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ABSTRACT

Due to their wide field of view, omnidirectional cameras are frequently used by
autonomous vehicles, drones and robots for navigation and other computer vision
tasks. The images captured by such cameras, are often analyzed and classified
with techniques designed for planar images that unfortunately fail to properly han-
dle the native geometry of such images. That results in suboptimal performance,
and lack of truly meaningful visual features. In this paper we aim at improving
popular deep convolutional neural networks so that they can properly take into
account the specific properties of omnidirectional data. In particular we propose
an algorithm that adapts convolutional layers, which often serve as a core building
block of a CNN, to the properties of omnidirectional images. Thus, our filters
have a shape and size that adapts with the location on the omnidirectional image.
We show that our method is not limited to spherical surfaces and is able to incor-
porate the knowledge about any kind of omnidirectional geometry inside the deep
learning network. As depicted by our experiments, our method outperforms the
existing deep neural network techniques for omnidirectional image classification
and compression tasks.

1 INTRODUCTION

Drone vision, autonomous cars and robot navigation systems often use omnidirectional cameras, as
they allow recording the scene with wide field of view. Despite their obvious advantages, images
obtained by such cameras have different statistics compared to planar images. Nevertheless, om-
nidirectional images are often processed with standard techniques, which are unfortunately poorly
adapted to the specific geometry of such images.

In this paper we improve one of the most popular frameworks for image processing, namely con-
volutional neural network (CNN) for omnidirectional images. CNNs prove to be effective, as they
permit to achieve very good performance in many different tasks like image classification, segmen-
tation, generation and compression. In the context of omnidirectional cameras, CNNs are typically
applied directly to the unwrapped and distorted spherical images. This approach, however, is subop-
timal: due to specific geometry of these images, and, in particular, the change in the image statistics
with the position in the image. The latter forces the network to learn different filters for different
locations in the omnidirectional images (see Fig. 1).

To solve this issue, we replace ordinary convolutional filters with the graph-based ones that can
adapt their size and shape depending on the position in the omnidirectional image thanks to the flex-
ible graph structure. In order to overcome the common limitation of these graph-based filters being
isotropic (i.e. invariant to the changes in the objects orientation in the image) we suggest to use
multiple directed graphs instead of a single undirected one, as used in (Defferrard et al., 2016; Kipf
& Welling, 2017; Khasanova & Frossard, 2017a). This permits our method to encode the orientation
of the objects that appear in the images and, therefore, extract more meaningful features from them.
This together with the inherent ability of our filters to adapt to the image projective geometry allows
our method to reach state-of-the-art performance when working not just with spherical projections,
as done by Khasanova & Frossard (2017b); Cohen et al. (2018), but virtually with any type of image
projective geometry that can be encoded by a graph. In our experiments we show that apart from the
state-of-the-art results on the regular omnidirectional images classification task, our approach out-
performs the existing classification techniques when applied to the images projected on a randomly
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Figure 1: Our network allows adapting the size and shape of the filter with respect to the elevation.

perturbed spherical surface or on a cube via the cube-map projection, which has recently become
one of the popular ways to represent 360-images (Chen et al., 2018). Finally, we demonstrate that
our method can be applied for orientation-dependent task such as compression and reduce artifacts
comparing with a standard approaches.

2 RELATED WORK

In this section we first briefly introduce the most recent approaches that combine the power of deep
learning methods with graph signal processing techniques, as they are similar in spirit to our work.
We then discuss in more details the recent trends in omnidirectional image processing.

