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ABSTRACT

Unsupervised monocular depth estimation has made great progress after deep
learning is involved. Training with binocular stereo images is considered as a
good option as the data can be easily obtained. However, the depth or disparity
prediction results show poor performance for the object boundaries. The main
reason is related to the handling of occlusion areas during the training. In this pa-
per, we propose a novel method to overcome this issue. Exploiting disparity maps
property, we generate an occlusion mask to block the back-propagation of the oc-
clusion areas during image warping. We also design new networks with flipped
stereo images to induce the networks to learn occluded boundaries. It shows that
our method achieves clearer boundaries and better evaluation results on KITTI
driving dataset and Virtual KITTI dataset.

1 INTRODUCTION

Monocular depth estimation becomes an active research topic as deep learning is applied in various
computer vision tasks. It has many applications, from navigation through to scene understanding. A
single traditional camera can be a cheaper alternative to the expensive LIDAR sensor for automotive
cars if accurate estimation can be achieved. Meanwhile, single camera simplifies the design of depth
estimation solution which can be adopted quite widely at a low cost.

Figure 1: Blurred boundaries of predicted disparity by Godard et al. (2017) and our result. (a) input
image (b) predicted left disparity (c) post-processed disparity(d) our result. To eliminate the artifacts
and blurred patterns, Godard et al weighted sum the disparity of the input image and flipped disparity
of the flipped input image at the cost of doubling the computation. However, there still exists blurred
patterns in the post-processed disparity. Contrary to Godard et al. as shown in (b)(c), our result(d)
shows clear boundaries with less artifacts and higher accuracy

One straight-forward way to train deep depth estimation models is to use ground truth depth images
as the supervision signals Eigen et al. (2014). However, supervised deep learning method is eager
for massive data with ground truth. Collecting large datasets with ground truth depth in varied real
scenarios is challenge and expensive. Instead, training using stereo images without depth label is
an alternative option. Godard et al. (2017) proposed a method to exploit the left-right consistency
of stereo images to tackle the monocular depth estimation, which achieved quite promising results.
However, the depth predicted by their method has blurred boundaries. The issue is mainly due to the
occlusions during the image warping. Though it can be alleviated in some extent with proper post
processing, the fundamental problem is not well addressed.
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In this paper, we propose a new method to overcome the blurred boundaries when using stereo pairs
to train the monocular depth model. An example is illustrated in Fig. 1. During the image warping,
we generate an occlusion mask using the disparity map to block the inappropriate back-propagation
gradients for occlusion areas. However, the mask only cannot guarantee clear boundaries as there
is no constrain for the masked areas. Then we design new networks to fully exploit the information
of stereo images. With flipped stereo pairs, the network is induced to learn clear boundaries for
occlusion areas. Our method provides a solution to the fundamental learning difficulty of occluded
areas introduced by image warping in depth estimation. Empirical evaluation on KITTI driving
dataset (Geiger et al. (2012)) and Virtual KITTI dataset (Gaidon et al. (2016)) demonstrates the
effectiveness of our approach. Moreover, we find the depth label of KITTI 2015 is usually very
sparse near the object boundaries, which is not very sensitive to evaluate the clearness of boundaries.

2 RELATED WORK

Large amounts of multi-view based approaches have been proposed such as stereo match-
ing(Scharstein & Szeliski (2002)), difference view point(Furukawa et al. (2015)) or temporal se-
quence(Ranftl et al. (2016)). Here we briefly review work based on single view depth estimation
which is usually harder since reasoning depth from monocular colored image is an ill-posed prob-
lem.

2.1 SUPERVISED MONOCULAR DEPTH ESTIMATION

The most intuition way is treating monocular depth estimation problem as a supervised problem
by taking RGB images as inputs and Lidar depth points as ground truth. Saxena et al. (2009)
proposed a method known as Make3d which breaks the image into homogeneous patches. For
each small homogeneous patch, Saxena et al used a Markov Random Field (MRF) to infer a set of
plane parameters that capture both the 3D location and 3D orientation. However, this approach has
a hard time capturing thin structures since the predictions are made locally. Eigen et al. (2014) first
exploited CNN in a coarse to fine manner. Liu et al. (2016)Liu et al. (2015) proposed a network
jointly explore the capacity of deep CNN and continuous conditional random field (CRF). Ladicky
et al. (2014) incorporated semantic segmentations in to single-view depth estimation task since they
are closely tied to the property of perspective geometry. Laina et al. (2016) proposed a residual
network with up-sampling module using fully convolutional architecture. Also, reverse Huber loss
was introduced. However, large amount of high-quality labelled data is needed, which is hard to
require in practice.

