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Abstract

Concerns about interpretability, computational
resources, and principled inductive priors have
motivated efforts to engineer sparse neural
models for NLP tasks. If sparsity is impor-
tant for NLP, might well-trained neural models
naturally become roughly sparse? Using the
Taxi-Euclidean norm to measure sparsity, we
find that frequent input words are associated
with concentrated or sparse activations, while
frequent target words are associated with dis-
persed activations but concentrated gradients.
We find that gradients associated with func-
tion words are more concentrated than the gra-
dients of content words, even controlling for
word frequency.

1 Introduction

Researchers in NLP have long relied on engineer-
ing features to reflect the sparse structures under-
lying language. Modern deep learning methods
promised to relegate this practice to history, but
have not eliminated the interest in sparse mod-
eling for NLP. Along with concerns about com-
putational resources (Chen et al., 2016; Narang
et al., 2017b) and interpretability (Murphy et al.,
2012; Subramanian et al., 2018), human intuitions
continue to motivate sparse representations of lan-
guage. For example, some work applies assump-
tions of sparsity to model latent hard categories
such as syntactic dependencies (Padó and Lapata,
2007) or phonemes (Cotterell and Eisner, 2018).
Niculae and Blondel (2017) found that a sparse at-
tention mechanism outperformed dense methods
on some NLP tasks; Narang et al. (2017a) found
sparsified versions of LMs that outperform dense
originals. Attempts to engineer sparsity rest on an
unstated assumption that it doesn’t arise naturally
when neural models are learned. Is this true?

Using a simple measure of sparsity, we analyze
how it arises in different layers of a neural lan-

guage model in relation to word frequency. We
show that the sparsity of a word representation in-
creases with exposure to that word during training.
We also find evidence of syntactic learning: gradi-
ent updates in backpropagation depend on whether
a word’s part of speech is open or closed class,
even controlling for word frequency.

2 Methods

Language model. Our LM is trained on a cor-
pus of tokenized, lowercased English Wikipedia
(70/10/20 train/dev/test split). To reduce the num-
ber of unique words (mostly names) in the corpus,
we excluded any sentence with a word which ap-
pears fewer than 100 times. Those words which
still appear fewer than 100 times after this filter are
replaced with <UNK>. The resulting training set is
over 227 million tokens of around 19.5K types.

We use a standard 2-layer LSTM LM trained
with cross entropy loss for 50 epochs. The
pipeline from input xt−1 at time step t− 1 to pre-
dicted output distribution x̂ for time t is described
in Figure 1, illustrating intermediate activations
het , h1t , and h2t . At training time, the network ob-
serves xt and backpropagates the gradient updates
h̄et , h̄1t , h̄2t , and x̄t.

The embeddings produced by the encoding
layer are 200 units, and the recurrent layers have
200 hidden units each. The batch size is set to
forty, the maximum sequence length to 35, and
the dropout ratio to 0.2. The optimizer is stan-
dard SGD with clipped gradients at `2 = 0.25,
where the learning rate begins at 20 and is quar-
tered whenever loss fails to improve.

Measuring sparsity. We measure the sparsity of
a vector v using the reciprocal of the Taxicab-
Euclidean norm ratio (Repetti et al., 2015). This
measurement has a long history as a measure-
ment of sparsity in natural settings (Zibulevsky
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Figure 1: LM architecture for target word distribution x̂t, showing gradient updates from observed word xt.

Figure 2: Average sparsity χ(h̄2t ) over all training
epochs (x-axis), for target words xt occurring more
than 100k times in training. Target words are sorted
from most frequent (bottom) to least frequent (top).

and Pearlmutter, 2001; Hoyer, 2004; Pham et al.,
2017; Yin et al., 2014) and is formally defined as
χ(v) = ‖v‖2/‖v‖1. The relationship between
sparsity and this ratio is illus-
trated in two dimensions in the
image on the right, in which
darker blue regions are more
concentrated. The pink circle
shows the area where `2 ≤ 1
while the yellow diamond de-
picts `1 ≤ 1. For sparse vectors 〈1, 0〉 or 〈0, 1〉, the
norms are identical so χ is 1, its maximum. For a
uniform vector like 〈1, 1〉, χ is at its smallest. In
general, χ(v) is higher when most elements of v
are close to 0; and lower when the elements are all
similar in value.

