbers within the parentheses). The bottom figure shows the details of the advection
module updating the particle features by transferring data on the grid and concatenating particles.
Meanwhile, it updates the particle positions with the generalized Eulerian forces calculated on the
grid.

5.1 ABLATION EXPERIMENTS

Advection We turn off the advection module to verify the its effectiveness for the final perfor-
mance. We conducted the comparison on the ShapeNet data set (Yi et al., 2016). The mIoU reached
86.2% with the advection module in comparison to 85.3% without it, necessitating the role of the
advection step.

Table 1: Temporal resolution
ts 0 1 2 3 4 5 6 7 8
Acc 93.2 95.2 95.4 94.8 94.7 95.1 95.1 95.2 95.1

Temporal resolution (Physical Intuition) The evolu-
tion of a dynamic system can be discretized on the tem-
poral axis by the numerical integration with a number of
steps. Given a fixed total time, the number of timesteps
is in an inverse ratio to the length of each step. For a typ-
ical explicit scheme (e.g., explicit Euler), a small timestep leads to a numerically secure result at
the expense of performing more time integrations; while a large timestep, although efficient, might
explode out of the stable region.

time steps

Ac
cu

ra
cy

Figure 4: Temporal accuracy

(Numerical Tests) Motivated by this numerical intuition, we in-
vestigated the effects of temporal resolution on our learning prob-
lem. Specifically, we tested the performance of the network re-
garding both the learning accuracy and the evolved shape by sub-
dividing the numerical integration into 0-8 steps (0 means no in-
tegration). The test was performed on ModelNet10. As shown
in Table 1 and Figure 4, the learning accuracy stabilizes around
95% as the number of integration increases, with 2 steps and 4 steps as the maximum (95.4%) and
minimum (94.7%), indicating a minor effect from the temporal resolution on learning accuracy. For
the shape convergence, we demonstrated that different temporal resolutions converge to very similar
final equilibrium states, despite of the different time step sizes. As shown in Figure 5, the point-
cloud model of an airplane is advected with different velocity fields generated on different temporal
resolutions. The final shapes with timestep 2, 3, and 6 all exhibit the same geometric feature separa-
tions and topological relations. This result evidences our conjecture that all the temporal resolutions
we used are within the stable region, motivating us to pick a larger time step size (total time/3 for
most of our cases) for efficiency.

6

2 time steps

3 time steps

6 time steps

1 2

1 2 3

1 2 3 4 5 6

Figure 5: Visualization of the advection of an airplane is shown with time steps of 2, 3 and 6. Note
that we rotate the point cloud and normalize the velocity field for visualization purposes.

Figure 6: Visualization of segmentation. Examples of different categories are depicted, consisting
of initial shape, intermediary grouping, and final part prediction.

Table 2: Spatial resolution
83 163 323

ModelNet10 Acc (1024 pnts) 94.4 95.4 95.1
ModelNet10 pnts per cell 6.8 1.6 1.0

ShapeNet mIoU (2048 pnts) 85.4 86.1 86.2
ShapeNet pnts per cell 21.4 5.2 1.7

Spatial resolution (Physical Intuition) For a typ-
ical particle-grid simulation in CFD, the resolution
of the grid and the number of particles are corre-
lated. Making sure that each grid cell should contain
enough number of particles (e.g., 1-2 particles per
cell), ensures information exchange between these two discretizations is accurate. Empirically, an
overly refined grid will lead to inaccurate Eulerian convolution due to the large bulk of empty cells,
while an overly coarse grid will dampen the motion of particles due to artificial viscosity (e.g., see
Evans & Harlow (1957); Brackbill et al. (1987)), which makes the number of particles per cell ppc
a key hyperparameter.

