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Abstract

We present a theoretical analysis of the training process for a single-layer GAN
fed by high-dimensional input data. The training dynamics of the proposed model
at both microscopic and macroscopic scales can be exactly analyzed in the high-
dimensional limit. In particular, we prove that the macroscopic quantities measuring
the quality of the training process converge to a deterministic process character-
ized by an ordinary differential equation (ODE), whereas the microscopic states
containing all the detailed weights remain stochastic, whose dynamics can be
described by a stochastic differential equation (SDE). This analysis provides a new
perspective different from recent analyses in the limit of small learning rate, where
the microscopic state is always considered deterministic, and the contribution of
noise is ignored. From our analysis, we show that the level of the background
noise is essential to the convergence of the training process: setting the noise level
too strong leads to failure of feature recovery, whereas setting the noise too weak
causes oscillation. Although this work focuses on a simple copy model of GAN,
we believe the analysis methods and insights developed here would prove useful
in the theoretical understanding of other variants of GANs with more advanced
training algorithms.

1 Introduction

A generative adversarial network (GAN) [1] seeks to learn a high-dimensional probability distribution
from samples. While there have been numerous advances on the application front [2H6], considerably
less is known about the underlying theory and conditions that can explain or guarantee the successful
trainings of GANS.

Recently, it has been a very active area of research to study either the equilibrium properties [7H9]
or the training dynamics [[10, [L1]]. Specifically, there is a line of works studying the dynamics of
the gradient-based training algorithms e.g., [11H16]. The basic idea is the following. The evolution
of the learnable parameters in the training dynamics can be considered as a discrete-time process.
With a proper time scaling, this discrete-time process converges to a deterministic continuous-time
process as the learning rates tend to 0, which is characterized by an ordinary differential equation
(ODE). By studying local stability of the ODE’s fixed points, [12] shows that oscillation in the
training algorithm is due to the eigenvalues of the Jacobian of the gradient vector field with zero real
part and large imaginary part. Due to this fact, various stabilization approaches are proposed, for
example adding additional regularizers [[13/14]], and using two timescale [[15] training. Very recently,
[16] argues that those stabilization techniques may encourage the algorithms to converge non-Nash
stationary points. All above works consider a small-learning-rates limit, where the limiting process
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is always deterministic. The stochasticity and the effect of the noise is essentially ignored, which
may not reflect practical situations. Thus, a new analysis paradigm to study the dynamics with the
consideration of the intrinsic stochasticity is needed.

In this paper, we present a high-dimensional and exactly solvable model of GAN. Its dynamics can be
precisely characterized at both macroscopic and microscopic scales, where the former is deterministic
and the latter remains stochastic. Interestingly, our theoretical analysis shows that injecting additional
noise can stabilize the training. Specifically, our main technical contributions are twofold:

e We present an asymptotically exact analysis of the training process of the proposed GAN
model. Our analysis is carried out on both the macroscopic and the microscopic levels. The
macroscopic state measures the overall performance of the training process, whereas the
microscopic state contains all the detailed weights information. In the high-dimensional
limit (n — 00), we show that the former converges to a deterministic process governed by
an ordinary differential equation (ODE), whereas the latter stays stochastic described by a
stochastic differential equation (SDE).

e We show that depending on the choice of the learning rates and the strength of noise, the
training process can reach either a successful, a failed, an oscillating, or a mode-collapsing
phase. By studying the stabilities of the fixed points of the limiting ODEs, we precisely
characterize when each phase takes place. The analysis reveals a condition on the learning
rates and the noise strength for successful training. We show that the level of the background
noise is essential to the convergence of the training process: setting the noise level too strong
(small signal-to-noise ratio) leads to failure of feature recovery, whereas setting the noise
too weak (large signal-to-noise ratio) causes oscillation.