Geometric Deep learning. In the recent years a number of deep learning methods have been
introduced tailored for processing irregular data that is represented as a graph. One way to solve
this problem is suggested by Monti et al. (2017), where the authors define a local system of d-
dimensional pseudo-coordinates for every node of the graph and learn both the filters and patch
operators that work on these coordinates. A different direction is taken by Wang et al. (2018),
who propose using edge-based convolutional kernels and dynamically update the graph. While
being flexible and effective for general tasks, in the specific context of the omnidirectional images
these methods do not directly take the advantage of the knowledge about the projective geometry,
which we model using a specifically designed graph representation. While most of the existing
methods work with undirected graphs, the recent work of (Monti et al., 2018) propose an approach
for processing data defined on a directed graph by exploiting local graph motifs that describe its
connectivity patterns. The main differences of this method with our work are that first, this method
assumes that the directed graph is already given. In our problem, building such a graph that is able
to fully take advantage of the image projective geometry is one of the contributions. Second, the
approach in (Monti et al., 2018) does not use the knowledge of the coordinate system associated
with omnidirectional images, which we however use in our architecture, in order to define filter
orientations. The list of the aforementioned works is by no means extensive, therefore we refer the
interested reader to the survey (Bronstein et al., 2017), which summarizes many geometric deep
learning methods in detail.

Omnidirectional image processing. The most typical way of dealing with images taken by omni-
directional cameras is to apply standard image processing techniques directly on the equirectangular
projection images, which is one of the most common representations for the omnidirectional im-
ages (De Simone et al., 2016). However, due to the strong distortion effects introduced by the
process of unwrapping of the projection surface to a plane, standard techniques lose much of their
efficiency, as the appearance of the same object may change depending on its location in the im-
age. To overcome this problem the recent work of Khasanova & Frossard (2017b) suggests using
graph-based special convolutional filers to adapt to the geometry of omnidirectional images. This
method, however, relies on the convolutional operation defined in the spectral domain, which leads
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to isotropic filters and may reduce the complexity of trained filters. We, on the other hand, propose
to build anisotropic graphs-based convolutional filters that do not have this limitation. A different
direction is taken by the authors of (Su & Grauman, 2017) who suggest adapting the size of the
convolutional kernel to the elevation of the equirectangular image. The main limitation of this tech-
nique, however, is that it requires a significantly larger number of parameters than the competing
techniques, as it does not have the weight sharing property of CNNs. It rather requires learning
different convolutional filters for different elevations of the equirectangular image. Further, Jeon &
Kim (2017) propose to learn the shape of the convolutional filter, by learning the sampling locations
(position offsets), where the elements of the filter are evaluated. The authors of (Dai et al., 2017)
extend later this idea and suggest learning dynamic offsets of the filter elements depending on the
image content, which allows the filters to adapt to different parts of the image. This method is quite
flexible, however in the context of omnidirectional images requires an extensive training set, as the
network needs to learn how it should react to various objects appearing at any possible elevation. In
our work we rather take advantage of the knowledge of the image projective geometry and use this
knowledge in the design of our architecture to adapt the size and shape of convolutional filters.

A different approach is suggested by Cohen et al. (2018), who introduces a CNN that is designed
for spherical shapes and define filters directly on its surface. This method, however, is specifically
designed for processing spherical images, while our approach is easily adapted to different kind of
shapes, which we show in our experiments. Further, the methods of (Coors et al., 2018; Tateno et al.,
2018) suggest a different way of compensating for the distortion of omnidirectional image. They
suggest adapting the sampling locations of the convolutional filters to the geometry of the lens by
projecting kernels to the sphere and using interpolated pixel values on the projected locations for
implementing the convolutional filters. While these works are the closest to in spirit to ours, we
propose a more general architecture, which permits to adapt the shape and size of the convolutional
kernel to the location of omnidirectional image, and therefore to use the information about all the
pixels and not only of a subset of them.

Then, the authors in (Monroy et al., 2018; Ruder et al., 2018) suggest a completely different ap-
proach to tackle the distortion of omnidirectional images. Instead of working with equirectangular
images, they propose to project an omnidirectional image to a cube, where each of its faces rep-
resents an image that would have been seen through a regular perspective camera, with the optical
center located in the center of the cube (Chen et al., 2018). Representing an omnidirectional image
in this way allows having less noticeable distortion effects as compared to equirectangular images.
This representation, however, suffers from another type of distortion that appears due to discon-
tinuity effect on the borders between the faces of the cube. To mitigate this issue, Monroy et al.
(2018) propose to apply a smoothing filter as a post-processing step and Ruder et al. (2018) suggest
an algorithm that enforces consistency between the neighboring facets of the cube. Contrary to the
mentioned approaches, as we model cube surface as a graph, our algorithm can easily handle the
discontinuity problem and adapt to image distortions introduced by the cube-map projection.

