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ABSTRACT

Recent advances in neural Sequence-to-Sequence (Seq2Seq) models reveal a
purely data-driven approach to the response generation task. Despite its diverse
variants and applications, the existing Seq2Seq models are prone to producing
short and generic replies, which blocks such neural network architectures from
being utilized in practical open-domain response generation tasks. In this re-
search, we analyze this critical issue from the perspective of the optimization goal
of models and the specific characteristics of human-to-human conversational cor-
pora. Our analysis is conducted by decomposing the goal of Neural Response
Generation (NRG) into the optimizations of word selection and ordering. It can
be derived from the decomposing that Seq2Seq based NRG models naturally tend
to select common words to compose responses, and ignore the semantic of queries
in word ordering. On the basis of the analysis, we propose a max-marginal rank-
ing regularization term to avoid Seq2Seq models from producing the generic and
uninformative responses. The empirical experiments on benchmarks with several
metrics have validated our analysis and proposed methodology.

1 INTRODUCTION

Past years have witnessed the dramatic progress on the application of generative sequential models
(also noted as seq2seq learning (Sutskever et al., 2014; Bahdanau et al., 2015)) on Neural Response
Generation (NRG) fields (Vinyals & Le, 2015; Serban et al., 2017). Seq2seq model has been proved
to be capable of directly generating reply given an open domain query (Li et al., 2016c; Xing et al.,
2017). Both relevant words or phrases are automatically selected, and smoothness and fluency of
responses are guaranteed through the end-to-end learning. Moreover, abundant impressive human-
to-machine conversation cases have been presented in many previous studies (Serban et al., 2016;
Shang et al., 2015; Shao et al., 2017).

Despite these promising results, current Sequence-to-Sequence (Seq2Seq) architectures for response
generation are still far from steadily generating relevant and coherent replies. The essential issue
identified by many studies is the Universal Replies: the model tends to generate short and general
replies which contain limited information, such as “That’s great!”, “I don’t know”, etc. (Li et al.,
2016b;d; Mou et al., 2016; Xing et al., 2017). Intuitively, this problem was attributed to the vast
coverage of common replies in the training set and insufficient guiding knowledge in the models’
response generation step (Mou et al., 2016; Shao et al., 2017). Hence, current efforts mainly focus on
introducing external information to the model (Mou et al., 2016; Xing et al., 2017), and encouraging
the model to generate diverse responses in searching space via variational beam search strategies
during inference (Shao et al., 2017; Li et al., 2016b;d).

Nevertheless, most previous analysis over the issue are empirical and lack of statistical evidence.
Therefore, in this paper, we conduct an in-depth investigation on the performance of seq2seq models
on the NRG task. In our inspections on the existing dialog corpora, it is shown that those repeatedly
appeared replies have two essential traits: 1) Most of them are composed of highly frequent words;
2) They cover a large portion of the dialog corpora that each universal reply stands for the response
of various queries. Above characteristics of universal replies deviate the NRG from other successful
applications of sea2seq model such as translation, and lead current generative NRG models to prefer
common replies. To discuss the influences from the specific distributed corpus, we decompose the
target sequence’s probability into two parts and analyze the probability respectively.
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Table 1: Replies and translated version of an example which reveal the different source-target sen-
tence distribution for dialog and translation.

Query I would add Metropolis to the list.

Replies I love this film so much.
Me too, it is a beautiful film.
This movie has beautiful background art.
Fritz is really a good director, I like his film.
Is ”Metropolis” based on a book?
Brigitte cooling off on the set of Metropolis.

Translate J’ajouterais Metropolis à la liste.
Je voudrais ajouter Metropolis à la liste.

To break down the mentioned characteristics of dialog corpora in the model training step, we propose
a ranking-oriented regularization term to prune the scores of those irrelevant replies. Experimental
results reveal that the model with such regularization can produce better results and avoid generating
ambiguous responses. Also, case studies show that the issue of generic response is alleviated that
these common responses are ranked relatively lower than more appropriate answers.

The main contributions of this paper are concluded as follows: 1) We analyze the loss function of
Seq2seq models on NRG task and conclude several critical reasons that the NRG models prefer
universal replies; 2) Based on the analysis, a max-marginal ranking regularization is presented to
help the model converge to informative responses.