2.2 SEMI-SUPERVISED/UNSUPERVISED BASED METHODS

To overcome the lack of high quality labelled data, several semi-supervised and fully unsupervised
methods have been proposed. Flynn et al. (2016) first proposed a view synthesis based method
called DeepStereo which generates new view image from nearby image. Xie et al. (2016) (Deep3D)
proposed a method which generates the right image through probability distribution over all the
possible disparities for each pixel. Garg et al. (2016) first proposed a warp based method by aligning
reconstructed image with the ground truth left image as described in 3.1. However, their loss is not
fully differentiable. Godard et al. (2017) improve this methods by introducing a novel loss. Repala
& Dubey (2018) extended the network into two separate channel with 6 or 12 losses which improves
the result.

Based on Garg et al, Kuznietsov et al. (2017) proposed a semi-supervised methods that exploited
both the sparse Lidar points as supervision and stereo pairs as unsupervion signals. The semi-
supervised method was further improved by Luo et al. (2018), they decoupled the monocular depth
prediction problem into two procedure, a view synthesis procedure followed by stereo matching.

Recently, several work using only monocular temporal sequence comes out which enables more
training data such as video sequence on YouTube. Zhou et al. (2017) proposed a network that
predicts depth and camera pose separately. Using the predicted depth and camera pose, relative
temporal image can be reconstructed by image warping with which final loss can be constructed.
Mahjourian et al. (2018) performed a novel 3D loss that enforces consistency of the estimated 3D
point clouds and ego-motion across consecutive frames and combined it with 2D photometric loss.
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Wang et al. (2018) proposed a differentiable implementation of Direct Visual Odometry (DVO) and
a novel depth normalization strategy. However, all the temporal sequence based training meet the
same problem of object motion. This problem can be alleviated by including stereo pairs during
training known as trinocular training(Zhan et al. (2018)Poggi et al. (2018)Godard et al. (2018)).
However, all these warp based methods have the difficulty of learning occluded area which would
infect the result.

3 METHODS

Godard et al achieves state of art result of unsupervised monocular depth estimation with only stereo
images. Follow Godard et al, we proposed monocular depth estimation network with novel mask
methods which can be trained end-to-end and without ground-truth label. Our method is superior to
Godard et al in result quality with clearer boundaries, especially on dense evaluation dataset such as
virtual-KITTI(Gaidon et al. (2016)).

3.1 SELF-SUPERVISED DEPTH ESTIMATION FROM STEREO PAIRS

In general, our goal is to learn a network that can predict a pixel-wise dense depth map from single
colored image(dl = d(I l)). However, all supervised methods have a hard time with acquiring large
dense labelled data in real scenarios. Thus, several unsupervised methods have been proposed to
overcome the obstacle. Among these methods, training by image reconstruction using rectified
stereo pairs became more and more popular currently due to its high accuracy and easy accessibility
of training data. (Garg et al. (2016)Godard et al. (2017)Repala & Dubey (2018))

Figure 2: Network architecture. From left to Right: Naive unsupervised network proposed by Garg
et al. (2016), Left-right consistency network proposed by Godard et al, Our refined network without
shared parameters and our refined network with shared parameters

First proposed by Garg et al. (2016), the monodepth estimation network takes left image (I l) as input
and outputs the disparity aligned with the right image (dr) which can be used to sample from the left
image (I l) to reconstruct the right image (Ĩr) during training. Thus, image reconstruction loss can be
constructed between the reconstructed right image(Ĩr) and original right image(Ir). When testing,
only one colored image are required, the predicted disparity can be converted to depth simply using
depth = b ∗ f/disparity, where b and f are given baseline and camera focal length respectively. It
is worth to mention that disparities (dl and dr) are a scalar per pixel as the images are rectified.

The network was further improved by Godard et al. (2017) by introducing left-right consistency
loss and refined encoder-decoder network. Given the input left image, the network predicts both
the left and right disparities simultaneously which enables constructing the left-right consistency.
This consistency restriction leads to more accurate result and less artifacts. Also, fully differentiable
backward bilinear sampling was used to reconstruct the left image which makes the model easier to
optimize. With better network architecture and better loss, Godard et al achieved the state of art re-
sult of unsupervised monodepth estimation only with rectified stereo pairs, and even outperforming
supervised methods. Their network architectures are shown in Fig. 2.
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However, there still are unsatisfactory artifacts at the occlusion boundaries showing blurred ramps
on the left side of image and of the occluders. Even with the post-processing step which weighted
sums the flipped disparity of the flipped input image and the disparity of the input image, the blurred
ramps are still visible near the objects, especially for those near the cameras with higher disparities
as illustrated in Fig. 1.