3 GEOMETRY-AWARE CNN

In this section we describe our algorithm, which adapts convolutional filters to the distortion of
omnidirectional images. We start with the introduction of the equirectangular projection, as it is one
of common ways to represent images from the omnidirecitonal cameras (De Simone et al., 2016;
Coors et al., 2018). We then describe our graph-based representation learning framework.

3.1 EQUIRECTANGULAR PROJECTION

Omnidirectional visual content can be represented as a sphere with radius r, where the user is as-
sumed to be located at the center. Each 3D point can be projected to a point on the surface of
this sphere, which is described by spherical coordinates, namely a longitude θ ∈ [−π, π] and a
latitude φ ∈ [−π2 ,

π
2 ].

Omnidirectional images are generally not processed directly in their native geometry, but they are
first projected to the 2D plane where classical image processing techniques can be activated. One
of the popular projections involves sampling the data on the sphere with equal steps ∆θ and ∆φ,
which results in an equrectangular image on the 2D plane. Thus, each point of equrectangular image
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is defined by its spherical coordinates. To describe this projection let us introduce the tangent plane
T , which is tangent to the sphere in the point (θ0, φ0). Thus, each point (x, y) on the tangent plane
is projected to the sphere surface (θ, φ) as follows (Coors et al., 2018):

φ(x, y) = sin−1(cos ν sinφ0 + y sin ν cosφ0

ρ )

θ(x, y) = θ0 + tan−1( x sin ν
ρ cosφ0 cos ν−y sinφ0 sin ν )

. (1)

where ρ =
√

(x2 + y2) and ν = tan−1 ρ.

In order to have similar filter response regardless of the position of the object we model distortion of
the applied filter. Thus, similarly to the works of (Khasanova & Frossard, 2017b) and (Coors et al.,
2018), we define the filter kernel on this tangent plane T . Fig. 1 illustrates a sample equirectangular
image with various kernels corresponding to tangent plane at different positions on the sphere. As
we can see the projected area is different for various tangent plane locations. This projected area
defines the support of our geometry-aware features, as described in the next section.

3.2 GEOMETRY-ADAPTIVE FILTERS

In the context of omnidirectional cameras, the main drawback of the classical convolutional ap-
proach is that it applies the same rectangular filters to different image positions. However, as we
mentioned before, equirectangular images have different statistics at various elevations. Therefore,
we propose to adapt the size and shape of the filter to the elevation on the spherical image.

To do so we propose to use a graph-based approach, which has recently become popular. The nodes
of this graph vi ∈ G and signal y(vi) defined on the nodes represent pixels and their intensity values
respectively. Based on this graph G we can then use the Laplacian polynomial filters F as proposed
in (Defferrard et al., 2016; Khasanova & Frossard, 2017a), where normalized Laplacian operator is
defined as follows:

L = I −D−1/2AD−1/2, (2)
where I is an identity matrix, D is a diagonal degree matrix and A is an adjacency matrix, which
for each node vp of graph G defines its neighborhood Np. Then, F has the following form:

F =

M∑
l=1

αlLl, (3)

where the αl are the trainable parameters, L is a Laplacian matrix and M is the degree of F .

Using these filters we can construct a Deep learning architecture and use it for various tasks, e.g.,
classification of omnidirectional images. The main advantage of our approach is that by appropri-
ately constructing the graph G we make the Laplacian polynomial filters F react similarly to the
same object seen at different elevation of the equirectangular image regardless of geometric distor-
tion due to the spherical geometry. Here we call those filters geometry-aware (GA).