2 ANALYSIS OF SEQ2SEQ MODELS FOR NRG

Different from significant advances in machine translation (Bahdanau et al., 2015) and abstractive
summarization (Rush et al., 2015; Nallapati et al., 2016), it remains challenging to apply Seq2Seq
models in practical response generation. One widely accepted issue within current models is that
Seq2Seq architectures are inclined to produce common and unrelated replies, even when the quality
of training data is significantly improved and different Seq2Seq variants are proposed. The primary
reason for this phenomenon lies in the fact that the semantic constraint from query to the possible
responses is naturally weak, since the responses to a given query are not required to be semantically
equivalent. In contrast, the references in machine translation or summarization are usually restricted
to be equivalent to each other semantically or even lexically. Especially, for machine translation,
words that appear in the target language should satisfy word level mapping from the source sentence,
so the learned word alignment function could ensure the model to generate suitable translated words.
Different from learning the semantic alignments between languages in NMT, in NRG the replies can
be diversified as they only need to satisfy the causality with the given queries. Moreover, given a
query, the sequential model is optimized to learn the shared information among all replies, thus
the model is more likely to choose those high-frequent common replies, which is also mentioned
in Ritter et al. (2011).

Taking the case in Table 1 for example, the topic of this query is about movie. It can be observed
that the replies shown in the table are semantically diversified: the first two replies are related to
the opinion of the respondent toward the movie, while the rest of the replies are about the director,
content, and origin of the movie. By contrast, the two valid translations in French are very similar
regarding their semantics, which can be attributed to the fixed word-level mapping between query
and targets.

2.1 PROBLEM DECOMPOSITION

The sequence-mapping problem in NRG can be decomposed into two independent sub-learning
problems: 1) Target word selection, in which a query is summarized and translated into the semantic
space of responses, and then a set of target words is selected to represent the meaning; 2) Word or-
dering, in which a grammatical coherent reply is generated based on the candidate word set (Vinyals
et al., 2016). The word selection and ordering of the target sequence are jointly learned which can
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Figure 1: Response Unigram probability distribution in Table 1.

also be reflected in the model’s loss function by two possible factored phases:

− log p(y|x) = − log p(S(y)|x)− log p(y|S(y), x) (1)

where x stands for the given query and y is the corresponding response with n words. Besides,
S(y) = {w1, · · · , wn|wi ∈ y, i ∈ [1, n]} represents all predicted words without sequential order,
so p(S(y)|x) is referred as the probability of the target word selection. Meanwhile, p(y|S(y), x)
indicates the probability of word ordering given this group of possible words. Thus, the objective
can be redescribed from maximizing the probability of the ground truth response y under query x to
maximizing these two joint probabilities simultaneously.

After the above interpretation, we will further discuss the impact of the implicative constriction
from two separated probabilities in Eq. 1, which results in the potential failure of models in learning
conversational patterns.

2.2 TARGET WORD SELECTION PROBABILITY

Assuming that we have a set of K ground-truth replies: {y1, · · · , yK} to a given query x, the up-
per bound of the target word selection probability can be derived via Jensen’s Inequality (Boyd &
Vandenberghe, 2004):

K∑
k

log p(S(yk)|x) =
K∑
k

log
∏

w∈S(yk)

p(w|x)

=
∑

w∈∪K
k S(yk)

log p(w|x)

≤ LS log
∑

w∈∪K
k S(yk)

p(w|x)
LS

(2)

where ∪Kk S(yk) denotes all the words appearing in the entire response set, and LS = | ∪Kk S(yk)|.
Thus, optimizing the first segment is proportional to maximizing the last conditional probabilities,
and the optimal strategy is to assign probabilities according to the frequency of words in these K
responses. Such strategy adopted by Seq2Seq can be verified by the long-tailed distribution of words
in Fig. 1, in which only few common words are assigned with preferred high probabilities. Given
that, during the inference, the best strategy is to employ more frequently occurring words rather than
rare ones such as “background,” “art,” and “director” in Table 1.