Our work builds upon a general analysis framework [17] for studying the scaling limits of high-
dimensional exchangeable stochastic processes with applications to nonlinear regression problems.
Similar techniques have also been used in the literature to study Monte Carlo methods [18], online
perceptron learning [[19} 20], online sparse PCA [21]], subspace estimation [22], online ICA [23]] and
more recently, the supervised learning of two-layer neural networks [24], but to our best knowledge,
this technique has not yet been used in analyzing GANSs.

The rest of the paper is organized as follows. We present the proposed GAN model and the associated
training algorithm in Section[2] Our main results are presented in Section [3] where we show that the
macroscopic and microscopic dynamics of the training process converge to their respective limiting
processes that are characterized by an ODE and SDE, respectively. In Section [} we analyze the
stationary solutions of the limiting ODEs and precisely characterizes the long-term behaviors of the
training process. We conclude in Section 3]

2 Formulations
In this section, we introduce the proposed GAN model and specify the associated training algorithm.

Model for the real data. In order to establish the theoretical analysis, we first impose a model for
the probability distribution from which we draw our real data samples. We assume that the real data

Yy, € R", k=0,1,...are drawn according to the following generative model:
def
Yr = G(cr,ar; U, nr) = Ucy, + /nrag, (D

where U € R™*4 is a deterministic unknown feature matrix with d features; ¢, € R® is a random
vector drawn from an unknown distribution P.; ay, is an n-dimensional random vector acting as the
background noise; and 7y is a parameter to control the strength of noise. Without loss of generality[ﬂ
we assume U ' U = I, where I is the d x d identity matrix.

This generative model, referred to as the spiked covariance model [25] in the literature, is commonly
used in the theoretical study of principal component analysis (PCA). We note that this model is not
a trivial task for PCA even when d = 1 if the variance of the noise a;, is a non-zero constant. As

"f U is not orthogonal, we can rewrite U'c in (T as (U R)(R™"¢), where R is a matrix that orthogonalizes
and normalizes the columns of U. We can then study an equivalent system where the new feature vector is
R 'c



proved in [23], the best estimator can not perfectly recover the signal U given an O(n) number of
samples y,.. Thus, it is of sufficient interest to investigate whether a GAN can retrieve informative
results for the principal components in the same scaling limit.

The GAN model The GAN we are going to analyze is defined as follows. We assume that the
generator G has the same linear structure as the real data model (T)) given above:

Yr = G(ck,ar; V,nc) 2

but the parameters are different. Here, y,, denotes a fake sample produced by the generator; ay, is an
n-dimensional random noise vector; the random variable ¢, is drawn from a fixed distribution Pxg;
ng is the noise strength; and the matrix V' € R™*¢ represents the parameters of the generator. (In an
ideal case in which the generator learns the underlying true probability distribution perfectly, we have
V = U.) Throughout the paper, we follow the notational convention that all the symbols that are
decorated with a tilde (e.g., Y., Ck, ai) denote quantities associated with the generator.

We define the discriminator D of our GAN model as
def N, T
D(y;w) = D(y w).
Here, vy is an input vector, which can be either the real data y, from or the fake one y;, from @);
D : R — R can be any function; and the vector w € R" represents the parameters associated with
the discriminator. Later, we will show that the generator can learn multiple features even though

the discriminator only has one feature vector w. Discriminators with multiple features can also be
analyzed in a similar way, but in this paper we consider the single-feature discriminator for simplicity.

The training algorithm. The proposed GAN model has two set of parameters V' and w to be
learned from the data. The training process is formulated as the following MinMax problem

m‘;n max Ey~pwun By piv) LY, s w), 3)

where the two probability distributions P(y; U) and ’ﬁ(@, V) represent the distributions of the real
data y and the fake data y as specified by (I)) and (2) respectively, and

Ly, 5;w) EF(D(y w)) — F(D(g w)) — 3H(w w) + 3u(H(VTV)) “)

with F'(-) and F'(-) being two functions that quantify the performance of the discriminator and
A > 0 being a constant. The function H(-) acts as a regularization term introduced to control the
magnitude of the parameters w and V. It can be an arbitrary real-valued function, which is applied
element-wisely if the input is a matrix.