(Numerical Validation) We validate this grid-particle design art from scientific computing by testing
our network with different grid resolutions. As shown in Table 5.1, we tested the grid resolution of
83, 163, and 323 on two datasets with 1024 and 2048 particles separately. We observed that a 163

grid fits the 1024 dataset best and a 323 grid fits the 2048 dataset best. By calculating the average
ppc for each case, we made a preliminary conclusion that the optimal ppc is around 1.5-1.8. This
also implies an optimal grid resolution for a point-set with N particles to be (ppc ∗N)1/3.

Ac
cu

ra
cy

Time Steps
Figure 7: PIC/FLIP VS PIC

PIC/FLIP (Physical Intuition) Temporal smoothness is
key for developing a dynamic system to achieve its equi-
librium state. PIC/FLIP obtains such smoothness by av-
eraging weighted velocities between two adjacent time
steps. (Numerical Validation) To highlight the role of this
averaging, we compared the accuracy between PIC/FLIP
and PIC only (no temporal averaging) on ModelNet10.
We can see from Figure 7 that the model with PIC/FLIP
quickly stabilizes to a high accuracy, outperforming the
model with PIC only.

7

5.2 APPLICATIONS
Table 3: Classification on ModelNet.

Method Input ModelNet10 ModelNet40
SO-Net 2048 pnts 94.1 90.9
PCNN 1024 pnts 94.9 92.3
PointNet 1024 pnts - 89.2
PointGrid 1024 pnts - 92.0
DGCNN 1024 pnts - 92.9
PointCNN 1024 pnts - 92.5
PointNet++ pnts, nors - 91.9
SpiderCNN pnts, nors - 92.4
O-CNN octree, nors 91.0 86.5
VoxNet grid (323) 92.0 83.0
Kd-Net kd-tree 94.0 91.8
FPNN grid - 87.5
MRCNN multi-level vox 91.3 86.2
Ours (163) 1024 pnts 95.4 92.8

Classification We tested our network on ModelNet40
(Z. Wu, 2015) and ModelNet10 for classification. We
use a grid resolution 163 to train both the networks. As
shown in Table 3, our result outperforms the state-of-
art on ModelNet10, noticeably surpassing those using
grids. On ModelNet40, our result rivals DGCNN (92.8%
v.s. 92.9%). But our parameter number is significantly
smaller than DGCNN (1M v.s. 21M .)

Segmentation We tested our algorithm for object part
segmentation on ShapeNet (Yi et al., 2016). We used
a grid resolution and 323 for training and testing. We
showed the state-of-art performance of our approach in Table 4. Since the category of each input
object is known beforehand, we trained separate models for each category. Note that we only com-
pared with point-based methods that had similar input (points or/and normals) as ours. It can be
seen that we outperform all the state-of-art with less parameters (1.1M , 2 time steps) Some exam-
ples animating the segmentation process can be seen in Figure 6.

Table 4: Segmentation results on ShapeNet.

Method input mIoU aero bag cap car chair ear
phone guitar knife lamp laptop motor mug pistol rocket skate

board table

PointNet 2k pnts 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PCNN 2k pnts 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
Kd-Net 4k pnts 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
DGCNN 2k pnts 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.0 93.3 82.6 59.7 75.5 82.0
PointCNN 2k pnts 86.1 84.1 86.4 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80.0 82.9
PointNet++ pnts, nors 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SO-Net pnts, nors 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
SpiderCNN pnts, nors 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
SPLATNet pnts, img 85.4 83.2 84.3 89.1 80.3 90.7 75.5 92.1 87.1 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.8
Ours (323) 2k pnts 86.2 84.4 83.8 85.7 81.7 91.1 74.7 91.7 87.2 84.9 96.4 72.2 95.9 84.3 58.5 75.1 83.4