Furthermore, assuming that each response contains a fixed number of T words (so that 1 ≤ LS ≤
K × T ), we can find that the probability of each response for x is inversely proportional to K:

LS log
∑

w∈∪K
k S(yk)

p(w|x)
LS

= LS log
E(w|x)× T
K × T × LS

∝ log
1

(K × LS)LS
≤ log

1

K
(3)

where E(w|x) denotes the mean frequency of words appeared in these K replies, which is 1.32
for the cases in Table 1. In general, the mean frequency is around 1 owing to the long-tailed Uni-
gram distribution which satisfies Zipf’s law (Zipf, 1935). In other words, the target word selection
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probability is limited by K, so queries with more diverse answers are more challenging to learn.
Meanwhile, it is difficult to obtain good predictions for lower-informational queries, as they contain
more possible responses which are somewhat equivalent to a larger K (Li et al., 2016a).

Nonetheless, the translation task requires word-level mappings as they are well-aligned in the se-
mantic space, therefore source and target sentences are semantically equivalent. So that, translated
candidates are confined toK ≈ 1. Thus the upper bound can be approximated as the full probability.

2.3 WORD ORDERING PROBABILITY

2.3.1 LEMMAS

Before discussing the word ordering probability, we present four lemmas and corresponding proofs.
Moreover, all these lemmas are only available for the response generation task except Lemma 1.

According to the Zipf’s law (Zipf, 1935), the frequency of any word is inversely proportional to its
rank in the frequency table, such that the probability p(wi) = Z/iα, where Z ≈ 0.1, α ≈ 1, and i is
the frequency rank of the word wi. Then, denoting the vocabulary size as V and the total number of
query-response pairs as N , we can formulate two characteristics of a universal reply y as follows:

1) A response is universal if it consists of only top-t ranked words. For any wordw in such response,
p(w) ≥ 1/(10t) according to the Zipf’s law.

2) The amount of possible queriesM of y is directly proportional to the size of query-response pairs
N , noted as 1�M ∝ N .

To simplify, we suppose that t > 1000 to cover most universal replies, and the frequency of the
response not belonging to the universal replies is a constant c (1 ≤ c � M ). Accordingly, we can
derive the following lemmas.

Lemma 1 p(S(y)|y) = 1, p(S(y), y) = p(y), p(x, y,S(y)) = p(x, y).

Proof. Lemma 1 describes the obvious fact that the event “the word set of the response equals to
S(y)” must happen when the event ”y stands for the response” is established.

Lemma 2 p(x|yur) = ε1, where ε1 > 0 and is sufficiently small, and yur is a universal reply.

Proof. Based on the second character of the universal reply and the fact thatN is a very large number
for any large scaled datasets, Lemma 2 is established as: p(x|yur) = 1

M ∝
1
N = ε1

Lemma 3
∑
i p(y

ur
i |S(y)) → 1, p(yoj |S(y)) = ε2, where ε2 > 0 and is sufficiently small, yuri

stands for the i-th universal reply and yoj is the j-th non-universal grammatical replies, meanwhile,
S(yuri ) ⊆ S(y) and S(yoj ) ⊆ S(y)

Proof. According to the following inequation
∑t
i
1
i >

∫ t+1

1
1
xdx = ln(t + 1), we can get the

conclusion that the probability of a chosen word belonging to the most frequent t words is large than
0.1 ∗ ln(t + 1) > 0.69. Since y contains T words, there is at least T ln(t + 1) words belonging to
the top-t ranked on average according to the binomial distribution.

We suppose m responses are universal replies among the n possible responses when their words are
constrained by S(y). Besides, the proportion of m can be computed as:

m

n
=

Tln(t+1)∑
i=1

CiT∑T
j=1 C

j
T

∗ 1

10
ln(t+ 1)

=
2T −

∑T
i=Tln(t+1) C

i
T

2T
∗ 1

10
ln(t+ 1)

>
1

20
ln(t+ 1)

> 0.34

(4)
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where C donates the combination. Since n/m is not a very large number, the total probability of
these m replies can be deducted as:∑

i

p(yuri |S(y)) =
∑m
i f(y

ur
i )∑m

i f(y
ur
i ) +

∑n−m
i f(Y oi )

=
M ∗m

M ∗m+ c ∗ (n−m)

=
M

M + n/m− c

>
M

M + 3− c

(5)

where f(y) donates the frequency of a response y in the corpus. According to the Eq. 5 and the fact
that M ∝ N is a very large number for any practical large-scale datasets,

∑
i p(y

ur
i |S(y)) → 1

can be established. Apparently, for any other candidate response yoj , its probability satisfies
p(yoj |S(y)) < 1−

∑
i p(y

ur
i |S(y)) = ε2.

