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ABSTRACT

Central to all machine learning algorithms is data representation. For multi-agent
systems, selecting a representation which adequately captures the interactions
among agents is challenging due to the latent group structure which tends to vary
depending on context. However, in multi-agent systems with strong group struc-
ture, we can simultaneously learn this structure and map a set of agents to a con-
sistently ordered representation for further learning. In this paper, we present a
dynamic alignment method which provides a robust ordering of structured multi-
agent data enabling representation learning to occur in a fraction of the time of pre-
vious methods. We demonstrate the value of this approach using a large amount
of soccer tracking data from a professional league.

1 INTRODUCTION

The natural representation for many sources of unstructured data is intuitive to us as humans: for
images, a 2D pixel representation; for speech, a spectrogram or linear filter-bank features; and for
text, letters and characters. All of these possess fixed, rigid structure in space, time, or sequential
ordering which are immediately amenable for further learning. For other unstructured data sources
such as point clouds, semantic graphs, and multi-agent trajectories, such an initial ordered structure
does not naturally exist. These data sources are set or graph-like in nature and therefore the natural
representation is unordered, posing a significant challenge for many machine-learning techniques.

A domain where this is particularly pronounced is in the fine-grained multi-agent player motions of
team sport. Access to player tracking data changed how we understand and analyze sport (Miller
et al., 2014; Franks et al., 2015; Wei et al., 2013; Cervone et al., 2014; Power et al., 2017; Sha et al.,
2016; 2018; Yue et al., 2014). More relevantly, sport has risen to an increasingly key space within
the machine learning community as an application to expand our understanding of adversarial multi-
agent motion, interaction, and representation (Lucey et al., 2013; Le et al., 2017; Felsen et al., 2018;
Zheng et al., 2016; Zhan et al., 2018; Yeh et al., 2019; Kurach et al., 2019).

In sport there exists strong, complex group-structure which is less prevalent in other multi-agent
systems such as pedestrian tracking. Specifically, the formation of a team captures not only the
global shape and structure the group, but also enables the ordering of each agent according to a “role”
within the group structure. In this regard, sport possesses relational structure similar to that of faces
and bodies, which can be represented as a graph of key-points. In those domains, representation
based on a fixed key-point ordering has allowed for cutting edge work across numerous tasks with
a variety of approaches and architectures (Antonakos et al., 2015; Cootes et al., 2001; Akhter et al.,
2012; Joo et al., 2015; Simon et al., 2017).

Unlike for faces and bodies, the representation graph in sport is dynamic as players constantly move
and switch positions. Thus dynamically discovering the appropriate representation of individual
players according to their role in a formation affords us structural information while learning a use-
ful representation for subsequent tasks. This challenge was addressed by the original role-based
alignment of Lucey et al. (2013) and subsequently by Bialkowski et al. (2016) and Sha et al. (2017).
Role-based alignment allows us to take unstructured multi-agent data, and reformat it into a consis-
tent vector format that enables subsequent machine learning (Fig. 1).

Here we formulate the role-based alignment as consisting of the phases of formation discovery and
role assignment. Formation discovery uses unaligned data to learn an optimal formation template;
during role assignment a bipartite mapping is applied between agents and roles in each frame to
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Figure 1: A structure representation enables machine learning of multi-agent data. (Left) Data-
points are colored according to the agent identity (letters denote agents in a given frame). (Right)
By learning and aligning data to a formation template, we represent agents in a consistent vector
form conducive to learning. Agents are now ordered by the role to which they are assigned.

produce “aligned data”. A major limitation in past approaches was the speed of the template discov-
ery process. In this work we propose an improved approach to the above alignment methods which
provides faster and more optimal template discovery for role-based representation learning. Impor-
tantly, we seek to learn the same representation as Lucey et al. (2013), Bialkowski et al. (2016),
and Sha et al. (2017) by maximizing the same objective function of Bialkowski et al. (2016) in a
more effective manner. The reduced computational load enables on-the-fly discovery of the forma-
tion templates, new context-specific analysis, and rapid representation learning useful for modeling
multi-agent spatiotemporal data.

Our main contributions are: the formulation of this problem as a three-step approach (formation
discovery, role assignment, template-clustering), the use of soft-assignment in the formation discov-
ery phase thereby eliminating the costly hard-assignment step of the Hungarian Algorithm (Kuhn,
1955), a resetting training procedure based on the formation eigenvalues to prevent spurious op-
tima, quantification of the impact of initialization convergence and stability, a restriction of the
training data to key-frames for faster training with minimal impact on the learned representation,
and a multi-agent clustering framework which captures the covariances across agents during the
template-clustering phase.