We consider a standard training algorithm that uses the vanilla stochastic gradient descent/ascent
(SGDA) to seek a solution of (@). To simplify the theoretical analysis, we consider an online (i.e.,
streaming) setting where each data sample y,, is used only once. At step &, the model parameters wy,
and V', are updated using a new real sample ¥, and two fake samples y,;, and y,;, ;, according to

Wpy1 = wg + %Vwk‘c(yk?QQk; wy,)
Vitr = Vi = 2V, LYy, G(Contr, @onr1; Viing); wi)

where Cok1, @241 are random variables that generates the fake sample y,,, 11 according to ([Z]) The
two parameters 7 and 7T in the above expressions control the learning rates of the discriminator and
the generator, respectively. In (5), we only consider a single-step update for w,. This is a special
case of Algorithm 1 in [[1] with the batch-size m set to 1. We note that the analysis presented in this
paper can be naturally extended to the mini-batch case where m is a finite number.

&)

~

Example 1. We define F(D(z)) = F(D(z)) = 22/2, and the regularizer function H(A) =
log cosh(A — I), where I is the identity matrix with the same dimension of A, and the function
log cosh(+) transforms the input matrix element-wisely. We use this specific regularizer to control the
magnitude of the model parameters V and w. In practice, any convex function with its minimum
reached at zero would be fine. Our choice log cosh(A — I') here is is just a convenient special case
since its derivative H'(x) = tanh(z) is smooth and bounded. Furthermore, we set the regularization
parameter A — oo, the original problem (3)) becomes a constrained MinMax problem

. E~E~~{T2_~T 2] |
diag(f/nirxlqzzd urilﬁi yrPBy 5 |(Y W) = (¥ w)



in which the diagonal operation diag(A) returns a matrix where the diagonal entries are the same
as A and the off-diagonal entries are all zero. The condition diag(VTV) = I, ensures that each
column vector of V' is normalized.

3 Dynamics of the GAN

Definition 1. Let X, & U, Vi, wi] € RP*Z4HD We call X, the microscopic state of the

training process at iteration step k.

The microscopic state X ; contains all the information about the training process. In fact, the sequence
{X k}r=0,1,2,.. forms a Markov chain on R™* (2d+1)  This can be easily verified from the update
rule of X, as defined in (3)), in which the real data y,, and fake data y,, are drawn according to (T)
and (@) respectively. The Markov chain is driven by the initial state X ¢ and the sequence of random
variables {(cy, a, Cok, A2k, Cok+1, A2k+1) }k=0,1,2,...-

eps def def def def def
Definition 2. Let P, = U 'V}, q, = U'wy, 7, = Viwy, Sy S V] Vi, and 2, = w] wy.

We call the tuple { Py, q;., T, Sk, 2 } the macroscopic state of the Markov chain X i, at step k.

Those macroscopic quantities measure the cosine similarities among the feature vectors of the true
model U, the generator V', and the discriminator wy. For example, the cosine of the angle between
the ith true feature (i.e., the ith column of U) and the jth feature estimated in the generator (i.e., the
jth column of V') is [Pkli.j/\/[Skl;,j» where [Py]; ; is the inner product between the two feature

vectors and /[Sk]; ; is the norm of the jth column of V. (The columns of U are unit vectors and
need not be normalized here.) For simplicity, we introduce a compact notation for the macroscopic
state:

I Py gqg
X! X,=|Pl S, r|. (6)

T T
q, T, Zk

def
M, =

In what follows, we investigate the dynamics of the training algorithm (5) at both the macroscopic
and the microscopic levels. At the macroscopic level, by examining the cosines of the angles, we
study how closely the model parameters Vi, wy, associated with the generator and discriminator
can align with the ground truth feature vectors, i.e., the columns of U. At the microscopic level, we
study how the elements in the matrix V', and the vector wy, evolve as a stochastic process. As our
analysis will reveal, the mechanisms behind the two levels are different: the macroscopic dynamics is
asymptotically deterministic whereas the microscopic dynamics stays stochastic even as n — oc.