Lemma 4 Assuming each informative query has K ground-truth replies and the query-response
pairs are extracted from a multi-turn conversational corpus, a reply y not belonging to universal
replies has K unique queries, noted as p(x|y) = 1

K .

Proof. Most query-response pairs are extracted from a practical large-scale multi-turn conversational
corpus, so that any response always works as the post in another pair. That is, y also appearsK times
as it also has K replies. Therefore, there also exist K unique posts for y.

2.3.2 DISCUSSION

On the basis of Lemma 1, the word ordering probability could be deducted as:

log p(y|S(y), x) = log
p(S(y)|y) p(y) p(x|y,S(y))

p(S(y)) p(x|S(y))

= log1 + log
p(y)

p(S(y))
+ log

p(x|y,S(y))
p(x|S(y))

= log
p(y,S(y))
p(S(y))

+ log
p(x, y,S(y)) p(S(y))
p(y,S(y)) p(x,S(y))

= log p(y|S(y)) + log
p(x, y) p(S(y))
p(y) p(x,S(y))

= log p(y|S(y)) + log
p(x|y)

p(x|S(y))

= log p(y|S(y)) + log
p(x|y)∑

i p(x|yi)p(yi|S(y))

(6)

All the possible yi satisfying S(yi) ⊆ S(y) can be divided into three categories: ground-truth reply
y, universal replies yur and other replies yo. From above, we can get the following direct proportion
according to the Lemma 2 and Lemma 3,

∑
i

p(x|yi)p(yi|S(y))

= p(x|y)p(y|S(y)) +
∑
i

p(x|yuri )p(yuri |S(y)) +
∑
i

p(x|yoi )p(yoi |S(y))

∝ p(x|y)p(y|S(y)) + ε1 + ε2

(7)

On the basis of Eq. 7 and Lemma 4, for any reply y not belonging to universal replies, the Eq. 6 can
be further deducted as:
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log p(y|S(y), x) ∝ log p(y|S(y)) + log
p(x|y)

p(x|y)p(y|S(y)) + ε
∝ log p(y|S(y))

p(y|S(y)) +Kε (8)

where ε = ε1 + ε2 > 0, which is also a sufficiently small positive value. Thus, optimizing the word
ordering probability for the non-universal replies is partially equivalent to maximizing p(y|S(y)).
In fact the term p(y|S(y)) is the language model probability and it is irrelevant with the query
x (Maning et al., 2009). In the sequential models, it is performed as

∏
t p(yt|y1:t−1,S(y)), in

other words the sequences are generated based only on previously outputted words. This equation
indicates that optimizing the mainly seeks the grammatical competence based on the selected words.

2.4 BRIEF SUMMARY

In conclusion, the insufficient constraint of the target words’ cross-entropy loss in NRG is the pri-
mary reason that hinders seq2seq models from exploring presumable parameters. This situation is
mainly caused by the particular distribution of NRG corpus, since there exist many universal replies
composed of high-frequent words in corpus. Consequently, the model tends to promotes such uni-
versal replies, regardless of the given query.

3 MAX-MARGINAL RANKING REGULARIZATION

As discussed above, various responses corresponding to the same query appearing in the training
data leads to the undesired preference of NRG on universal replies, so an intuitive solution is remov-
ing the multiple replies and just keeping one-to-one pairs. However, filtering the training dataset in
large scale raises the difficulty of model training. Besides, naively removing the multiple replies is
detrimental to the reply diversity, which is important in NRG task. As shown in Table 1, an ideal
chatbot agent is prospected to provide all listed replies and build a connection with some keywords
such as ‘film’, ‘background’, ‘director’ and ‘book’, rather than other commonly appeared words like
‘I’, ‘him’, ‘a’ and ‘really’.