In order to adapt the GA-filter F to the elevation we build a graph G in such a way that the neigh-
bourhood of each node is different for different elevations of the omnidirectional image. In the
following section we describe two approaches that rely on undirected and directed graphs respec-
tively, which consequently define isotropic and anisotropic filters. Then we describe in more details
the polynomial anisotropic filter F that is used for directed graphs..

Undirected graph construction for adaptive filtering. To adapt F to the elevation level we con-
struct a graph G with nodes that have different neighborhoods depending on the elevation. To do so
we define a circular area on a tangent plane T , centered in the tangency point. Then we move T such
that it becomes tangent to the sphere S in different positions vp and project the circular area onto S.
For every point of S this creates a neighborhood Np, which changes its shape and size together with
the elevation, as can be seen in Fig. 1.

Based on this geometry adaptive neighborhood, we then construct the graph G in the following way.
We connect the node vp ∈ G, corresponding to a tangent point on the sphere, with the node vj ∈ Np.
The corresponding edge epi has a weight wpi that is inversely proportional to the Euclidean distance
between vp and vi, which are defined on the sphere:

wpi = ||vp − vi||−1
L2
, vi ∈ Np ,

wpi = 0, vi /∈ Np .
(4)
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This allows us to vary the size of the neighbourhood according to the geometry of the omnidirec-
tional image for each node in G, and weight the contribution of the nodes to the final filter response
according to their distances to vp. Therefore, depending on the elevation the filter is changing its
shape and size.

While effective, filter F does not have a defined orientation in space as according to Eq. (3) the
filter applies the same weights αl to all nodes in the l-hoop neighborhood, with the contribution of
each node being weighted by the distance to vp. This results in F being isotropic, which leads to
suboptimal representation, as the network is not able to encode the orientation of the object.

Directed graphs construction. In order to overcome the limitations of isotropic filters, we pro-
pose to replace a single undirected graph G with multiple directed graphs Gk, where each Gk defines
its own orientation. Let us consider the case of a 3x3 classical convolutional filter. In this case the
filter has 9 distinct elements. To mimic the same structure with our graph convolutional filters we
employ the following algorithm. First we define 9 non-overlapping areas sk, k = 1..9 on the tangent
plane, which together form a rectangular region that is centered in the tangency point vp of T as
defined in the Fig. 2. This rectangular region effectively defines the receptive field of the filter on
the tangent plane. Then we build a set of nine directed graphs Gk, k = 1..9 in the similar way, as
mentioned in the previous section for undirected graph. In particular in order to build graph Gk we
do as follows. For the area sk and for every node vp we move the tangent plane at point vp and then
project sk from T onto the sphere. This operation defines a specific neighborhood Nk(p) on the
sphere that consists of the points that belong to the projection of the region sk from the plane T . We
then connect vp with a directed edge to each of these points, where the weight of the edge is defined
in Eq. (4). Note that the direction of the edge is very important, because connecting vp and vi with
an undirected edge forces vp to be part of the neighborhood Nk(i). This, however, is not possible,
as the neighborhood Nk(i) is computed by projecting the area sk from the plane T that is tangent to
the sphere at point vi and does not include vp.

This results in construction of the directed graph Gk, which corresponds to the kth region of the filter,
illustrated in Fig. 2. We repeat this operation for all the areas sk, k = 1..9 of our filter, which leads
to creation of 9 directed graphs Gk, k = 1..9. Given this set of graphs Gk we define the resulting
convolutional operation F as follows:

F =

9∑
k=1

Fk, (5)

where Fk is the filtering operation defined on the graph Gk. Note that this filtering operation is
slightly different from the operation that is used when working with undirected graphs and is dis-
cussed in more details in the following section.

Figure 2: Illustration of 3 × 3 GA-filter kernel, defined on the tangent plane. Projection of area
sk forms the neighborhood Nk(p) of the node vp, where the GA-filter is applied. The right part of
the figure illustrates the change of the neighborhood Nk(p) depending on the location of vp and the
chosen filter area sk.