2 BACKGROUND

2.1 REPRESENTING STRUCTURED MULTI-AGENT DATA

A collection of agents is by nature a set and therefore no defined ordering exists a priori. To impose
an arbitrary ordering introduces significant entropy into the system through the possible permuta-
tions of agents in the imposed representation.

To circumvent this, some approaches in representing multi-agent tracking data in sport have included
sorting the players based on an “anchor” agent (Mehrasa et al., 2018). This is limiting in that the
optimal anchor is task-specific, making the representation less generalizable. An “image-based”
representation (Yue et al., 2014; Zheng et al., 2016; Miller et al., 2014) eliminates the need for an
ordering, however, this representation is lossy, sparse, and high-dimensional.

The role-based alignment protocol for sport of Lucey et al. (2013) used a codebook of hand-crafted
formation templates against which frame-level1 samples were aligned. This work was extended by
Bialkowski et al. (2016) which learned the template directly from the data. Sha et al. (2017) further
employed a hierarchical template learning framework, useful in both retrieval (Sha et al., 2018) and
trajectory prediction (Felsen et al., 2018; Yeh et al., 2019). Le et al. (2017) similarly learned an
agent-ordering directly from the data by learning separate role-assignment and motion-prediction
policies in an iterative and alternating fashion.

2.2 PERMUTATION-EQUIVARIANT APPROACHES

Permutation-equivariant approaches seek to leverage network architectures which are insensitive to
the ordering of the input data. Approaches using graph neural networks (GNN) (Kipf & Welling,
2016; Gilmer et al., 2017; Battaglia et al., 2018; 2016; Hoshen, 2017) have become very popular and
shown tremendous promise. These approaches are particularly valuable for tasks (e.g. pedestrian
tracking) which lack the strong coherent group structure of sport and therefore cannot leverage meth-

1Throughout we use the term “frame” to indicate a single moment in time in reference to the data being
obtained via optical tracking from video.

2



Under review as a conference paper at ICLR 2020

U = {U1, U2, …, UN}

Raw, unordered positions

U’= {U’1, U’2, …, U’N}

Team-centered, unordered 

positions

F* = {P1, P2, …, PK}

Optimal Formation 

Maximizes the likelihood of 
the data X

G* = [P’1, P’2, …, P’K]

Ordered parent/global template

T* = [P1, P2, …, PK]

Learned template of ordered 

distributions

R = [R1, R2, …, RK]

Per-frame ordered role-
assignment of players

R S× d K =
x11 y11 x12 y12 . . . x1 K y1 K
x 21 y 21 x 22 y 22 . . . x 2 K y 2 K...
xS 1 yS 1 xS 2 yS 2 . . . xS K yS K

U ′�S × d N =
x 11 y 11
x 21 y 21...
x S 1 y S 1

,
x 12 y 12
x 22 y 22...
x S 2 y S 2

, . . . ,
x 1 N y 1 N
x 2 N y 2 N...
x S N y S N

,

U ′�S N × d
f l a t =

x 11 y 11
x 12 y 12...
x 1 K y 1 K
x 21 y 21...
x S K y S K

1. Normalization

3. Reshape
2. Player Mean 
Initialization

μ 0 = { μ1, μ 2 , . . . , μN }

5. Align F* to 
parent/global 

template

6. Assign 
players to 

unique role in 
each frame

Formation Discovery Algorithm 
1. Initialize K-Means algorithm with μ0 
2. Run K-Means to convergence 
3. Initialize GMM with current μ’s 
4. Run GMM to convergence 

Reset GMM if ratio of eigenvectors at any 
iteration is too large by running an iteration of 
soft K-Means

4. Find optimal formation

7a. Cluster 
aligned data

7. Repeat for each node in tree

7b. Silhouette 
score to 

determine 
optimal C

M =

0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0

Figure 2: An overview of the proposed method. The procedure consists of (1) Normalization, (2)
Initialization, (3) Reshaping, (4) Formation Discovery, (5) Template Alignment, (6) Role Assign-
ment, (7) Template Clustering. In the role assignment step, the template distributions are shown
as unfilled thick ellipses and the observed distributions of the role-aligned data are shown as the
textured ellipses.

ods such as role-alignment. Within sport, Kipf et al. (2018) used a GNN to predict the trajectories of
players while simultaneously learning the edge-weights of the graph. Yeh et al. (2019) demonstrated
the advantages in using GNNs to forecast the future motion of players in sports, surpassing both the
role (Bialkowski et al., 2016) and tree-based approaches (Sha et al., 2017) on most metrics.