Thus, under this assumption, we propose a max-marginal ranking loss to emphasize the queries’
impact on these less common but relevant words. During training, as it becomes a necessity to con-
strain the learned feature space and reinforce related replies with more discriminative information,
we classify the candidate responses into two categories: positive (i.e., highly related) and negative
(i.e., irrelevant) answers. A training instance is re-constructed as a triplet (x, y, y−), where a tu-
ple (x, y) is the original query-response pair and noise y− is uniformly sampled from all of the
responses in the training data. Given that, the model’s loss function is reconstructed as:

`θ = − log p(y|x) + λmax{0,− log p(y|x) + log p(y−|x) + γ} (9)

where γ > 0, log p(y|x) denotes the cross-entropy loss between the model’s prediction and ground
truth sequences, and the second part encourages the separation between the irrelevant responses and
related replies. Moreover, the hyper-parameter λ defines the penalty for the seq2seq loss, it offers a
degree of freedom to control the importance of the max-marginal between the positive and negative
instances. The model is trained in the same setting as the conventional model when λ = 0.

The gradient of `θ is computed using the sub-gradient method, as the second term is non-
differentiable but convex (Agarwal & Collins, 2010). Supposing log p(y|x) − log p(y−|x) ≤ γ,
the gradient of the composed loss function can be formalized as:

∇θ`θ = −∇θlog p(y|x), (10)

If log p(y|x)− log p(y−|x) > γ, then the gradient should be written as:

∇θ`θ = −(λ+ 1)∇θlog p(y|x) + λ∇θlog p(y
−|x). (11)

The underlying motivation of our proposed loss function is based on three considerations: 1) Uni-
versal replies are more likely to be sampled from a statistical perspective, so adding a negative
term would directly ease the weight of these generic responses, and the ranking regularization can
penalize those irrelevant responses; 2) Positive and negative sentences overall share a same set of
generic words, which suggests that the loss optimization should pay more attention on those differ-
ent words rather than generic ones; 3) Only differentiable loss can solely be served as the model’s
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Table 2: Dataset statistics. For multiple replies, the three values represent the percentages of queries
with one, two, and more than two responses, respectively. For the out of vocabulary (OOV) columns,
the number in front of “/” denotes the percentage rate of the query, and the other one denotes replies.

# train # valid # test

QA Pairs 5,982,868 315,136 315,136
Unique Replies 4,499,176 298,723 287,312
Multi Replies(%) 70/24/6 97/2/1 96/3/1
OOV (%) .90/.90 .92/.93 .91/.92
Vocab Size 29241/27859

optimization goal for the sequence generation model. Furthermore, the newly proposed loss aims
to penalize frequent words and irrelevant candidates, rather than repudiating the literal expression
included in negative samples. Consequently, based on these considerations, we propose this term as
a regularization to constrain the search space of parameters instead of the stand-alone loss function.

4 EXPERIMENTAL STUDIES

4.1 EXPERIMENTAL SETUPS

4.1.1 DATASET DESCRIPTION

The dataset used in this study contained almost ten million query and response pairs collected from
a popular Chinese social media site: Douban Group Chat1. All case studies used in this paper were
extracted from this dataset and translated into English.

For easier training and better efficiency, the maximal lengths of queries and replies were set to 30
and 50 respectively. In all of our experiments, our dataset was split into the training, validation and
test sets, with detailed statistical characterization given in Table 2. Thirty percent of queries had
more than one responses, and each answer appeared about 1.33 times in the training dataset, which
is consistent with our hypothesis in the analysis section.

4.1.2 BASELINE MODELS

To validate the performance of the proposed model, the following baselines were considered:

• S2SA: The basic seq2seq model with attention mechanism (Bahdanau et al., 2015) at the target
output side.

• S2SA + MMI: The best performing model in Li et al. (2016b) with the length norm based on the
same S2SA.

• Ranking-Reg: The seq2seq model with proposed ranking regularization and attention. In this
model, negative samples were uniformly sampled from the corpus, and the process was repeated
4 times for every positive case. The averaged negative loss was calculated as the probability of
universal replies.

• Ranking-Reg + MMI: Ranking-Reg with MMI during inference procedure.

4.1.3 EVALUATION METRICS

The quality of response was measured using both numeric metrics and human annotators. Firstly,
Word Perplexity (PPL) is used to measure the model’s ability to account for the syntactic structure
for each utterance (Serban et al., 2016). Secondly, ROGUE score (Lin, 2004), which evaluates
the extent of overlapping words between the ground-truth and predicted replies, was also adopted in
experiments. Thirdly, we employed the widely used diversity measurements Distinct-1 and Distinct-
2 to evaluate the number of distinct Unigrams and Bigrams of generated responses (Li et al., 2016b).