3.1 Macroscopic dynamics

We first study the asymptotic dynamics of the macroscopic state M. Our theoretical analysis is
carried out under the following assumptions.

(A.1) The sequences of ¢, ~ P, and ¢ ~ Pz for k = 0,1, ... are i.i.d. random variables with
bounded moments of all orders, and {¢;} is independent of {¢y,}.

(A.2) The sequences {a} and {a;} for k = 0,1, ... are both independent Gaussian vectors with
zero mean and the covariance matrix I,,. Moreover, {ay}, {ax} are independent of {c }
and {¢}.

(A.3) The first-order derivative of H(-) and the derivatives up to fourth order of the functions
F(D(-)) and F(D(-)) exist and they are also uniformly bounded.

(A4) Let [U,Vg,wp] be the initial microscopic state. For ¢ = 1,2,...,n, we have
E [Z?zl([U];{g + [Vol}, + [wolf]) < C/n?, where C is a constant not depending on
n.

(A.5) The initial macroscopic state M satisfies E ||[M, — M| < C/+/n, where My is a
deterministic matrix and C'is a constant not depending on n.

We provide a few remarks on the above assumptions. In Assumption [(A.T)] P, and Pz can be
different. For example, c is Gaussian, and ¢ is uniform on [—1,1]¢. The assumption [(A.2)| can



be relaxed to non-Gaussian cases as long as all moments of aj and ay, are bounded, but we use
Gaussian assumption here to simplify the proof. The assumption [(A.4)|requires that the elements
in the parameter matrix of real data U and initial microscopic state Xy are O(1/+/n) numbers.
Intuitively, this assumption ensures that U and X are generic matrices with @(1) Frobenius norms
(i.e., not the matrices that most elements are zeros and only few elements are large numbers). The
assumption [(A.5)|ensures that the initial macroscopic states converges to a deterministic value as the
system size n goes to infinity. The following theorem proves that if the initial state is convergent, then
the whole training process converges to a deterministic process as n — oo, which is characterized by
an ODE.

Theorem 1. Fix T > 0. It holds under Assumptions|(A.1)H(A.S )| that

k a(r)
omax E[[M - M) < 57, @
I Pt qt
where C(T) is a constant that depends on T but not on n, and M (t) = P: S ri| €

T T
q; Ty 2t

REA+DX Q4+ s g deterministic function. Moreover, M (t) is the unique solution of the following
ODE: T

(TdtPt = T(qtgt + PtLt)

d%‘]t = T(gt - Ptat + cht)

(Tdt'r't = T(PtTgt — 819, +rihy) + 7 (29, + Lery) 3

(%St = F('I"tg;r + gt’f': + StLt + LtSt)

CTdtZt = 2T(thgt — T:Ag't -+ Ztht) —+ Tth
with the initial condition M (0) = M, where

g9, = (cf(c"a +evzmm)), ., G = (Ef(€ r+ey/zi)), ., L = —Adiag(H'(S1))
he=(f'(c"a, + ey/zim),, — (@ i+ ey/zic)) ., — AH'(21), 9)
be = (S (e g, + ev/zmn)),, + 162 (@ v+ ey/zim6) ) .-

The two functions f, f stand for f(z) = iF(lA)(x)) and f(z) = iﬁ(f)(x)) and f', f" and H'
are derivatives of f, f and H respectively. The two constants nr and ng are the strength of the
noise in the true data model and the generator, respectively. The brackets (-) ., and (-);  denote the
averages over the random variables ¢ ~ P, ¢ ~ Pz, and e ~ N(0,1), where P, and Pz are the
distributions involved in defining the generative model (1) and the generator (2).