3 Experiments

Sparsity is closely related to the behavior of a
model: If only a few units hold most of the mass
of a representation, the activation vector will be
highly concentrated. If a neural network relies
heavily on a small number of units in determining
its predictions, the gradient will be highly concen-
trated. A highly concentrated gradient is mainly
modifying a few specific pathways. For example,

it might modify a neuron associated with particu-
lar inputs like parentheses (Karpathy et al., 2015),
or properties like sentiment (Radford et al., 2017).

Representations of Target Words. Our first ex-
periments look at the relationship of sparsity to tar-
get word xt. Gradient updates triggered by the tar-
get are often used to identify units that are relevant
to a prediction (Li et al., 2015), and as shown in
Figure 2, gradient sparsity increases with both the
frequency of a word in the corpus and the overall
training time. In other words, more exposure leads
to sparser relevance. Because the sparsity of h̄2

increases with target word frequency, we measure
not sparsity itself but the Pearson correlation, over
all words w, between word frequency and mean
χ(h) over representations h where w is the target:

ρ←(h) = corrw(µt:xt=w(χ(ht)), freq(w))

Here (Figure 3a) we confirm that concentrated gra-
dients are not a result of concentrated activations,
as activation sparsity χ(h2) is not correlated with
target word frequency.

The correlation is strong and increasing only
for ρ←(h̄2). The sparse structure being applied
is therefore particular to the gradient passed from
the softmax to the top LSTM layer, related to how
a word interacts with its context.

The Role of Part of Speech. Figure 4 shows
that ρ←(h̄2) follows distinctly different trends for
open POS classes1 and closed classes2. To asso-
ciate words to POS, we tagged our training corpus
with spacy3; we associate a word to a POS only
if the majority (at least 100) of its occurrences are
tagged with that POS. We see that initially, fre-
quent words from closed classes are highly con-
centrated, but soon stabilize, while frequent words
from open classes continue to become more con-
centrated throughout training. Why?

Closed class words clearly signal POS. But
open classes contain many ambiguous words, like

1ADJ, ADV, INTJ, NOUN, PROPN, VERB
2ADP, AUX, CCONJ, DET, PART, PRON, SCONJ
3https://spacy.io/



(a) ρ← correlation with target word frequency (b) ρ→ correlation with input word frequency

Figure 3: Correlation between mean sparsity of a word’s representation and word frequency. Vertical dashed lines
indicate when the optimizer has rescaled the step size.

Figure 4: ρ←(h̄2), evaluated over vocabulary from
open and closed classes of POS.

“report”, which can be a noun or verb. Open
classes also contain many more words in general.
We posit that early in training, closed classes re-
liably signal syntactic structure, and are essential
for shaping network structure. But open classes
are essential for predicting specific words, so their
importance in training continues to increase after
part of speech tags are effectively learned.

The high sparsity of function word gradient may
be surprising when compared with findings that
content words have a greater influence on out-
puts (Kádár et al., 2016). However, those find-
ings were based on the impact on the vector rep-
resentation of an entire sentence after omitting the
word. Khandelwal et al. (2018) found that content
words have a longer window during which they are
relevant, which may explain the results of Kádár
et al. (2016). Neither of these studies controlled
for word frequency in their analyses contrasting
content and function words, but we believe this
oversight is alleviated in our work by measuring
correlations rather than raw magnitude. Because
ρ←(h̄2) is higher when evaluated over more fre-

Figure 5: Mean sparsity of χ(h̄2) after 50 epochs, for
words occurring more than 1k times in the train set.

quent words, which also tend to be function words
(see Figure 5), we further control for the effect of
frequency by including a measurement of trends in
a sample of 120 words each from open and closed
classes (Figure 4). This sample was selected by
sorting all open and closed class words by fre-
quency, then choosing a range of each sorted list
with a similar average frequency.