To sum up, the introduced graph construction process allows having anisotropic filters F , defined in
Eq. (5) that are capable of capturing the orientation of the object and therefore learn more meaning-
ful feature representation for an image compared to the isotropic graph-based filters. It is important
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to note that in this paper we use the set of 9 non-overlapping rectangular areas defined on the tangent
plane, as shown by Fig. 2, due to their rough correspondence to the elements of a 3 × 3 convolu-
tional filter. However, our method can be easily extended to an arbitrary number of such areas with
arbitrary shapes.

Geometry aware anisotropic filters. For directed graphs Gk Laplacian matrix is not defined,
therefore, we use the polynomial filters proposed in (Sakiyama et al., 2017). Instead of the Laplacian
matrix these filters rely on the normalized adjacency matrix Ak, which is defined as follows:

Ak = D−1
k Ak, (6)

where Ak and Dk are the weighted adjacency and the diagonal degree matrices of graph Gk respec-
tively. The elements of Dk are computed as Dk(m,m) =

∑
nAk(m,n). Then, we define filters in

the following way:
Fk = α

(k)
0 + α

(k)
1 Ak, (7)

where α(k)
0 , α

(k)
1 are the training parameters of our filter. Here, we use polynomial filters of degree

1, as they achieve good balance between speed and performance.

Network architecture. The introduced approach focuses on the modification of the convolutional
layer to incorporate the knowledge about the image projective geometry inside the neural network.
Thus, it can be applied for a broad variety of tasks. In this chapter we focus on the image classifi-
cation and compression problems. For the former one we use a relatively standard architecture that
consists of a sequence of convolutional layers with the introduced graph-based filters, followed by a
sequence of the fully connected layers. For the compression task we use the architecture proposed
in (Ballé et al., 2017) and replace its convolutional filters with the proposed graph-based ones.

Discussion. Our method can be seen as a generalization of different approaches that have been
developed for omnidirectional images. For example, if the node vp at elevation φi has only one
neighbor in each direction and the weight of the edges between nodes is always equal to one, it
will be the standard CNN method (LeCun et al., 2001). Further, if these neighbors correspond to
the projected points it becomes the recently proposed algorithm of (Coors et al., 2018). Finally, if
we replace directed graphs with a single undirected one we get the same behavior of the polynomial
filters as described in graph-based deep learning methods (Khasanova & Frossard, 2017a; Defferrard
et al., 2016; Kipf & Welling, 2017; Khasanova & Frossard, 2017b).

4 RESULTS

In this section we illustrate the performance of our approach. We start by evaluating our method with
respect to competing approaches on the task of classification images that are projected to different
surfaces. Finally, to show the generality of our approach and illustrate the effectiveness of the
anisotropic graph-based filters, we evaluate our method on the image compression task.

4.1 IMAGE CLASSIFICATION

In this section we first introduce the datasets that we used for the evaluation of our method. We then
discuss the baseline approaches and architectures, which we use in our experiments. Finally, we
show the quantitative comparison of our method with the competing ones.

Datasets. We evaluate our method on three different types of data, which feature different surface
geometries, where the images are projected:

• Spherical dataset (S) consists of images projected on different locations on a sphere. The
resulting spherical images are then unwrapped to for equirectangular images, as described
in Section 3.1.

• Mod-spherical dataset (MS) features image projections on more complicated surfaces that
are depicted by Fig. 3 together with the representative examples of projected images. This
dataset itself consists of three different versions: MS1, MS2, MS3 which correspond to the
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(a) (b) (c) (d)

Figure 3: Illustration of surfaces (a,c) and corresponding equirectangular images (b,d) of the digit
9 projected to these surfaces at random positions. White color of surfaces highlights the furthest
points to the spherical surface of the same radius in terms of Euclidean distance; blue color indicates
the closest points.