This theorem implies that for each k = |¢n | for some ¢ € [0, T'], the macroscopic state M ;, converges
to a deterministic number M (¢), and the convergence rate is O(1/+/n). The limiting ODE (8) for
the macroscopic states involves O(d?) variables, where d is the number of internal features often
assumed to be a finite number that is much less than n. This ODE is essentially different from the
ODE derived in the small-learning-rate limit [11H16], in which the number of variables is O(n).

The complete proof can be found in the Supplementary Materials. We briefly sketch the proof here.
First, we note that M, is a discrete-time stochastic process driven by the Markov chain X ;. Then,
we apply the martingale decomposition for M, and get

M1 — My = (M) + (Myy1 — B M) + [Ex Mg — My, — (M),
where the matrix-valued function ¢(M ) represents the functions on the right hand sides of the ODE
(8), and E;, denotes the conditional expectation given the state of the Markov chain X . Finally,

we show the martingale ZIZ/:O(Mk/+1 — E 4 M }/) and the higher-order term Ex, M1 — M, —
L ¢(M ;) have no contribution when n goes to infinity.

Due to the limitation of our current proof, the constant C'(T) in grows exponentially as 7'
increases. This is not a problem for any finite 7', but may cause some problem to study the long
time behavior when 7' — oo. However, if we impose a sufficient large regularizer parameter A to
limit the norms of the microscopic weights V', and wy, then the macroscopic state M, is bounded
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Figure 1: Macroscopic dynamics of the GAN with d = 2 features: [P}]; ; is the cosine of the angle
between 7’th column vector of the real feature matrix U, and j’th column vector of the generator’s
weight matrix V.. Similarly, [g,]; is the cosine of angle between i’th column vector of U}, and
the discriminator’s weight vector wy. Colored dots are results from experiments, and the curves
tracing these dots are our theoretical prediction by the ODE (8)). From the left to right, the variance
of background noise is nt = g = 2, 1, 4 respectively, and other parameters are the same. The left
figure is an example of successful training, where two features (red and blue dots) are retrieved by the
generator. The center figure shows an oscillating training. It happens when noise are weak. The right
figures shows a mode collapsing state, in which only the first feature are estimated by the generator.

as [My]7; < [My]i[My];,;. In our experiments, A > 1 is sufficient. In this case, the constant
C(T) is bounded not depending on T'. In Example 1, when A — oo, [M]; ; = 1, and therefore
[M]7 ;< land C(T) < (2d + 1)2, where the number of features d is considered a constant not
growing with n. This justifies the fixed points analysis of the ODE as discussed in Section[d which
reflects the long-time training behavior. A better proof strategy to get rid of this dependence of 7" is

also possible, e.g., [26].

Numerical verification. We verify the theoretical prediction given by the ODE (8) via numerical
simulations under the settings stated in Example [T} The results are shown in Figure[I] The number
of features is d = 2, and ¢, and ¢;, are both Gaussian with zero mean and covariance diag([5, 3]).
The dimension is n = 5, 000, and the learning rates of the generator and discriminator are 7 = 0.04
and 7 = 0.2 respectively. After testing different noise strength v = ng = 2, 1, 4, we have observed
at least three nontrivial dynamical patterns: success, oscillating or mode collapsing. In all these
experiments, our theoretical predictions match the actual trajectories of the macroscopic states pretty
well.

Let us take a closer look at the successful case as shown in the left figure in Figure [T} The dynamics
can be split into 4 stages. At the first stage, the discriminator learns the first feature of the true
model. At this state, [q,]; quickly increases. At the second stage, the generator starts to learn the
first feature and the discriminator is deceived. At this stage, [P;]7 | increases and [g,]7 decreases.
Once the discriminator completely forgets the first feature as [g,]; & 0, the third state begins. The
discriminator starts to learn the second feature as [q,]3 increases. Then, at the last stage, the generator
learns the second feature and the discriminator is fooled again. In this region, [Pt]g)Q increases
and [q,)3 decreases down to 0. Eventually, the generators learns both features and the discriminator
is completely fooled. It ends up at a stationary state that g, = 0 and P; is nearly an identity
matrix. Interestingly, this experiment shows that the generator learn features sequentially given a
single-feature discriminator. This may be a reason why in practice, the discriminator’s structure can
be much simpler than the generator’s.