Representations of Input Words. We next
looked at the vector representations of each step in
the word sequence as a representation of the input
word xt−1 that produced that step. We measure
the correlation with input word frequency:

ρ→(h) = corrw(µt:xt−1=w(χ(ht)), freq(w))

Here (Figure 3b) we find that the view across
training sheds some light on the learning process.
While the lower recurrent layer quickly learns
sparse representations of common input words,
ρ→(h1) increases more slowly later in training and
is eventually surpassed by ρ→(he), while gradi-
ent sparsity never becomes significantly correlated
with word frequency. Li et al. (2016) studied the



activations of feedforward networks in terms of
the importance of individual units by erasing a par-
ticular dimension and measuring the difference in
log likelihood of the target class. They found that
importance is concentrated into a small number of
units at the lowest layers in a neural network, and
is more dispersed at higher layers. Our findings
suggest that this effect may be a natural result of
the sparsity of the activations at lower layers.

We relate the trajectory over training to the In-
formation Bottleneck Hypothesis of Shwartz-Ziv
and Tishby (2017). This theory, connected to lan-
guage model training by Saphra and Lopez (2018),
proposes that the earlier stages of training are ded-
icated to learning to effectively represent inputs,
while later in training these representations are
compressed and the optimizer removes input in-
formation extraneous to the task of predicting out-
puts. If extraneous information is encoded in spe-
cific units, this compression would lead to the ob-
served effect, in which the first time the optimizer
rescales the step size, it begins an upward trend in
ρ→ as extraneous units are mitigated.

4 Potential Explanations

Why do common target words have such concen-
trated gradients with respect to the final LSTM
layer? A tempting explanation is that the amount
of information we have about common words of-
fers high confidence and stabilizes most of the
weights, leading to generally smaller gradients. If
this were true, the denominator of sparsity, gra-
dient `1, should be strongly anti-correlated with
word frequency. In fact, it is only ever slightly
anti-correlated (correlation > −.1). Furthermore,
the sparsity of the softmax gradient χ(x̄) does not
exhibit the strong correlation seen in χ(h̄2), so
sparsity at the LSTM gradient is not a direct ef-
fect of sparse logits.

However, the model could still be “high confi-
dence” in terms of how it assigns blame for error
during common events, even if it is barely more
confident overall in its predictions. According to
this hypothesis, a few specialized neurons might
be responsible for the handling of such words.

Perhaps common words play a prototyping role
that defines clusters of other words, and therefore
have a larger impact on these clusters by acting as
attractors within the representation space early on.
Such a process would be similar to how humans
acquire language by learning to use words like

‘dog’ before similar but less prototypical words
like ‘canine’ (Rosch, 1999). As a possible mech-
anism for prototyping with individual units, Dalvi
et al. (2019) found that some neurons in a transla-
tion system specialized in particular word forms,
such as verb inflection or comparative and superla-
tive adjectives. For example, a common compara-
tive adjective like ‘better’ might be used as a reli-
able signal to shape the handling of comparatives
by triggering specialized units, while rarer words
have representations that are more distributed ac-
cording to a small collection of specific contexts.

There may also be some other reason that com-
mon words interact more with specific substruc-
tures within the network. For example, it could be
related to the use of context. Because rare words
use more context than common words and con-
tent words use more context than function words
(Khandelwal et al., 2018), the gradient associated
with a common word would be focused on interac-
tions with the most recent words. This would lead
common word gradients to be more concentrated.

It is possible that frequent words have sparse ac-
tivations because frequency is learned as a feature
and thus is counted by a few dimensions of propor-
tional magnitude, as posited by Li et al. (2016).

5 Potential Applications

Understanding where natural sparsity emerges in
dense networks could be a useful guide in decid-
ing which layers we can apply sparsity constraints
to without affecting model performance, for the
purpose of interpretability or efficiency. It might
also explain why certain techniques are effective:
for example, in some applications, summing rep-
resentations together works quite well (Hill et al.,
2016). We hypothesize that this occurs when the
summed representations are sparse so there is of-
ten little overlap. Understanding sparsity could
help identify cases where such simple ensembling
approaches are likely to be effective.

Future work may develop ways of manipulating
the training regime, as in curriculum learning, to
accelerate the concentration of common words or
incorporating concentration into the training ob-
jective as a regularizer. We would also like to see
how sparsity emerges in models designed for spe-
cific end tasks, and to see whether concentration is
a useful measure for the information compression
predicted by the Information Bottleneck.