The success of these approaches, however, does not negate the value of role-based alignment. The
learned formation structure provides valuable insight into high-level organization of the group. Fur-
thermore, many traditional machine learning techniques and common deep architectures require an
ordered-agent representation. This is again similar to what is seen in the modeling of faces and bod-
ies: great success has been achieved using geometric deep learning (Monti et al., 2017; Kipf et al.,
2018), but approaches based on a fixed representation remain popular and effective (Taylor et al.,
2017; Kanazawa et al., 2019; Arnab et al., 2019; Walker et al., 2017; Rayat Imtiaz Hossain & Little,
2018).

Interesting work has also been done to learn permutations for self-supervised feature learning or
ranking tasks (Adams & Zemel, 2011; Mena et al., 2018; Cruz et al., 2017). Central to these ap-
proaches is the process of Sinkhorn normalization (Sinkhorn & Knopp, 1967), which allows for
soft-assignment during the training process and therefore a flow of gradients. Exploring the appli-
cation of Sinkhorn normalization to this task is beyond the scope of this current work, however, we
provide additional context on this method in Section A.2.

3 APPROACH

3.1 PROBLEM FORMULATION

Mathematically, the goal of the role-alignment procedure is to find the transformation
A : {U1,U2, . . . ,UN} ×M 7→ [R1,R2, . . . ,RK ] which maps the unstructured setU ofN player
trajectories to an ordered set (i.e. vector) of K role-trajectories R. 2 Each player trajectory is itself
an ordered set of positions Un = [xs,n]Ss=1 for an agent n ∈ [1, N ] and a frame s ∈ [1, S]. We
recognizeM as the optimal permutation matrix which enables such an ordering.

Thus our goal is to find the most probable set F∗ of 2D probability density functions where

F∗ = arg max
F

P (F |R) (1)

2Generically N need not equal K as a player may be sent off during a game, but for simplicity it is safe to
assume N = K in this work.
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P (x) =

N∑
n=1

P (x|n)P (n) =
1

N

N∑
n=1

Pn(x). (2)

Bialkowski et al. (2016) transforms this equation into one of entropy minimization where the goal is
to minimize the amount of overlap (i.e. the KL-Divergence) between each role. The final optimiza-
tion equation in terms of the total entropy H then becomes

F∗ = arg min
F

N∑
n=1

H(x|n). (3)

See A.1 for additional details.

The authors then use expectation maximization (EM) to approximate this solution and note similarity
to k-means clustering. However, as they represent that data non-parametrically in terms of per-role
heat maps, hard assignment must be applied at each iteration so the distributions may be updated.
Instead, we note that equation 2 describes the occupancy of space by any agent in any point in
time as a mixture of conditional distributions across each of the N -roles. This is further equivalent
to the sum over n-generating distributions. Thus if we model these generating distributions as d-
dimensional Gaussian distributions, this reduces the template-discovery process to that of a Gaussian
Mixture Model.

3.2 TOY PROBLEM FORMULATION

Understanding the notion of independence under the different formulations of this problem is key.
This may be better understood by considering a toy problem: imagine we have three independent 1D
Gaussian distributions we wish to sample S times from each. It is known that we sample from each
distribution in rounds, effectively generating the samples in “triplets”, although the order within the
triplets is random. We then seek to reassign the points back to their original distributions.

Following the approach of Bialkowski et al. (2016), the “structure” imposed by the triplet sampling
is enforced through the hard-assignment at each iteration. Recall, however, that the original dis-
tributions were statistically independent; the triplet structure we wish to respect is imposed by the
assignment step, not the underlying distributions.

Contrastingly, in our method the samples are treated as fully independent; had all samples been
taken from the first distribution, followed by the second, followed by the third, the outcome at the
“distribution-discovery” phase would be identical to that having sampled the data in rounds. Only
after the three distributions are estimated would the assignment of each point in every triplet be
assigned to the distribution which maximized the overall likelihood in that triplet.

