
A Flexible, Extensible Software Framework

for Neural Net Compression

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose a software framework based on ideas of the Learning-Compression1

algorithm [1, 2, 4], that allows one to compress any neural network by different2

compression mechanisms (pruning, quantization, low-rank, etc.). By design, the3

learning of the neural net (handled by SGD) is decoupled from the compression of4

its parameters (handled by a signal compression function), so that the framework5

can be easily extended to handle different combinations of neural net and com-6

pression type. In addition, it has other advantages, such as easy integration with7

deep learning frameworks, efficient training time, competitive practical perfor-8

mance in the loss-compression tradeoff, and reasonable convergence guarantees.9

Our toolkit is written in Python and Pytorch and we plan to make it available by10

the workshop time, and eventually open it for contributions from the community.11

With the great success of neural network in solving practical problems in various fields (vision, NLP,12

etc.) there has been an emergence of research in neural network compression techniques that allows13

to compress these large models in terms of memory, computation and/or power requirements. At14

present many ad-hoc solutions have been proposed that typically solve one specific type of compres-15

sion (binarization and quantization [2, 5, 8, 11, 18, 23, 24], pruning [9, 10, 15, 16, 21], low-rank or16

tensor factorization [6, 7, 12–14, 17, 19, 20, 22], etc.), as well as several submissions to the present17

workshop.18

Among the various research strands in neural net compression, in our view a fundamental problem19

is that in practice one does not know what the best type of compression (or combination of compres-20

sion types) may be the best for a given network. In principle, it would be possible to try different21

existing algorithms, assuming one can find an implementation for them. We seek a solution that22

directly addresses this problem and can potentially allow non-expert end users to compress models23

easily and effectively1. It is based on a recently proposed compression framework, the LC algorithm24

[1, 2, 4], that by design separates the “learning” part of the problem (which involves the dataset,25

neural net model and loss function) from the “compression” part (how the network parameters will26

be compressed). This has the advantage of modularity (a pillar of structured programming and soft-27

ware development): we can change the compression type by simply calling a different compression28

routine (e.g. k-means instead of the SVD) within the overall algorithm in a principled way, with29

no other changes to the algorithm. We briefly describe the LC algorithm below and mention ad-30

ditional advantages it provides—such as easy integration with deep learning frameworks, efficient31

training time, competitive practical performance in the loss-compression tradeoff, and reasonable32

convergence guarantees.33

1There have been some attempts to include compression as a black-box routines into deep learning frame-
works (e.g. https://www.tensorflow.org/performance/post_training_quantization), but they are
limited to a subset of simple methods.

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.

https://www.tensorflow.org/performance/post_training_quantization

In this paper, we describe our ongoing efforts in building a software implementation that can cap-34

italize on the modularity of the LC algorithm. At present this handles 1) (C step) various forms35

of quantization, pruning and low-rank compression, and we will soon add combinations of those36

and further compression types; and 2) (L step) various types of deep net models. Our framework is37

written in Python and Pytorch. We plan to make it available online as open source by the time of the38

workshop. We also hope that interested researchers and developers will eventually contribute their39

own routines for signal compression or for training of specific neural net architectures.40

1 Model compression as a constrained optimization problem41

Assume we have a previously trained model with weights w = argminw L(w). This is our refer-42

ence model, which represents the best loss we can achieve without compression. The “Learning-43

Compression” paper [1] defines compression as finding a low-dimensional parameterization ∆(Θ)44

of w in terms of Q < P parameters Θ. The goal is to find such Θ that its corresponding model has45

(locally) optimal loss. Therefore the model compression as a constrained optimization problem is46

defined as:47

min
w,Θ

L(w) s.t. w = ∆(Θ) (1)

Compression and decompression are usually seen as algorithms, but here they are regarded as math-48

ematical mappings in parameter space. The decompression mapping∆: Θ ∈ R
Q → w ∈ R

P maps49

a low-dimensional parameterization to uncompressed model weights and the compression mapping50