Furthermore, we recruited three highly educated human annotators to cross verify the quality of
generated responses. We randomly sampled 100 queries and generated 10 replies for each query

1https://www.douban.com/group/explore
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Table 3: Summarized results of testing set with metrics: Human Label, ROGUE-1, ROGUE-L,
Distinct-1, Distinct-2 and PPL.

Methods Human Label ROUGE Distinct PPL0 1 2 ROUGE-1 ROUGE-L 1 2

S2SA 52.46% 20.52% 27.02% 4.97% 3.13% .129 .285 110.0
S2SA + MMI 51.88% 19.92% 28.20% 3.96% 2.77% .140 .312 110.0
Rank-Reg 48.20% 15.38% 36.42% 3.45% 2.55% .163 .358 85.6
Rank-Reg + MMI 47.40% 18.75% 33.85% 3.43% 2.63% .167 .345 85.6

using different models, with beam size set to 10. The labeled results were categorized into three
degree (Xing et al., 2017; Mou et al., 2016):

0: The response cannot be used as a reply to the message. It is either semantically irrelevant or not
fluent (e.g., with grammatical errors or UNK).

1: The response can be used as a reply to the message, which includes the universal replies such as
“Yes, I see” , “Me too” and “I dont know”.

2: The response is not only relevant and natural, but also informative and interesting.

4.1.4 TRAINING PROCEDURES

Epoches

M
od
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s’ 

C
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ss
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s2s+ Attention
ranking loss

Figure 2: Learning curve for the two models.

For all of the models, LSTM was chosen as
the recurrent cell, and there were 512 hidden
units for both the encoder and decoder (Gr-
eff et al., 2017). Embedding size and batch
size were set to 200 and 20 respectively. The
Adam algorithm was employed for gradient op-
timization (Kingma & Ba, 2015), and the ini-
tial learning rate was 1e-4. All of the models
were implemented in Theano (Theano Devel-
opment Team, 2016), and each ran on a stand-
alone K40m GPU device for 7 epochs, which
took 7 days; twice longer time was required for
training models with rank regularization.

The last two models with the rank regularization share the related hyper-parameters. We set λ to 0.1
and γ to 0.18, according to the model’s performance on the validation set.

Fig. 2 shows cross-entropy loss flows vs. training epoch numbers. The model with max-marginal
ranking regularization converges faster than S2SA throughout the training. This shows that the
additional regularization term helps to speed up the fitting by removing these sub-optimal paths.

4.2 RESULTS AND ANALYSIS

4.2.1 EXPERIMENTAL RESULTS.

The performance of four models on existing metrics is summarized in Table 3. The model with
the max-marginal ranking regularization outperforms the model with primary loss function on the
target loss PPL. As the MMI method is performing during inference, losses of models with MMI
are identical to those without revision.

However, the results are opposite regarding the ROGUE scores. The generated responses by the
S2SA model contain more words appearing in the ground truth answers. These experimental results
can be attributed to mainly two factors. a) The very low ROUGE scores reflect few words shared
by any predictions and the ground truth. Most n-gram overlaps belonging to the common words,
such as “I”, “are”, “that”. b) A certain proportion of replies in the test set are universal themselves.
Therefore, S2SA has achieved higher ROUGE score as its’ results are more consistent with those
common ground truth responses.
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1) Bank 
2) I thought banks are ok.
3) We go to bank, well 
4) We go to bank bank 
5) We go to bank, have a look. 
6) We go to bank, have a look?
7) I thought bank are more than bank
8) I thought bank are more reliable than bank.

Most Banks are not reliable.
 

1) That’s it.
2) I thought bank are more reliable. 
3) Why bank are not reliable?
4) We go to bank. 
5) What kind of unreliable?
6) What kind of unreliable? 
7) We go to bank!
8) I thought bank are well. 

1) Joy City Shopping mall? 
2) Is shopping mall? 
3) Joy City Shopping mall!  
4) Where is your location?  
5) Where?
6) Near that <unk> road.  
7) That Joy City shopping mall is great. 

1) Where is your home?
2) Where is your city?
3) Where is your location?
4) Where is your hometown?
5) Where is your city, hn?
6) Where is your location?
7) Where is your home, mine is near?