Besides being more computationally effective (see Section 4.2), this allows us to find the true MLE
of the distributions. Our method will always discover a more optimal estimate of Eq. 2. This
can be understood in considering how the assignment is performed during optimization. For each
triplet, the likelihood of assigning each point to each distribution is computed in both approaches.
In our approach, this gives the likelihood under each mixture component. In the hard-assignment
approach, however, if two (or more) points in a triplet have their highest likelihood under the same
component, the exclusionary assignment must result in a lower likelihood than assigning each point
to its preferred Gaussian.

Furthermore, in our approach, each sample contributes to every component of the mixture, thus the
data under the mixture remains “fixed” during the optimization process. In contrast, as the hard-
assignments are made, the samples contributing to each distribution changes each iteration. This,
in combination with the sub-optimal likelihood above, effectively “breaks” the expectation maxi-
mization step and can cause solutions to diverge or oscillate, which is inconsistent with a maximum
likelihood solution which must monotonically increase.

Thus our approach is computationally efficient, more intuitively captures the independence of the
generating distributions versus the structure of the sampling, and ensures a likelihood function that
will converge under expectation maximization.

3.3 FORMATION-DISCOVERY

Our procedure explained here is presented visually in Figure 2 and algorithmically in Algorithm A.3.
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Data is normalized so all teams are attacking from left to right and have mean zero in each frame,
thereby removing translational effects. Following the approach of Bialkowski et al. (2016), we
initialize the cluster centers for formation-discovery with the average player positions. The impact
of this choice of initialization is explored in Section 4.5.

We now structure all the data as a single (SN)× d vector where S is the total number of frames, N
is the total number of agents (10 outfielders in the case of soccer), and d is the dimensionality of the
data (2 here). The K-Means algorithm is initialized with the player means calculated above and run
to convergence; we find that running K-Means to convergence produces better results than running
a fixed number of iterations as is commonly done for initialization. The cluster-centers of the last
iteration are then used to initialize the subsequent mixture of Gaussians.

Mixture of Gaussians are known to suffer from component collapse and becoming trapped in patho-
logical solutions. To combat this, we monitor the eigenvalues (λi) of each of the components
throughout the EM process. If the eigenvalue ratio of any component becomes too large or too
small, the next iteration runs a Soft K-Means (i.e. a mixture of Gaussians with spherical covariance)
update instead of the full-covariance update. We find that the range 1

2 < λ1

λ2
< 2 works well. In

practice, we find this is often unnecessary when analyzing a single game as the player-initialization
provides the necessary stabilization, but becomes important for analysis over many teams/games
where that initialization signal is weaker. We refer to this set of K distributions which maximizes
the likelihood of the data the Formation, which we denote F∗.
Note that the formation is a set of distributions. To enforce an ordering, we must align to a parent
template, G∗, which is an ordered set of distributions. The specific ordering of this template is
unimportant so long as it is established and fixed. We align F∗ to G∗ by finding the Bhattacharyya
distance (Bhattacharyya, 1943) between each distribution in F∗ andG∗ given by

DB = 1
8 (µF∗

i
− µG∗

j
)Tσ−1(µF∗

i
− µG∗

j
) + 1

2 ln( detσ√
detσF∗

i
detσG∗

j

) where σ =
σF∗

i
+σG∗

j

2 to

create a K ×K cost matrix and then use the Hungarian algorithm to find the best assignment. We
have now produced our Template, T ∗ an ordered set of distributions with an established ordering
that maximizes the likelihood of the data.

3.4 ROLE-ASSIGNMENT

The process of role-assignment maps each player in each frame to a specific role with the restric-
tion that only one player may occupy a role in a given frame. We find the likelihood that each
agent belongs to each of the discovered distributions in each frame which was already calculated
during the formation-discovery step. This produces a N ×K cost matrix in each frame; the Hun-
garian algorithm is again used to make the optimal assignment. Thus we have achieved the tasks
of formation-discovery and role-assignment having had to apply the Hungarian algorithm on only a
single pass of the data. We now represent the aligned data as a S × (dK) matrixR.