Π(w) = argminΘ ‖w −∆(Θ)‖
2

behaves as its “inverse”.51

The problem in (1) is constrained, nonlinear, and potentially non-differentiable w.r.t. Θ (e.g. bi-52

narization). The LC-algorithm is obtained by converting this problem to an equivalent formulation53

using penalties and employing an alternating optimization. This results in an algorithm that alter-54

nates two generic steps while slowly driving the penalty parameter µ → ∞:55

• L (learning) step: minw L(w) + µ
2
‖w −∆(Θ)‖

2
. This is a regular training of the un-56

compressed model but with a quadratic regularization term. This step is independent of the57

compression type.58

• C (compression) step: minΘ ‖w−∆(Θ)‖
2
⇔ Θ = Π(w). This means finding the best59

(lossy) compression of w (the current uncompressed model) in the ℓ2 sense (orthogonal60

projection on the feasible set), and corresponds to our definition of the compression map-61

ping Π. This step is independent of the loss, training set and task.62

The LC algorithm defines a continuous path (w(µ),Θ(µ)) which, under some mild assumptions,63

converges to a stationary point (typically a minimizer) of the constrained problem. The beginning64

of this path, for µ → 0+, corresponds to training the reference model and then compressing it65

disregarding the loss (direct compression), a simple but suboptimal approach popular in practice.66

Optimizing the L and C steps The L step can be solved by stochastic gradient descent (clipping67

the step sizes so they never exceed 1

µ
). The C step can be solved by calling a compression routine68

corresponding to the desired compression type. For example, for quantization with an adaptive69

codebook we can run k-means with a codebook of size K weights [2]; for pruning, we can prune all70

but the top-κ weights (where κ depends on the sparsifying norm used) [3]. Fig. 1 gives a pseudo-71

code for the LC algorithm.72

2 Overall software approach73

In the pseudo-code there is only one compression mapping ∆(Θ), however, practically we want to74

mix and match, e.g. compress first layer using quantization and all remaining ones using pruning.75

Therefore, there might be multiple constraints wi = ∆i(Θi) such that wi ⊂ w where w is a set76

of all weights of the neural network. This means, during the C-step of the LC algorithm, instead of77

having one optimal compression Π(w), we have multiple Πi(wi) which separates from each other78

and can be done in parallel.79

Data structures and functions defined by library. Library defines several data structures that are80

necessary for internal housekeeping. It abstracts away from the architecture of the neural network,81

and sees its weights as a vector containing P values where P is cardinality of union of all wi, e.g.82

P = |w1 ∪w2 ∪ · · · ∪wk|. This is achieved by a weights view data structure.83

2

The compression mappings assumes a specific structure, e.g. low-rank compression expects a ma-84

trix, while pruning expects a vector. Therefore, we define a compression view data structure that85

allows to map wi to the format suitable to a compression function,86

The compression function (Πi) obtains wi in the suitable format and computes Πi(wi). Library87

comes equipped with a number of implemented compression functions: for quantization, pruning88

and low-rank. For example, if user wants no more than κ nonzero items, decompression mapping89

has form ∆(Θ) = Θ s.t. ‖Θ‖ ≤ κ, C-step will be Πi(wi) = minΘi
‖wi −Θi‖

2
s.t. ‖Θi‖ ≤ κ90

which solved by zeroing all but top κ values of wi in magnitude. Here we give a snippet from library91

that performs that:92
pruned = np.zeros_like(weights)

indx = np.argsort(np.abs(weights), kind=’mergesort’)

remaining_indx = indx[-.kappa:]

pruned[remaining_indx] = weights[remaining_indx]

93

Input from the user. For compression of a neural network, the software needs following94

things from the user: L-step implementation, list of compression tasks and a list of µ-values95

(µ0, µ1, . . . , µm). Note that the dataset, the loss function of the neural network is abstracted away96

from the library.97

An implementation of L-step is a Python function which will be invoked with a new value of penalty98

(the term ∆(Θ)) and it must return an updated w that minimizes the L(w) + µ/2‖w −∆(Θ)‖2.99