(a) (b) (c)

Figure 4: Cube-map projection: (a) schematic illustration of the unwrapping process of the cube
surface with a baseball arrangement (Chen et al., 2018) onto a planar surface; (b,c) sample projec-
tions of images from the MNIST dataset on the cube surface unwrapped into rectangular images.

surfaces which are getting further away from the spherical one. A more detailed discussion
about the type of projection and the surface geometry used in these datasets can be found
in ApendixB.

• Fish-eye dataset (F) consists of images projected on different locations on a sphere using
stereographic projection Bettonvil (2005), which is frequently used in fish-eye cameras.

• Cube-map dataset (CM) features projection of the images on the cube as shown by Fig. 4.
This type of projection has recently gained popularity for handling omnidirectional images,
due to its ability to reduce distortion artifacts that appear due to the spherical geometry.

In all these dataset we use MNIST images from (LeCun & Cortes, 2010) , which are divided into
train, validation and test sets with 54k, 6k and 10k samples respectively.

Architecture. We compare our approach with standard ConvNets, the algorithm proposed in (Co-
hen et al., 2018) and other graph-based methods. We present our result in the Table 11. For the
graph-based methods we investigate 3 possible way of constructing G:

• Regular grid-graph with 8 neighbors and all equal weights wij = 1;

• Regular grid-graph with 8 neighbors and weights that depend on the Euclidean distance dij
between the nodes, as proposed in (Khasanova & Frossard, 2017b) wij = d−1

ij ;

• Irregular GA-graph wij = d−1
ij (isotropic filters from Section 3.2).

For all of them we build a normalized Laplacian matrix (Khasanova & Frossard, 2017b) and use
polynomial filters of degree 1, which is equivalent to using 3× 3 convolutional kernels. Therefore,
for the standard ConvNet we similarly rely on filters of size 3× 3.

1We were unable to compare our method to the recent work of (Coors et al., 2018) as to the best of our
knowledge, there is no publicly available implementation.
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Table 1: Evaluation of different approaches on Spherical (S), Mod-Spherical (MS1, MS2, MS2),
Fish-eye (F) and Cube-Map (CM) datasets.

Method S MS1 MS2 MS3 F CM
regular graph (wij = 1) 69.4 64.3 64.1 62.8 71.8 40.0
regular graph (wij = 1/dij) 69.8 63.4 64.5 62.5 70.2 40.5
GA graph (wij = 1/dij) 70.2 63.9 62.5 62.8 72.1 44.2
ConvNets 94.2 91.3 91.2 90.5 93.4 79.4
(Cohen et al., 2018) 95.2 84.5 83.3 80.9 94.9 –
Ours 96.9 95.1 95.3 94.9 95.7 84.3

All the competing approaches use the networks of roughly the same complexity. For all the methods
we use the architectures of similar structure and roughly the same number of parameters. For all
the graph-based approaches we use the graph-based convolutions with stride two on each layer,
which in turn requires building graph for each new layer according to its respective sampling. The
exact architecture of the classification network is illustrated in Appendix A. For the method of
(Cohen et al., 2018) we used the architecture proposed in the paper with roughly the same number
of parameters as in competing approaches.

Evaluation. We present the result of comparison of our approach with the baseline methods in
Table 1. Our method significantly outperforms the standard ConvNets, as it is designed to use the
geometry of the omnidirectional images. Further it shows a much higher accuracy then other graph-
based techniques, which rely on isotropic filters. Further, our method achieves comparably accuracy
with (Cohen et al., 2018) on spherical image representation, however, our method is more general,
therefore, it outperforms (Cohen et al., 2018) on other datasets. Finally, we are able to run our
approach on cub-map projection while the SphericalCNN by design is not applicable to such kind
of images.

4.2 IMAGE COMPRESSION

In all our previous experiment we have focused on evaluating our approach on the image classifica-
tion task. To show the generality of our method and better illustrate the effectiveness of anisotropic
graph-based filters, we now evaluate their performance on an image compression problem. For this
task, we choose to modify the architecture introduced in (Ballé et al., 2017) by replacing the ordi-
nary convolutional layers with our own graph-based convolutions. In this section we first introduce
our approach and then compare the performance of the two graph-based methods, which rely on
isotropic and anisotropic graph-based filters respectively.