3.2 Microscopic dynamics

In this section, we study how the elements in X = [U, V', wy] evolve during the training process.
Instead of studying the trajectory of X, we study the evolution of the empirical measure of the
microscopic states, which is defined as

(@, @) € 15 o([@", 2", @] - val[Uli:, [Vili, [w]])

where §(-) is a Dirac measure on R?¢*! and [U]; ., [V'x];.. are ith row of U and V', respectively.
The scaling factor v/ in the Dirac measures is introduced because [U]; ¢, [Vi]i e and [wy ]; are

O(1/+/n) quantities.



We next embed the discrete-time measure-valued stochastic process (i into a continuous-time process
by defining ui") &f i (u, v, w) with k = |nt] .Following the general technical approach presented
in [17], we can show that under the same assumptions as Theorem I} given 7" > 0, the sequence of
measure-valued process {{ H,(gn)}te[o,T] }n converges weakly to a deterministic process {1 }+e[o,7]-
In addition, y, is the measure of the solution to the stochastic differential equation

du; =0

dv, = 7(wg, + L,v,) dt (10)

d@;, = (T, g, + B, g, + @he) dt + 7/b; A By
where (g, Vo, Wo) ~ o; By is the standard Brownian motion. The functions g,, g,, L;, h; and b;
are defined in (9, in which the macroscopic quantities Py, S, q;, 2, 7+ are computed as follows

Pt - <’U,t,’i\b’/l.\)—r>, St - <Mt766—r>7qt - <#t7a’&7>7 2t = </‘Lt7ﬁ}2>7 Ty = </4Lt7i\){u\>7 (11)

where ((i, -) denotes the expectation with respect to the measure fi;.

The SDE (I0) shows the intuitive meaning of the functions defined in ©): g,, g;, L:, h; are drift
coefficients of the SDE and b; is the diffusion coefficient of the SDE. We also note that if one follows
the analysis in the small-learning-rate limit [11H16], one will get an ODE for the microscopic states.
Compared to our SDE formula, the diffusion term 7+/b,;d.B; is missing in those works, and therefore
the effect of the noise can not be analyzed.

Moreover, the deterministic measure yi; is unique solution of the following PDE (given in its weak
form): for any bounded smooth test function ¢ (u, v, @),

%<Mta§0(aa6>@)> =
7, (0§, +0 L) V@) + (e, (@ gy — 0" Gy + hi®) 2 0) + Tby (s, o)

where q,, 7¢, St, and z; are defined in (TT)), and the functions g,, g, bs, h; and L; are defined in (9).
We refer readers to [[17] for a general framework for rigorously establishing the above scaling limit.

(12)

The connection between the microscopic and macroscopic dynamics can also be derived from
the weak formulation of the PDE. Let ¢ being each element of o', um, vw, o', w2, and
substituting those ¢ into the PDE (12)), we can derive the ODE (8). In the setting of this paper, the
macroscopic dynamics enjoys a closed ODE: We can predict the macroscopic states without solving
the PDE nor SDE at microscopic scale. However, in a more general setting, e.g. when we add a
regularizer other than the L2 type, the ODE itself may not be closed. In that case, one has to solve
the PDE directly.