3.5 CLUSTERING MULTI-AGENT DATA

With an established well-ordered representation, we are now able to cluster the multi-agent data to
discover sub-templates and perform other analysis. Sub-templates may be found either through flat
or hierarchical clustering. Generically, we seek to find a set of clusters C which partitions the data
into distinct states according to:

arg min
C

∑
Ck∈C

∑
Ri,Rj∈Ck

‖P (Ri)− P (Rj)‖2 (4)

For flat clustering, a dN -dimensional K-Means model is fit to the data. To help initialize this clus-
tering, we seed the model with the template means plus a small amount of noise. To determine the
optimal number of clusters we use a measure similar to Silhouette score (Rousseeuw, 1987):

E(R) =
1

|R|
∑
Ck∈C

∑
Ri∈Ck

‖P (Ri)− µkn‖2 − ‖P (Ri)− µk‖2
‖P (Ri)− µkn‖2

(5)

where µk is the mean of the cluster that example Ri belongs to and µkn is the mean of the closest
neighbor cluster of exampleRi. Equation 5 measures the dissimilarity between neighboring clusters
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and the compactness of the data within each cluster. By maximizing E we seek to capture the most
discriminative clusters.

To learn a tree of templates through hierarchical clustering, we follow the method of (Sha et al.,
2017) with minor modification on how the clusters and templates are initialized. Algorithm A.4
outlines this procedure.

4 RESULTS

4.1 DATASET

For this work, we used an entire season of player tracking data from a professional European soccer
league, consisting of 380 games, 6 of which were omitted due to missing data. The data is collected
from an in-venue optical tracking system which records the (x, y) positions of the players at 10Hz.
The data also contains single-frame event-labels (e.g. pass, shot, cross) in associated frames; these
events were used only to identify which frames contained the onset of an event which we call event-
frames. Unless explicitly noted, the analysis used only event-frames for training, providing over
1.8million samples across the season.

4.2 RUN COMPLEXITY

Finding the optimal solution to K-Means is NP-hard, even for 2 clusters. However, through stan-
dard methods K-means clustering can achieve an average per-iteration complexity of (samples ·
clusters ·dimensions) while Gaussian mixture models have a complexity of (samples · clusters ·
dimensions2) per iteration due to the additional calculation of the precision matrix (Lloyd, 1982;
Verbeek et al., 2003). Note that for all algorithms, samples becomes SN since each agent in each
frame contributes to the distributions. The Hungarian Algorithm has a complexity of elements3 per
application.

In the original algorithm of Bialkowski et al. (2016), the cost matrix per frame is calculated in a
manner resembling that of the GMM, requiring the full distribution (i.e. mean and precision matrix)
to be computed so the likelihoods may be calculated. However, the Hungarian Algorithm is then
applied across the N -agents in each of the S-frames. This produces a per-iteration complexity of
(SN)Kd2N3. With K = N , this simplifies to SN5d2 (see Table 1 of Section A.5). In contrast,
K-Means and GMM have a per-iteration complexity of SN2d and SN2d2, respectively. Therefore,
for a sport like soccer, N = 10, causing the hard-assignment based algorithm to be ∼1000 times
slower than the proposed approach.

4.3 COMPARISON OF DISCOVERED F∗

As all of these methods are unsupervised, there is no notion of a “more accurate” formation. How-
ever, as the goal is to find the F∗ which maximizes the likelihood of the data, for each team-game-
period (TGP), we computed the formation via hard-assignment and our current method, and com-
puted the per-sample average log-likelihood of the data under each method. Our method produced
a lower (i.e. more likely) log-likelihood for every TGP-formation, consistent with the theoretical
guarantees (Figure 3A). In general, the difference between the two approaches was very small, an
average difference in log-likelihood of 0.028.

We compute the field area covered by a role as A = π√
λ1λ2

where λ1 and λ2 are the eigenvalues of
the covariance matrix for that role. On average, the field area covered by a role under the current
method is 0.021m2 smaller than the corresponding role under Bialkowski et al. (2016). This is
consistent with the formations learned via the two methods being extremely similar; the average
KL-Divergence (Kullback & Leibler, 1951) between corresponding roles under the two method is
0.14nats.

4.4 COMPRESSION EVALUATION

Template-based alignment has been shown to produce a compressed representation of multi-agent
spatiotemporal data (Lucey et al., 2013). We repeat this analysis here in Figure 3. Similar to the
approach in (Sha et al., 2017), we evaluate the compressibility of the approach using clustering and
principle component analysis (PCA). We randomly selected 500,000 frames from the larger data set.
Frames were aligned according to Algorithm A.3 (”Role current” in Figure 3), via hard-assignment
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Figure 3: (A) Difference in the per sample log-likelihood under the template learned calculated via
hard-assignment and the current method. All of the values are positive demonstrating the formation
learned under the current method always captures the data better. (B) Template-based alignment
produces a more compressed representation of the data than an identity-based representation. Left:
reconstruction error as a function of the number of clusters. Right: variance accounted for as a
function of the number of eigenvectors used. In both Role current corresponds to the method of
the current work Role hard (often directly under Role current) corresponds the hard-assignment
approach.