6 DISCUSSION AND CONCLUSION

This paper presents a new perspective in treating the point cloud learning problem as a dynamic
advection problem using a learned background velocity field. The key technical contribution of
the proposed approach is to jointly define the point cloud learning problem as a flow advection
problem in a world space using a static background grid and the local space using moving particles.
Compared with the previous hybrid grid-point learning methods, e.g. two-way coupled particle-grid
schemes (Su et al., 2018; Atzmon et al., 2018; Liu et al., 2019), our approach solves the learning
problem from a dynamic system perspective which accumulates features in a flow field learned
temporally. The coupled Eulerian-Lagrangian data structure in conjunction with its accommodated
interpolation schemes provide an effective solution to tackle the challenges regarding both stencil
construction and feature evolution by leveraging a numerical infrastructure that is matured in the
scientific computing community. On another hand, our approach can be thought of as an exploration
in creating a new physical reservoir motivated by continuum mechanics in order to find alternative
solutions for the conventional point cloud processing networks. Thanks to the low-dimensional
physical space and the large time step our network allows, our learning accuracy rivals the state-of-
the-art deep networks such as PointCNN (Li et al., 2018b) and DGCNN (Wang et al., 2019) while
using significantly fewer network parameters (4% to 25% in our comparisons). Our future plan is
to scale the algorithm to larger data sets and handle more complex point clouds with sparse and
adaptive grid structures.

7 ACKNOWLEDGEMENT

This project is support in part by Dartmouth Neukom Institute CompX Faculty Grant, Burke Re-
search Initiation Award, and NSF MRI 1919647. Helen Lu Cao is supported by the Dartmouth
Women in Science Project (WISP) and Undergraduate Advising and Research Program (UGAR).

8

REFERENCES

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J. Guibas. Representation learn-
ing and adversarial generation of 3d point clouds. CoRR, abs/1707.02392, 2017.

I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-3D-Semantic Data for Indoor Scene
Understanding. ArXiv e-prints, February 2017.

Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio
Savarese. 3d semantic parsing of large-scale indoor spaces. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural networks by exten-
sion operators. CoRR, abs/1803.10091, 2018.

J. U. Brackbill, D. B. Kothe, and H. M. Ruppel (eds.). FLIP (Fluid-Implicit-Particle): A low-
dissipation, particle-in-cell method for fluid flow, April 1987.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geo-
metric deep learning: going beyond euclidean data. CoRR, abs/1611.08097, 2016.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. CoRR, abs/1312.6203, 2013.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
ferential equations. Advances in Neural Information Processing Systems, 2018.

Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. CoRR,
abs/1801.10130, 2018.

Weinan E. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 5(1):1–11, Mar 2017. ISSN 2194-671X. doi: 10.1007/s40304-017-0103-z.

M.W. Evans and F.H. Harlow. The particle-in-cell method for hydrodynamic calculations. 6 1957.

Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3d object
reconstruction from a single image. CoRR, abs/1612.00603, 2016.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of smoke. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’01, pp. 15–22, New York, NY, USA, 2001. ACM. ISBN 1-58113-374-X. doi: 10.1145/383259.
383260.

Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and Yue Gao. Gvcnn: Group-view convolu-
tional neural networks for 3d shape recognition. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Sambit Ghadai, Xian Yeow Lee, Aditya Balu, Soumik Sarkar, and Adarsh Krishnamurthy. Multi-
resolution 3d convolutional neural networks for object recognition. CoRR, abs/1805.12254, 2018.
URL http://arxiv.org/abs/1805.12254.

Frederic Gibou, David Hyde, and Ron Fedkiw. Sharp interface approaches and deep learning tech-
niques for multiphase flows. Journal of Computational Physics, 380:442–463, 2019.

Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu Aubry. AtlasNet:
A Papier-Mâché Approach to Learning 3D Surface Generation. In Proceedings IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018.

Helmut Hauser, Auke J. Ijspeert, Rudolf M. Füchslin, Rolf Pfeifer, and Wolfgang Maass. The role
of feedback in morphological computation with compliant bodies. Biological Cybernetics, 106
(10):595–613, Nov 2012. ISSN 1432-0770. doi: 10.1007/s00422-012-0516-4.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

9

http://arxiv.org/abs/1805.12254

Ping Hu, Bing Shuai, Jun Liu, and Gang Wang. Deep level sets for salient object detection. 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 540–549, 2017.