This step is similar to the reference network learning and requires minimal modifications to include100

penalty terms. We also note that it is independent of compression, and needs to be done once for a101

network, and can be re-used for other compression and combinations.102

A list of compression tasks is list of tuples where each tuple contains: compression view of wi and103

compression function Πi which maps subset of weights w to a specific compression user wants to104

achieve, e.g. first layer to be quantized, second layer to be pruned.105

Library operations. As soon as user invokes lc.run function with inputs described in previous106

paragraph, library initializes and/or parses necessary internal data structures and enters the loop over107

µ-values. For each µ value it invokes user supplied L-step implementation function and immediately108

afterwards, in parallel, traverses through list of compression tasks, obtains updated compression-109

view of wi and passes it to compression function Πi to update Θi.110

3 Conclusion111

The fields of machine learning and signal compression have developed independently for a long112

time: machine learning solves the problem of training a deep net to minimize a desired loss on a113

dataset, while signal compression solves the problem of optimally compressing a given signal. Both114

are mature fields with well-understood algorithms and efficient implementations. Both converge115

in the problem of model compression, where we seek the smallest model (in the sense of memory,116

inference time or energy, etc.). The LC algorithm achieves this by seamlessly integrating the existing117

algorithms to train deep nets and to compress a signal. Here, we seek to develop an extensible118

software framework that can easily plug in existing deep net training techniques with existing signal119

compression techniques and their combinations. We intend to make the software open source by the120

time of the workshop and eventually to seek contributions from the community.121

input training data and model with parameters (weights) w

w← w = argmin
w
L(w) reference model

Θ← Θ
DC = Π(w) = argmin

Θ
‖w −∆(Θ)‖2 compress reference model

for µ = µ0 < µ1 < · · · <∞

w← argmin
w
L(w) + µ

2
‖w −∆(Θ)‖2 L step: learn model

Θ← Π(w) = argmin
Θ
‖w −∆(Θ)‖2 C step: compress model

if ‖w −∆(Θ)‖ is small enough then exit the loop

return w, Θ

w

(reference)

w
∗ (optimally

compressed)

∆(ΘDC)
(direct

compression)

w-space

feasible models C
(decompressible

by ∆)

Figure 1: Left: A pseudo-code of LC algorithm. Right: an illustration of the idea of model compres-
sion by constrained optimization.

3

References122

[1] M. Á. Carreira-Perpiñán. Model compression as constrained optimization, with application to123

neural nets. Part I: General framework. arXiv:1707.01209 [cs.LG], July 5 2017.124

[2] M. Á. Carreira-Perpiñán and Y. Idelbayev. Model compression as constrained optimization,125

with application to neural nets. Part II: Quantization. arXiv:1707.04319 [cs.LG], July 13 2017.126

[3] M. Á. Carreira-Perpiñán and Y. Idelbayev. Learning-compression algorithms for neural net-127

work pruning. In Proc. of the 2017 IEEE Computer Society Conf. Computer Vision and Pattern128

Recognition (CVPR’17), Honolulu, HI, July 21–26 2017.129

[4] M. Á. Carreira-Perpiñán and Y. Idelbayev. “learning-compression” algorithms for neural net130

pruning. In Proc. of the 2018 IEEE Computer Society Conf. Computer Vision and Pattern131

Recognition (CVPR’18), Salt Lake City, UT, June 18–22 2018.132

[5] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training deep neural net-133

works with binary weights during propagations. In C. Cortes, N. D. Lawrence, D. D. Lee,134

M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems135

(NIPS), volume 28, pages 3105–3113. MIT Press, Cambridge, MA, 2015.136

[6] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas. Predicting parameters in deep137

learning. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,138

editors, Advances in Neural Information Processing Systems (NIPS), volume 26, pages 2148–139

2156. MIT Press, Cambridge, MA, 2013.140

[7] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear struc-141

ture within convolutional networks for efficient evaluation. In Z. Ghahramani, M. Welling,142

C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information143

Processing Systems (NIPS), volume 27, pages 1269–1277. MIT Press, Cambridge, MA, 2014.144