Image compression framework. The method introduced in (Ballé et al., 2017), presents the pro-
cess of image compression is an optimization of the tradeoff between having small distortion of the
pixel intensity values and the small number of bits that are required for storing the compressed rep-
resentation of these values. As described in (Ballé et al., 2016; Ballé et al., 2017), this optimization
can be represented as a variational autoencoder. For more details we refer to Appendix C. In the
context of omnidirectional images, we propose to modify the method proposed in (Ballé et al., 2017)
by using our geometry-aware filters instead of standard convolutional ones.

Evaluation. We now evaluate the performance of our approach. For this experiment we have
implemented two versions of the system. One with isotropic graph-based filters and the other one
with the anisotropic ones. We further evaluate the original method (Ballé et al., 2017) for the sake
of completeness. All three methods are trained and tested on the same splits of the modified version
of the dataset (Xiao et al., 2012), which consists of omnidirectional images projected onto a cube.
From this dataset we use 3900 images for training and 1000 for testing of our approaches.

We compare the methods in terms of the Peak Signal to Noise Ratio (PSNR) with respect to the
average number of bits per pixel (bpp). The results of the evaluation are presented in Fig. 5. As we
can see, our method with anisotropic filters and (Ballé et al., 2017) show similar PSNR values and
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Figure 5: PSNR results of the decompressed images for different filter types with respect to bit per
pixel values.

(a) (b) (c)

Figure 6: Cube-map projection’s artifacts appear due to the discontinuity between unwrapped
face’s borders. On the left corners of original (a) and decompressed images (b,c) we show zoomed
version of the image patch that illustrates the borders of the cube faces. The decompressed results
(c), obtained by our proposed anisotropic geometry-aware filters does not smooth border of the faces
as our method has access to the information about cube-map geometry, while the result (b) obtained
with convolutional filter from (Ballé et al., 2017) smooths these borders. This smoothing can lead
to perceptutally unpleasant result in various applications (e.g., virtual reality). (best seen in color)

significantly outperform the architecture with isotropic filters. Further, due to the fact that PSNR
depends on the average difference in pixel values between the compressed image and the original
one it is not able to reliably detect small artifacts that appear in the cube-map images, which are
noticeable for humans. These artifacts are clearly seen in Fig. 6, where we illustrate that due to the
knowledge about the image projective geometry, our approach correctly reconstructs the areas along
cube borders, while the method of Ballé et al. (2017) over-smooths these areas.

5 CONCLUSION

In this paper we have presented generic way of graph construction that allows incorporating the
information about the image geometry inside the neural network. Further, we have introduced the
graph-based geometry aware convolutional filters that adapt their shape and size to the geometry of
the projection surface. In contrast to many existing graph-based filters, our filters are anisotropic,
which allows to better adjust to the specific properties of the problem. Our illustrative experiments
show state-of-the-art performance of our approach applied to image classification and compression
tasks in the presence of various types of image distortions.
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APPENDIX

A ARCHITECTURE OF CLASSIFICATION FRAMEWORK

Fig. 7 illustrates the architecture of our classification network, which we use in Section 4.1.

Figure 7: Our classification network consists of three geometry-aware graph-based convolutional
layers (GAL) with stride 2. Each of the GAL [X × Y , stride 2] convolutional layers contains Y
filters with X parameters. The convolutional layers are followed by an average pooling operation
AP and two fully-connected layers FC[Z] with Z neurons each.

B MODIFIED SPHERICAL SURFACE.