Herbert Jaeger. The” echo state” approach to analysing and training recurrent neural networks-with
an erratum note’. Bonn, Germany: German National Research Center for Information Technology
GMD Technical Report, 148, 01 2001.

Herbert Jaeger. Adaptive nonlinear system identification with echo state networks. In NIPS, 2002.

Azarakhsh Jalalvand, Glenn Wallendael, and Rik Van de Walle. Real-time reservoir computing
network-based systems for detection tasks on visual contents. pp. 146–151, 06 2015. doi: 10.
1109/CICSyN.2015.35.

Mingyang Jiang, Yiran Wu, and Cewu Lu. Pointsift: A sift-like network module for 3d point cloud
semantic segmentation. CoRR, abs/1807.00652, 2018.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. CoRR, abs/1609.02907, 2016.

Roman Klokov and Victor S. Lempitsky. Escape from cells: Deep kd-networks for the recognition
of 3d point cloud models. CoRR, abs/1704.01222, 2017.

Truc Le and Ye Duan. Pointgrid: A deep network for 3d shape understanding. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2018.

Yann Lecun, Leon Bottou, Y Bengio, and Patrick Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86:2278 – 2324, 12 1998. doi: 10.1109/5.726791.

Jiaxin Li, Ben M. Chen, and Gim Hee Lee. So-net: Self-organizing network for point cloud analysis.
CoRR, abs/1803.04249, 2018a.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convo-
lution on x-transformed points. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 820–
830. Curran Associates, Inc., 2018b.

Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel CNN for efficient 3d deep learn-
ing. CoRR, abs/1907.03739, 2019.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-net: Learning PDEs from data. In
Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3208–3216,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017. URL http://arxiv.org/abs/1711.05101.

Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent neural
network training. Computer Science Review, 3(3):127 – 149, 2009. ISSN 1574-0137. doi:
https://doi.org/10.1016/j.cosrev.2009.03.005.

Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural Comput., 14
(11):2531–2560, November 2002. ISSN 0899-7667. doi: 10.1162/089976602760407955.

D. Maturana and S. Scherer. VoxNet: A 3D Convolutional Neural Network for Real-Time Object
Recognition. In IROS, 2015.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2019.

Joe J Monaghan. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics,
30(1):543–574, 1992.

10

http://arxiv.org/abs/1711.05101

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548,
2017.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. arXiv preprint arXiv:1612.00593, 2016a.

Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas J.
Guibas. Volumetric and multi-view cnns for object classification on 3d data. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 5648–5656, 2016b.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. CoRR, abs/1706.02413, 2017.

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d representations
at high resolutions. CoRR, abs/1611.05009, 2016.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
CoRR, abs/1804.04272, 2018.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. Multi-view convo-
lutional neural networks for 3d shape recognition. In Proc. ICCV, 2015.

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan
Yang, and Jan Kautz. Splatnet: Sparse lattice networks for point cloud processing. CoRR,
abs/1802.08275, 2018.

Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki Kanazawa, Seiji
Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose. Recent advances in physical reser-
voir computing: A review. Neural Networks, 115:100 – 123, 2019. ISSN 0893-6080. doi:
https://doi.org/10.1016/j.neunet.2019.03.005.

Lyne P. Tchapmi, Christopher B. Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese. Segcloud:
Semantic segmentation of 3d point clouds. CoRR, abs/1710.07563, 2017.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-CNN: Octree-based
Convolutional Neural Networks for 3D Shape Analysis. ACM Transactions on Graphics (SIG-
GRAPH), 36(4), 2017.

Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. Adaptive o-cnn: A patch-based deep
representation of 3d shapes. ACM Trans. Graph., 37(6):217:1–217:11, December 2018. ISSN
0730-0301. doi: 10.1145/3272127.3275050.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics
(TOG), 2019.

Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. Spidercnn: Deep learning on point
sets with parameterized convolutional filters. CoRR, abs/1803.11527, 2018.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Interpretable unsupervised
learning on 3d point clouds. CoRR, abs/1712.07262, 2017.

Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
3d shape collections. SIGGRAPH Asia, 2016.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-net: Point cloud
upsampling network. CoRR, abs/1801.06761, 2018.

11

A. Khosla F. Yu L. Zhang X. Tang J. Xiao Z. Wu, S. Song. 3d shapenets: A deep representation for
volumetric shapes. In Computer Vision and Pattern Recognition, 2015.

Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3d point capsule networks. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

12

A PERFORMANCE ON S3DIS

In this part, we further discuss our algorithm and its performance on the large-scale S3DIS dataset
(Armeni et al., 2017). Unlike ModelNet and ShapeNet, the S3DIS consists of colored point clouds
collected from real world. We train on the area 1,2,3,4,6 and test on the area 5. We make some
modifications on our network structure to better fir this dataset.

1. We set the number of time steps to 4 instead of 2.
2. To allow large number of time steps (deeper networks), we replace our original MLP with

the ResNet blocks (He et al., 2015).
3. We use two more MLPs to encode the initial features on each point.
4. We scale the point cloud into the space [−0.9, 0.9]3 because the data contains many points

on the border plane, such as ceiling and floor.

The performance on the S3DIS is in the table 5.

Table 5: Segmentation results on S3DIS.

Method mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 58.93 52.61 5.85 40.28 26.38 33.22
SPGraph 58.04 89.35 96.87 78.12 0.00 42.81 48.93 61.58 84.66 75.41 69.84 52.60 2.10 52.22
SegCloud 48.92 90.06 96.05 69.86 0.00 18.37 38.35 23.12 70.40 75.89 40.88 58.42 12.96 41.60
PCCN 58.27 92.26 96.20 75.89 0.27 5.98 69.49 63.45 66.87 65.63 47.28 68.91 59.10 46.22
PointCNN 57.26 92.31 98.24 79.41 0.00 17.60 22.77 62.09 74.39 80.59 31.67 66.67 62.05 56.74
Ours 54.37 92.41 98.28 74.88 0.68 18.74 45.36 48.70 74.11 78.50 35.60 57.02 38.84 43.73

From the table we can see that the result obtained by AdvectiveNet is comparable to the states
of the art (with the highest mIoU in ceiling, floor, and beam), though it is less impressive to the
performance on ModelNet and ShapeNet. We observe that, in the S3DIS, the relative positions
of different parts are more flexible and less structured compared to ModelNet and ShapeNet. For
example, in ShapeNet, the wings of the airplanes are always on the two sides of the fuselages.
Hence, we would interpret our performance on ShapeNet thanks to the ability in detecting intrinsic
structures underlying the relative positions of the parts. The tendency to focus on relative positions
also explains why our algorithm outperforms the states of the art on detecting ceiling and floor (they
are always on the two sides of the rooms).

B IMPLEMENTATION DETAILS

We follow the data augmentation methods in (Li et al., 2018b). We use dropout ratio 0.3 on the last
fully connected layer before class score prediction. The decay rate for batch normalization starts
with 0.5 and is gradually decreased to 0.01. We use adamw optimizer (Loshchilov & Hutter, 2017)
with initial learning rate 0.001, weight decay rate 0.005, momentum 0.9 and batch size 32. The
learning rate is multiplied by 0.8 every 20 epochs. We train the model for 200 epochs. We use the
label smoothing techique (Pereyra et al., 2017) with confidence 0.8. We use the grid size 16 and 32
for classification and segmentation, respectively.

13

	Introduction
	Related Works
	Algorithm
	Network Architecture
	Experiments
	Ablation Experiments
	Applications

	Discussion and Conclusion
	Acknowledgement
	Performance on S3DIS
	Implementation Details