(”Role hard”), or left unordered (”Identity”). K-means clustering was applied to both the original
unaligned data and aligned data for varying values of K. The average within-cluster-error (WCE) was
calculated according to WCE = 1

|R|
∑
Ck

∑
Ri∈Ck

‖Ri−µ‖2 where we again abuse Ck to indicate
the kth cluster after K-means clustering. Similarly we run PCA on both the unaligned and aligned
data and compute the variance explained by the eigenvectors: Variance Explained = λk∑D

i=1 λi
where

λi is the ith eigenvalue indicating the significance of the ith eigenvector.

Role-based representation, regardless of the method used to compute it, is significantly more com-
pressive than an identity-based representation. The representation computed via the current method
is slightly more compressive than under hard assignment: the per player reconstruction error over
the range in Figure 3B is on average 0.76m lower and the variance explained on average is 0.068
higher.

4.5 IMPACT OF INITIALIZATION AND KEY-FRAMES

The original template-learning procedure proposed initializing the algorithm with the distributions
of each player, as players tend to spend much of their time in a specific role. In the subsequent work
of Sha et al. (2017), a random initialization at each layer was proposed.

To assess the impact of the player-mean initialization, we ran Alg. A.3 20 times per-TGP, each
of which contains about 1500 frames, and recorded the reconstruction error during the K-Means
initialization phase of the algorithm. While the exact reconstruction error is sample specific, all
samples showed the same trend as Figure 4A: player-mean initialization begins with a much lower
reconstruction error and converges significantly more quickly, often within 10 steps. In contrast, the
random initialization is much more variable, takes many more iterations to converge, and often does
not converge to as good a solution.

The use of event-only “key frames” is also a key performance and stabilization measure. Limiting
the data to event-only frames reduces the data by a factor of∼ 10 , producing a speed-up of the same
factor. This has minimal impact on the learned template as seen in Figure 4B. In most instances,
the templates learned are almost identical: the average L2-distance between the center of two role
distributions is 0.24m and the average Bhattacharyya distance (Bhattacharyya, 1943) between two
role distributions is 0.078.

4.6 CONTEXT-SPECIFIC FORMATIONS

Previously, due to the slowness of the hard-assignment approach, templates had to be learned as a
part of a preprocessing step before storage/analysis/consumption. Usually this would be done at the
TGP-level, generating a total of 4 “specialist” templates per game. In contrast, the proposed method
allows templates to be computed “on the fly”. For several thousand rows of data, the formation can
be discovered and aligned in only a few seconds. This allows us to select data under interesting
contexts and learn the template that best describes those scenarios across many games.
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A B

Figure 4: Impact of initialization and key-frame selection. (A) Player-mean initialization (red)
enables the K-Means initialization to run to convergence in fewer iterations than random (blue)
initialization. (B) Learning the formation on event-only “key-frames” (thick line, no hashing) results
in formations which are very similar to the formations learned on all data (thin line, hashing), but
runs significantly faster due the reduced data size and is less prone to find spurious optima. Left: An
average example showing the formations learned on the two sets of data are very similar. Right: An
unusual “bad” example showing more disagreement between the two data sets.
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Figure 5: Context-specific templates. (A) We trained distinct templates of a given team while attack-
ing and defending against certain modes (aka. “styles”) of play. Data is aggregated over multiple
games across the season. (B) We trained distinct templates of a given team while defending during
the last 10 minutes of the games while trailing and leading, both home and away. Here we have
added back in the average team (i.e. group) position to show the overall positioning on the pitch.

Figure 5 shows two such analyses this method unlocks 3. On the left (A) we examine the formation
of a team across an entire season when they are attacking in and defending against two very different
“styles” of play (the very offensively aggressive counterattack, and a conservative “hold the ball”
maintenance style) (Ruiz et al., 2017). Similarly, we can examine how a team positions itself when
leading or trailing late in a game both at home or away (B). In addition to learning the formation, we
can add back in the overall group positioning to see where on the pitch the team attempts to position
itself. Additionally, we can learn and align the unique formations of every team across an entire
season in a matter of minutes (see Figure 6 in A.6). Other potential analyses could include computing
the formation after substitutions or analyzing how teams perform when certain individuals occupy a
given role; such analyses are left to future work.