[8] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing deep convolutional networks using145

vector quantization. In Proc. of the 3rd Int. Conf. Learning Representations (ICLR 2015), San146

Diego, CA, May 7–9 2015.147

[9] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient148

neural network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,149

editors, Advances in Neural Information Processing Systems (NIPS), volume 28, pages 1135–150

1143. MIT Press, Cambridge, MA, 2015.151

[10] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain152

surgeon. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information153

Processing Systems (NIPS), volume 5, pages 164–171. Morgan Kaufmann, San Mateo, CA,154

1993.155

[11] K. Hwang and W. Sung. Fixed-point feedforward deep neural network design using weights156

+1, 0, and −1. In 2014 IEEE Workshop on Signal Processing Systems (SiPS), pages 1–6,157

Belfast, UK, Oct. 20–22 2014.158

[12] Y. Ioannou, D. Robertson, R. Cipolla, and A. Criminisi;. Deep roots: Improving cnn efficiency159

with hierarchical filter groups. In Proc. of the 2017 IEEE Computer Society Conf. Computer160

Vision and Pattern Recognition (CVPR’17), pages 1231–1240, Honolulu, HI, July 21–26 2017.161

[13] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with162

low rank expansions. In M. Valstar, A. French, and T. Pridmore, editors, Proc. of the 25th163

British Machine Vision Conference (BMVC 2014), Nottingham, UK, Sept. 1–5 2014.164

[14] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression of deep convolutional165

neural networks for fast and low power mobile applications. In Proc. of the 4th Int. Conf.166

Learning Representations (ICLR 2016), San Juan, Puerto Rico, May 2–4 2016.167

[15] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In D. S. Touretzky, editor, Ad-168

vances in Neural Information Processing Systems (NIPS), volume 2, pages 598–605. Morgan169

Kaufmann, San Mateo, CA, 1990.170

4

[16] B. Liu, M. Wan, H. Foroosh, M. Tappen, and M. Pensky. Sparse convolutional neural networks.171

In Proc. of the 2015 IEEE Computer Society Conf. Computer Vision and Pattern Recognition172

(CVPR’15), pages 806–814, Boston, MA, June 7–12 2015.173

[17] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov. Tensorizing neural networks. In174

C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in175

Neural Information Processing Systems (NIPS), volume 28, pages 442–450. MIT Press, Cam-176

bridge, MA, 2015.177

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-net: ImageNet classification178

using binary convolutional neural networks. In B. Leibe, J. Matas, N. Sebe, and M. Welling,179

editors, Proc. 14th European Conf. Computer Vision (ECCV’16), pages 525–542, Amsterdam,180

The Netherlands, Oct. 11–14 2016.181

[19] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arısoy, and B. Ramabhadran. Low-rank ma-182

trix factorization for deep neural network training with high-dimensional output targets. In183

Proc. of the IEEE Int. Conf. Acoustics, Speech and Sig. Proc. (ICASSP’13), pages 6655–6659,184

Vancouver, Canada, Mar. 26–30 2013.185

[20] C. Tai, T. Xiao, Y. Zhang, X. Wang, and W. E. Convolutional neural networks with low-rank186

regularization. In Proc. of the 4th Int. Conf. Learning Representations (ICLR 2016), San Juan,187

Puerto Rico, May 2–4 2016.188

[21] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural189

networks. In D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, editors,190

Advances in Neural Information Processing Systems (NIPS), volume 29, pages 2074–2082.191

MIT Press, Cambridge, MA, 2016.192

[22] X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very deep convolutional networks for193

classification and detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 38(10):194

1943–1955, Oct. 2016.195

[23] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou. Dorefa-net: Training low bitwidth196

convolutional neural networks with low bitwidth gradients. arXiv:1606.06160, July 17 2016.197

[24] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary quantization. In Proc. of the 5th Int.198

Conf. Learning Representations (ICLR 2017), Toulon, France, Apr. 24–26 2017.199

5

	Model compression as a constrained optimization problem
	Overall software approach
	Conclusion