Numerical verification. We verify the predictions given by the PDE (12) by setting d = 1 using
a special choice of the (n x 1)-dimensional target feature matrix U whose elements are all 1/1/n
with n = 10,000. We also set the initial condition 1o(7, W|u = 1) to be a Gaussian distribution.
(When d = 1, the macroscopic quantities P;, g;, 7+, St reduce to scalars, so we remove their boldface
here.) In this case, the PDE (I2)) admits a particularly simple analytical solution: at any time ¢, the
solution g (v, w|w = 1) is a Gaussian distribution whose mean and covariance matrix are given by
B, 3,6/a=1) {1%] = Eﬂ s By, 5,81a=1) {%} [0 w] = {ftt Zj ) Figureoverlays the contours
of the probability distribution p; (v, w|a = 1) at different times ¢ over the point clouds of the actual
experiment data (v/n[wg;, vn[V]i,1). We can see that the theoretical prediction given by has
excellent agreement with simulation results.

4 Local Stability Analysis of the ODE for the Macroscopic States

In this section, we study how the parameters, such as the learning rates 7 and 7, noise strength g
and 7y affect the training algorithm. We will focus on the concrete model as described in Example T]
so that we can have analytical solutions.

In order to further reduce the degrees of freedom of the ODE (8], we let the regularization parameter
A — oo. In this case, the vector wy, and all columns vectors of V', are always normalized. Thus
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Figure 2: The evolution of the microscopic states at ¢ = 0, 10, 100, and 150. For each fixed ¢, the
red points in the corresponding figure represent the values of (0, W) = (v/n[V]i1, v/nlwg);) for
i=1,2,...,n, where k = |nt]. The blue ellipses illustrate the contours corresponding to one, two,
and three standard deviations of the 2-D Gaussian distribution predicted by the PDE (12).

2, = 1 and [S]; ; = 1. The macroscopic state is then described by Py, g, r) and off-diagonal terms
of S}. Correspondingly, the ODE in Theorem|I]reduces to

(TdtPt =7 (qt'rthNX—FPtLt)

50 =7(Aq, — PtIN\T'tN-F heq,) N (13)
C%Tt = T(PTAqt StA”'t + htrt) + F(A + Lt)’f't
(%St = T(’l"t’l"t A. + A”'t’": + StLt + LtSt)

where A and A are the covariance matrices of the distributions P, and Pz, respectively; and

he=(1—282)r[ Ary — (1 + 72 )q/ Aq, — TnGMT L, =—diag(rr[A), (14

in which 7t and 7 are the variance of noise in the true data model and generator, respectively. The
derivation from the ODE (8) to (I3) is presented in the Supplementary Materials.

Next, we discuss under what conditions, the GAN can reach a desirable training state by studying
local stability of a particular type of fixed points of the ODE (13). The perfect estimation of the
generator corresponds to P, being an identity matrix (up to a permutation of rows and columns). A
complete fail state relates to P = 0. Furthermore, It is easy to verify that if ¢, = r, = 0, the ODE
(T3) will be stable for any P, = P.

Claim 1. The macroscopic states Py, q = r = 0 for all valid P are always the fixed points of the
ODE (13). Furthermore, a sufficient condition that the perfect estimation state P, = I, g =1 =0
is locally stable and the failed state Py = 0, q = r = 0 is unstable if

%meax{Ag — /~\g + a/~\g} <2 < meinAg, (15)

where o= %, 7% = L(n + 1), and Ay = [Ale.e. Ay = [Aly.

The proof can be found in the Supplementary Materials. If the right inequality in (I3) is violated,
any feature ¢ with the signal-to-noise ratio [A], ¢ < 7712 is not learned by the generator resulting
mode collapsing. The right figure in Figure [T|demonstrates this situations, where only one of the two
features is recovered. If the left inequality in (I3) is violated, the training processes can be trapped
in an oscillation phase. This phenomenon is shown in the middle figure in Figure[T] This result
indicates that proper background noise can help to avoid oscillation and stabilize the training process.
In fact, the trick of injecting additional noise has been used in practice to train multi-layer GANs
[27]. To our best knowledge, our paper is the first theoretical study on why noise can have such a
positive effect via a dynamic perspective.