University are far away, and the city's most famous commercial street are near to me.

Query:

Query:

Replies from S2S+Attention:

Replies from S2S+Attention: Replies from Ranking Loss :

Replies from Ranking Loss :

Figure 3: Response re-rank capability. Responses generated by the basic model and model with rank
loss are linked by arrows, and same topics are typeset using the same color. Some ungrammatical
and incomprehensible sentences exist due to the translating try to keep the word order.

The human evaluation is the most important metric, and it is clear from Table 3 that the models
with rank regularization beat S2SA with a large margin. It increases the number of meaningful
responses by around 10% and reduces the number of irrelevant cases by around 4%. Meanwhile,
most the acceptable replies (labeled as “1” or “2”) of S2SA is labeled as “1”, which indicates the
model prefer the safe responses. We attribute the gaps to the promotion of highly related words and
reducing of the universal replies. Same trend can be also spotted on Distinct-1 and Distinct-2, it
reveals the model’s ability to generate diverse responses (Li et al., 2016b; Serban et al., 2015). The
seq2seq model yields lower levels of unigram and bigram diversity than the rank loss model.

As another comparison, we note that the improvement introduced by MMI is much smaller than that
introduced by the ranking regularization, whereas MMI is a widely used mechanism for promoting
diverse responses during inference. Besides, performing it upon the regularization reduces the rate
of informative and interesting responses. This observation indicates that the fundamental reason be-
hind generating tasteless or inappropriate replies is that Seq2Seq model learned from conversational
corpora prefers universal replies. Moreover, the revision during the greedy search is less effective
on solving the underlying problems than the proposed ranking regularization.

4.2.2 RANKING LOSS FOR GENERIC RESPONSES.

From the generated results, it is found that the seq2seq model with the ranking regularization term
prefers meaningful content when the query contains sufficient amount of information. We present
top responses for two queries generated by different models in Fig. 3. As shown in the first case,
user posts a query which initiates a complicated discussion about locations. It is observed that S2SA
converges to a typical “where is your” pattern of replies when discussing locations, which is an
example of universal replies. As the greedy beam search strategy is utilized during inference, many
location-related constraints further promote these relevant universal replies instead of more varied
results from different beams. In contrast, some of the responses in the right column captured the
“commercial street” clues and inferred a possible location “Joy City shopping mall” demoting the
generic beams results. We attributed this to the boosting ability associated with semantically relevant
words, as mentioned in Section 3.

The second case is quite different. In this case, the seq2seq model did not perform satisfactorily.
Even though the subject “bank” was extracted into the generated candidates, we cannot perceive
the results aligned with the same “not reliable” topic, and most of them were just chosen from two
beams. Inspecting the replies generated by the rank loss model, we found that more complicated and
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diverse sentences that discuss “unreliable” can be generated, and irrelevant answers about “bank” are
lower-ranked. To further investigate the difference brought by the max-marginal ranking regulariza-
tion, we randomly sampled more cases shown in the Fig. 4 as appendix. Even though some of them
were bad cases and contained some grammatical errors, overall the model with rank regularization
tends to generate more informative and interesting sentences compared with baselines.

In conclusion, the seq2seq model with rank regularization can not only formulate the conditional
language model but also boost related answers to higher ranks than the rest of universal or inappro-
priate replies.

5 RELATED WORK

Recent years have witnessed the rapid development of data-driven dialog models with the help of
accumulated conversational data from online communities. Query-response pairs are modeled by
Seq2Seq models with attention mechanism (Sutskever et al., 2014; Serban et al., 2016; Bahdanau
et al., 2015), and NRG model are designed to maximize the likelihood of target response given the
source query. As there exist various reasonable responses given a query, some researches conclude
that the limited information in many queries constrains the model inference, which makes the NRG
models prefer universal replies (Shao et al., 2017; Mou et al., 2016).

To address this issue, various works are conducted on bringing more information to Seq2Seq mod-
els. Some works focus on constraining the replies with topic information or keywords (Mou et al.,
2016; Xing et al., 2017; Wang et al., 2017; Wu et al., 2018). Other researchers argue that diverse
responses are buried by the greedy beam-search rules (Li et al., 2016b), so their works mainly fo-
cus on involving more punishment or randomness in the inference stages. For example, Li et al.
(2016b) constrain the search space using mutual information with the query, while Shao et al. (2017)
randomly chose candidate words from top beams to constrain short phrases. These existing works
mainly focus on the generation strategies during inference, in contrast, the model’s architecture and
loss function have rarely been explored.