References
Yunchuan Chen, Lili Mou, Yan Xu, Ge Li, and Zhi

Jin. 2016. Compressing neural language models
by sparse word representations. arXiv preprint
arXiv:1610.03950.

Ryan Cotterell and Jason Eisner. 2018. A deep gen-
erative model of vowel formant typology. arXiv
preprint arXiv:1807.02745.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, Anthony Bau, and James Glass. 2019.
What is one grain of sand in the desert? analyz-
ing individual neurons in deep nlp models. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI).

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. Transactions
of the Association for Computational Linguistics,
4:17–30.

Patrik O Hoyer. 2004. Non-negative matrix factoriza-
tion with sparseness constraints. Journal of machine
learning research, 5(Nov):1457–1469.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and Understanding Recurrent Networks.
arXiv:1506.02078 [cs]. ArXiv: 1506.02078.

Urvashi Khandelwal, He He, Peng Qi, and Dan
Jurafsky. 2018. Sharp Nearby, Fuzzy Far
Away: How Neural Language Models Use Context.
arXiv:1805.04623 [cs]. ArXiv: 1805.04623.

Ákos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2016. Representation of linguistic form and func-
tion in recurrent neural networks. arXiv:1602.08952
[cs]. ArXiv: 1602.08952.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2015. Visualizing and understanding neural models
in NLP. arXiv preprint arXiv:1506.01066.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

Brian Murphy, Partha Talukdar, and Tom Mitchell.
2012. Learning effective and interpretable semantic
models using non-negative sparse embedding. Pro-
ceedings of COLING 2012, pages 1933–1950.

Sharan Narang, Gregory Diamos, Shubho Sengupta,
and Erich Elsen. 2017a. Exploring Sparsity in Re-
current Neural Networks. arXiv:1704.05119 [cs].
ArXiv: 1704.05119.

Sharan Narang, Erich Elsen, Gregory Diamos, and
Shubho Sengupta. 2017b. Exploring sparsity
in recurrent neural networks. arXiv preprint
arXiv:1704.05119.

Vlad Niculae and Mathieu Blondel. 2017. A regular-
ized framework for sparse and structured neural at-
tention. In Advances in Neural Information Process-
ing Systems, pages 3338–3348.

Sebastian Padó and Mirella Lapata. 2007.
Dependency-based construction of semantic space
models. Computational Linguistics, 33(2):161–199.

Mai Quyen Pham, Benoit Oudompheng, Jérôme I
Mars, and Barbara Nicolas. 2017. A noise-
robust method with smoothed 1/2 regularization for
sparse moving-source mapping. Signal Processing,
135:96–106.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to Generate Reviews and Discov-
ering Sentiment. arXiv:1704.01444 [cs]. ArXiv:
1704.01444.

Audrey Repetti, Mai Quyen Pham, Laurent Duval,
Emilie Chouzenoux, and Jean-Christophe Pesquet.
2015. Euclid in a taxicab: Sparse blind deconvolu-
tion with smoothed `1/`2 regularization. IEEE Sig-
nal Processing Letters, 22(5):539–543.

Eleanor Rosch. 1999. Principles of categorization.
Concepts: core readings, 189.

Naomi Saphra and Adam Lopez. 2018. Understanding
learning dynamics of language models with svcca.
arXiv preprint arXiv:1811.00225.

Ravid Shwartz-Ziv and Naftali Tishby. 2017. Open-
ing the Black Box of Deep Neural Networks via
Information. arXiv:1703.00810 [cs]. ArXiv:
1703.00810.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard Hovy. 2018.
Spine: Sparse interpretable neural embeddings. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Penghang Yin, Ernie Esser, and Jack Xin. 2014. Ratio
and difference of l1 and l2 norms and sparse repre-
sentation with coherent dictionaries. Commun. In-
form. Systems, 14(2):87–109.

Michael Zibulevsky and Barak A Pearlmutter. 2001.
Blind source separation by sparse decomposition in
a signal dictionary. Neural computation, 13(4):863–
882.