5 SUMMARY

For multi-agent systems with a high degree of structure such as that seen in team sport, we are able
to learn a mapping which takes the set of agents to an ordered vector of agents without introducing
undue entropy from permutation. In this work we have shown an improved method for learning
the group representation of structured multi-agent data which is significantly faster. Additionally,
the monotonically decreasing nature of its objective function provides stability. Our approach ex-
ploits the independence of the role-generating distributions during the template-learning phase and
enforces the hard assignment of a single agent to a single role only during the final alignment step.
This new approach, in combination with a smart choice of key-frame selection and initialization,
allows for this representation to be learned over n3 times faster- a factor of more than 1000 for a
sport like soccer. By learning this representation, we are able to perform season-wide contextual
and on-the-fly representation learning which were previously computationally prohibitive.

3A live, on-the-fly demonstration can be found at https://www.dropbox.com/s/
r33hphk5tubqvw5/alignment_onTheFlyApplications.mp4?dl=0
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A APPENDIX

A.1 SUMMARY OF THE FORMATION DISCOVERY ALGORITHM OF BIALKOWSKI ET AL.
(2016)

To learn the per-role player distributions, the authors cast the problem as one of data paritioning
where the goal is to minimize the overlap of an individual role Pn(x) and that of the team P (x) by
placing a penalty Vn on that overlap as defined by

Vn = −KL(Pn(x)‖P (x)) (6)

where

KL(P (x)‖Q(x)) =

∫
P (x) log

(
P (x)

Q(x)

)
dx. (7)

Eq. 1 can then be written as
F∗ = arg max

F
V (8)

Substituting Eq. 6 into Eq. 8 yields

V =−
N∑
n=1

P (n)

∫
P (x|n) logP (x|n)dx

−
N∑
n=1

P (n)

∫
P (x|n) logP (x)dx. (9)

Written in terms of the entropy H(x) = −
∫ +∞
−∞ P (x) log(P (x))dx this simplifies to

V = −H(x) +
1

N

N∑
n=1

H(x|n) (10)

yielding the final equation of F∗ as given in Eq. 3.

They approximate the solution by using expectation maximization (EM) as summarized here:

Initialization: The data is normalized such that the average team position in each frame is placed at
the origin. The formation is initialized by assigning a player to a single role for the entire game. This
allows the construction of n independent distributions describing the n different generating roles.

E-Step: An n× n cost matrix is computed for each frame which is based on the log-probability of
each player being assigned to a particular role distribution.

M-Step: The Hungarian Algorithm (Kuhn, 1955) is used to (hard) assign each player to a specific
role in each frame. Once all roles have been assigned for that iteration, the role distributions are
recomputed.

Termination: The process repeats until convergence.

A.2 RELATION TO GUMBEL-SINKHORN

In the original template discovery formulation, application of the Hungarian algorithm at each iter-
ation made the strong requirement that a single player be assigned to a single cluster in each frame,
that is, πs,i = πs,j∀i, j ∈ K,∀s ∈ S.

Our method treats each agent in each frame as fully independent; if we examined at the assignment
probabilities for a given frame during training, the likelihood would exceed 1. Furthermore, during
training, there are no restrictions on the values of each π beyond the standard requirement that∑K
k=1 πk = 1. Thus at the end of the formation-learning step, there is no requirement that each

12
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πk = 1
K . The requirement that each role be occupied by only a single agent in each frame and that

weights are uniform is imposed only at the assignment step.

An approach based on Sinkhorn normalization can be seen as an intermediate between these two
paradigms, allowing for soft-assignment of every agent in a frame to every cluster during the learning
process.

Thus during training, a player could still contribute to multiple clusters, but the weighting of that
contribution is restricted by Sinkhorn normalization which requires the assignment matrix in each
frame to be doubly stochastic. Following the notation of Cruz et al. (2017), rows R and columns C
are normalized according to

Ri,j(Q) =
Qi,j∑l
k=1Qi,k

; Ci,j(Q) =
Qi,j∑l
k=1Qi,k

(11)

with the nth iteration defined recursively as

Sn(Q) =

{
Q if n = 0

C(R(Sn−1(Q))), otherwise.
(12)

Similar to our approach, Sinkhorn-based methods employ hard assignment via the Hungarian al-
gorithm only after training completes. The additional benefit of this approach is that the Sinkhorn
normalization function is differentiable and thus amenable to gradient-based methods.