Serban et al. (2017) introduce to model the underlying distribution over possible replies directly
with supposing various latent variables to affect the response generation. Shen et al. (2017) fur-
ther constructs a variational lower bound for response constraint. During inference, these models
generate responses by first sampling an assignment of latent variables, so that models can generate
more diverse responses. Such methods attempt to improve the diversity of responses by modify-
ing the Seq2Seq architecture, and our analysis may be also helpful to design more effective latent
variable based models to restrain current problems. Besides, the ranking penalty has also been used
by Wiseman & Rush (2016), they employ a word-level margin to promote ground-truth sequences
appearing in the beam search results. Different from our method, they directly optimize the beam
search procedure to fine-tune the trained model.

6 CONCLUSION

Eliminating generic responses is the essence for the widely practical utilization of the Seq2Seq based
neural response generation architectures, and thus, this paper has conducted a thorough investigation
on the cause of such uninformative responses and proposed the solution from the statistical perspec-
tive. The main contributions of this work can be summarized as follows: a) The theoretical analysis
is performed to capture the root reason of NRG models producing generic responses through the
optimization goal of models and the statistical characteristics of human-to-human conversational
corpora, which has been little studied currently. In detail, we have decomposed the goal of NRG
into the optimizations of word selection and word ordering, and finally derived that NRG models
tend to select common words as responses and order words from the language model perspective
which ignores queries. b) According to the analysis, a max-marginal ranking regularization term is
proposed to cooperate with the learning target of Seq2Seq, so as to help NRG models converge to
the status of producing informative responses, rather than merely manipulating the decoding proce-
dure to constrain the generation of universal replies. Furthermore, the empirical experiments on the
conversation dataset indicate that the models utilizing this strategy notably outperform the current
baseline models.
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A CASES

1) negotiable
2) Salary negotiable.
3) Salary negotiable. 
4) Salary negotiable！
5) Salary and payment negotiable.
6) Payment is nice.
7) Payment is nice, and salary negotiable.

How about the salary?
 

1) Salary negotiable.
2) Salary negotiable. 
3) High salary.
4) Basic salary and plus
5) Salary negotiable!
6) Salary and payment negotiable.
7) Payment is nice, send your CV.

1) Do nothing.
2) Go on.
3) Do nothing, hm.
4) How? 
5) Do nothing do nothing.
6) Then go ahead.  
7) So how do  you do? 

1) Do nothing.
2) Do nothing.
3) Go to sleep.
4) Don’t worry.
5) You should keep on.
6) Then go ahead.
7) Keep finding.

What should I do?

Query:

Query:
Replies form S2S+Attention:

Replies from S2S+Attention: Replies from Ranking Loss :

Replies from Ranking Loss :

1) 23
2) 22.
3) 21. 
4) 20.
5) 25.
6) 23 years old.
7) 22 years old.

I’m 23, why I’m still in growth?
 

1) 23.
2) 23. 
3) just 23.
4) just 22.
5) 23 years old are not
6) 23 years old are not old
7) 23 years old are not old!

Query:
Replies from S2S+Attention: Replies from Ranking Loss :

1) Xi’an.
2) Wuhan.
3) <unk>. 
4) Nanjing.
5) Junior.
6) In Junior.
7) In junior junior Shanghai.

Where are you graduate?
 

1) Peking.
2) Chengdu. 
3) Xi’an.
4) In Chengdu.
5) I study in Chengdu.
6) I study in Shanghai.
7) I study in Beijing.

Query:
Replies from S2S+Attention: Replies from Ranking Loss :

1) <unk>.
2) born.
3) born baby. 
4) children born.
5) born born children.
6) born born born children.
7) born children born children.

My child is born.
 

1) ok
2) Cheers!
3) Em.
4) ok, born child.
5) cheers, congulations!
6) born born born children.
7) born children born children.

Query:
Replies from S2S+Attention: Replies from Ranking Loss :

Figure 4: Cases for comparing the S2SA and the model with ranking regularization, and the topics
or expressions of the generated replies marked with blue are excluded in the responses generated by
SASA.
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