In order to evaluate the performance of our method as a function of deformation of the spherical
surface, we have created a set of datasets by projecting the MNIST images to random locations
of the surfaces, which have shapes, shown in Fig. 3 (a,c) and unwrap these spherical images to
equirectangular ones. The white color in Fig. 3 (a,c) denotes the areas of the generated surface that
are the furthest from the spherical surface of the same radius. The Fig. 3 (b,d) illustrates sample
images of digits projected onto the respective surfaces. Each of the aforementioned surfaces is the
following modification of a spherical one from Eq. (1):

x = cos(φi) sin(θi − θ0)
y = (cos(φ0) sin(φi + p(φi, r, l))− sin(φ0 + p(φ0, r, l)) cos(φi) cos(θi − θ0))/c,
c = sin(φi + p(φi, r, l)) sin(φ0 + p(φ0, r, l)) + cos(φi) cos(φ0) cos(θi − θ0),

(8)

where (x, y) are the coordinates on the tangent plane and p(φ, r, l) is the perturbation function that
can be written as

p(φ, r, l) = r sin−1(sin(lφ)), (9)

where φ is the elevation level; r is the parameter that regulates the perturbation magnitude and l
defines frequency of the perturbation signal. In our experiments we have set l = 10. Note that for
a specific case of r = 0 we get the ordinary spherical surface. We then use Eq. 8 to construct the
graph G that allows our method to adapt to the surface geometry and evaluate our method on each
of the generated datasets.

C COMPRESSION

In this section we briefly describe compression approach, which proposed by ?. An input image x
is encoded using a function ga(x;α), which results in the respective latent representation y. Then,
y is quantized into ŷ, which can be losslessly compressed using entropy coding algorithms. This ŷ
is then passed to the decoder gs(ŷ;β) at the decompression step, which results in a decompressed
image x̂. Here, we denote by α and β the parameters of the encoding and decoding algorithms
respectively. While both encoder and decoder can be represented as a differentiable function, the
process of quantization is non-differentiable. Therefore the authors of (Ballé et al., 2016) propose
to replace quantization with an additive uniform noise at the training step as follows:

ỹi = y + ∆y, (10)
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Figure 8: Architecture of compression algorithm. For our experiment we use omnidirectional
images projected to the cube surface with a baseball arrangement with size [256× 384× 3] grouped
in batches of size 2. Here, ConvX and TrConvX denote convolutional and transpose convolutional
layers with stride 2, where X corresponds to the possible choice of either standard convolutional or
proposed geometry-aware graph-based filters; and GDN is a normalization layer which is proposed
by (Ballé et al., 2016).

where ∆y denotes additive i.i.d uniform noise. This trick allows to perform the end-to-end opti-
mization of both the encoder and decoder parameters using the following loss function:

L(α, β) = Ex,∆y

[
−
∑
i

log2pỹi(ga(x;α) + ∆y) + λd(gs(ga(x;α) + ∆y;β), x)

]
, (11)

where gs, ga are convolutional deep neural networks, d represents the distance between the images
and λ is a weighting parameter. Thus, during the training step, we add noise (according to Eq. (10))
to be able to back propagate the error and at the inference time we apply quantization to the latent
representation y. The overall architecture that we use is similar to the one proposed in (Ballé et al.,
2017) and is summarized in Fig. 8. Further, the method of (Ballé et al., 2017) relies on the stan-
dard convolutional layers, which are practical for ordinary images: they allow learning local image
structures independently of their location in the image.

Additional visual results. We run experiment with described compression architecture, where we
compare three approaches: original and methods, where we replace convolutional filter from the ar-
chitecture to graph-based isotropic and geometry-aware filters. Fig. 9 further illustrates some visual
comparison of the methods and we can see isotropic filters produce over-smoothed decompressed
images, which do not look realistic and result in very low PSNR values. On the other hand our
method with anisotropic filters is able to produce sharp results.
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(a) (b) (c) (d)

Figure 9: Decompression result: original images (a); decompressed image obtained by our al-
gorithm with isotropic geometry-aware (b), proposed anisotropic geometry-aware (c) and convolu-
tional filters from (Ballé et al., 2017) (d). (best seen in colors)
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