In experiments, the training is not ended at the perfect recovery point due to the presence of the noise
but converges at another fixed point nearby. This is because the perfect state is marginally stable,
as the Jacobian matrix always has zero eigenvalues. It indicates that there are other locally stable
fixed points near P = I. In fact, all points in the hyper-rectangle region satisfying g = » = 0
< HP} M| <1, V{¢=1,2,...,darelocally stable for some critical p;. In the matched

case when Ay = A, we have pp = [(Ar— %) (Ae + 712 — O[/Kg)/(AgK[)} 1/2, o= g and 72 =




%(77% + n2). Starting from a point near the origin, numerical solution of the ODE shows the training
processes are ended up at the corner of this hyper-rectangle, i.e., P* = diag({p;, ¢ =1,2,...,d}).
In the small-learning rate limit 7 — 0O and the learning rate ratio o — 0, we get the perfect recovery
P* = I. The limit 7 — 0, @ — 0 was studied in the small-learning-rate analysis with the two-time
scaling [[15]], and the result is consistent, but our analysis includes the situations with finite 7 and a.

In addition, we provide a phase diagram analysis in a single-feature case d = 1 in the Supplementary
Materials. All possible fixed points in this case are enumerated and their local stability is analyzed.
This helps us understand the successful recovery condition (T3)), which is the intersection of the
informative phases that each feature can be recovered individually.

5 Conclusion

We present a simple high-dimensional model for GAN with an exactly analyzable training process.
Using the tool of scaling limits of stochastic processes, we show that the macroscopic state associated
with the training process converges to a deterministic process characterized as the unique solution of
an ODE, whereas the microscopic state remains stochastic described by an SDE, whose time-varying
probability measure is described by a limiting PDE.

Indeed, it is a common picture in statistical physics that the macroscopic states of large systems tend
to converge to deterministic values due to self-averaging. These notions, especially the mean-field
dynamics, have been applied to analyzing neural networks both in shallow [19, 20] and deep models
[28]. However, this mean-field regime was not considered in previous analyses of GAN. For example,
a series of recent works e.g., [11H16]] considers a different scaling regime where the learning rate
goes to zero but the system dimension n stays fixed. In that regime, the microscopic dynamics are
deterministic even with the presence of the microscopic noise. In contrast, we study the regime where
the learning rate is fixed but the dimension n — oo. This setting allows us to quantify the effect of
training noise in the learning dynamics.

In this paper, we only consider a linear generator with a latent variable ¢ drawn from a fixed
distribution Pz, but our analysis can be extended to a more complex non-linear model with a learnable
latent-variable distribution. Specifically, in order to compute derivatives w.r.t. Pz, the latent variable
¢ ~ Pz should be reparameterized by a deterministic function ¢ = f(z;8), where 0 is a learnable
parameter and z is a random variable drawn from a simple and fixed distribution. For example, a

Gaussian mixture with I equal-probability modes can be parameterized by ¢ = 24%:1 (p,+X0€) 1,
where pp and 3, are two learnable parameters representing the mean and covariance of the /th
mode respectively, and € ~ AN(0,I); B, is a random indicator variable where only one 3, for
¢=1,2,...,Lis | and the others are 0. In practice, f(z;6) is implemented by a multilayer neural
network. Our analysis can be naturally extended to analyzing this model as long as the dimensions of
¢ and 0 keep finite when the data dimension n goes to infinity. More challenging situations, where
the dimension of @ is proportional to n, will be explored in future works.

Although our analysis is carried out in the asymptotic setting, numerical experiments show that
our theoretical predictions can accurately capture the actual performance of the training algorithm
at moderate dimensions. Our analysis also reveals several different phases of the training process
that highly depend on the choice of the learning rates and noise strength. The analysis reveals a
condition on the learning rates and the strength of noise to have successful training. Violating this
condition results either oscillation or mode collapsing. Despite its simplicity, the proposed model of
GAN provides a new perspective and some insights for the study of more realistic models and more
involved training algorithms.
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