However as our approach is based on expectation maximization, the drawback to Sinkhorn-
normalization is that the iterative normalization step is required in each frame at each EM iteration.
Thus within the EM framework, it remains cost-prohibitive although gives final assignment results
equivalent to both the original and current methods.
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A.3 OPTIMAL TEMPLATE LEARNING ALGORITHM

Algorithm 1 Optimal Template Learning
Input:

U = {U1,U2, . . . ,UN} unordered player positions
G∗ a parent/global template

Output:
R = [R1,R2, . . . ,RK ] player positions ordered by role
F∗ the learned formation
T ∗ the alignment template

Normalization
1: normalize the positions in each frame so that the attacking team is going left to right
2: center-normalize the positional data according toMsn = Usn −

∑N
n=1 usn ∀n ∈ N

3: formatM according to f : RS×dN → RSN×d

Formation Discovery
4: conduct K-Means clustering for initialization: K-Means(M , µinit = [M̄1,M̄2, . . . ,M̄N ])
5: function EIGENVALUERESETTINGGMM
6: while lower bound average gain < threshold do
7: if 1

r <
λn1

λn2
< r ∀n ∈ N then

8: µ,σ,π ← GMM Update
9: else

10: µ,σ,π ← Soft K-Means Update
11: return F∗

Template Alignment
12: function ALIGNTEMPLATES(F∗,G∗)
13: create cost matrix C s.t. Ci,j is the Mahalanobis distance between the ith distribution in F∗

and the jth distribution inG∗
14: apply Hungarian algorithm to find optimal assignment of Fi to Gj
15: return T ∗

Role Assignment
16: function APPLYALIGNMENT(R, T ∗)
17: for s in S do
18: create cost matrix C s.t. Ci,j is the likelihood the Rs,ı (ith-agent in frame s), belongs to

the jth distribution of T ∗
19: apply Hungarian algorithm to find optimal assignment of Rs,ı to T ∗

20: returnR
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A.4 TREE-BASED ALIGNMENT

This algorithm is adapted from Sha et al. (2017). The overall structure is the same with changes to
the initializations captured in A.3.

Algorithm 2 Learning process of tree-based alignment
Input: R = {U1,U2, . . . ,UN} unordered player positions

G∗ a parent/global template
T = ∅, C = ∅

Output: T, C
1: function LEARNTREE(R)
2: for each layer l do
3: for each node n do
4: learn F∗ln, T ∗ln, Rl

n from Algorithm A.3 with G∗ = T ∗l−1
n and R = Rl−1

n , the
data contained in the parent node

5: store [T ∗l1, ...,T ∗
l
Z ] in T

6: compute reconstruction loss with Eq. 4
7: terminate when stropping criterion is met
8: for each node n do
9: create K initialization vectors by adding small amounts of noise ε to the cluster

means of T ∗ln
10: conduct K-Means onRl

n with different K
11: select cluster set Cl

n that maximize E partition Cl
n to child nodes according to Cl

n
Store [Cl

1, ...,C
l
Z ] in C

12: return T, C

A.5 RUN COMPLEXITY

Average per-iteration run-complexity for various methods.

Table 1: Algorithm complexity per iteration

ALGORITHM COMPLEXITY

Hungarian EM SN5d2

K-means SN2d
GMM SN2d2
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A.6 LEAGUE-WIDE ANALYSIS

We ran our formation discovery and alignment algorithm on every team-game-period combination
of an entire season. This analysis previously took upwards of 20 minutes to process a game under
the original approach, but now can be run in less than 10 seconds a game.

Some teams consistently operate out of the same formation and therefore the templates and distri-
bution centers are well isolated across the season (e.g. second row, far right). Others play different
formations in different matches and therefore the game-to-game templates can vary dramatically
(e.g. third row, second from the left; bottom row, second from the left). Our algorithm is able to
learn these various templates and align them so that a common, structured representation can be
used across matches.

Figure 6: Discovered templates for each team across a season of professional soccer. The global
template is learned by selecting data randomly across the season (all teams, all games). Each plot
corresponds to a team and a template is learned for each half of every game and aligned to the global
template. The centroids of each role-distribution are plotted in black.
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