3.2 WARPING MASK

Though common backward warping using bilinear sampler is fully differentiable which enables us
to train the model end to end, some undesirable duplicates and artifacts are introduced during the
warping process because of occlusions according to Lu et al. (2018). In Fig. 3, we use SYTHIA
dataset (Ros et al. (2016)), a synthesized virtual driving dataset to illustrate. Though ground truth
disparities are used for warping, there still exists obvious duplicates and even a huge black region
on the left of the reconstructed image(Ĩ l) because of the occlusion. If those inevitable artifacts and
duplicates are back propagated during the training process, unwanted high losses will be introduced
forcing the network learn to blur in those regions, as the blurriness(disparity ramps) in the occluded
regions will make the reconstructed image show stretched patterns(Fig 7) which are more similar to
original ground truth image compared to duplicates and large black regions(Fig. 3).

Figure 3: Problem of warping and corresponding mask. (a)left image I l (b)right image Ir

(c)disparity aligned with left image dl (d)reconstructed left image Ĩ l (e)reconstructed left image
after being masked. We used ground truth disparity of left image dl(c) to warping the right image
Ir(b) by bilinear sampling. However, duplicates and artifacts are obvious in reconstructed left image
(Ĩ l)(d) compared to the ground truth left image (a). We used a warping mask which is generated
automatically from disparities to block the back-propagation of those artifacts. The final output is
shown in (e), where the white regions are masked.

In order to block the back propagation process of those warping induced artifacts, we designed
an algorithm which can mask the occlusion region automatically. In backward bilinear sampling
process, a disparity map was used to sample from the source image. The intuition here is that, if any
pixel in the source image has never been sampled during the bilinear sampling process, this pixel
should only be visible in the source image and should be masked when reconstructing this source
image later on. Thus, the mask methods takes, say, left disparity as input while generating the mask
of reconstructed right image and vice versa. The pseudo code is shown in Algorithm 1 and the mask
schematic diagram is shown in Fig 4.

However, the mask method alone cannot guarantee the clearness since no constrain is added in
masked region. Specifically, though the masks block the back propagation of duplicates and arti-
facts induced by warping, they also block the further learning process of those regions. Once the
disparities start to blur, hardly can we correct the network back to clearness. To solve this problem,
we refined the network architecture and introduced a flip-over training scheme.

3.3 SOLVING THE PROBLEM OF BLURRINESS

Though the mask blocks the process of further learning of the blurred regions, we find that the
blurred side are definite which can be exploited to reactive the learning process. For example, when
the network is only trained on left images and takes corresponding right images as ground truth,
the disparity ramps (blurred regions) will only appear on the left side of the occluders. So, if we
randomly flipped the input images horizontally, the disparity ramps will still appear on the left
side. When flipped the output disparities back for warping, the blurred regions will appear on the
right side where no mask is added. Examples are shown in the last column of Fig 7. Thus, those
blurred regions will make distortions when reconstructing images, and back propagate despite the
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Algorithm 1: mask algorithm for occluded regions

Input: disparity of left image dl,disparity of right image dr,shape of input image(h,w)
Output: mask of reconstructed image maskr and maskr (Boolean array with the same height and

width with the images, where Trues are masked region )
1 maskr ← Trues(h,w);
2 maskl ← Trues(h,w);
3 for x,y in grid(h,w) do
4 if 0 ≤ x− dl(x) ≤ w then
5 maskr1(floor(x− dl(x)), y) = False;
6 maskr2(cell(x− dl(x)), y) = False;
7 maskr = maskr1 ∨maskr2
8 end
9 if 0 ≤ x+ dr(x) ≤ w then

10 maskl1(floor(x+ dr(x)), y) = False;
11 maskl2(cell(x+ dr(x)), y) = False;
12 maskl = maskl1 ∨maskl2
13 end
14 end
15 return maskl,maskr

mask. Also, because the flip-over scheme is performed randomly, any blurriness on the definite
side will receive punishment on average which restrict the prediction to be clear. It is worth to
mention that flip-over scheme will not affect masking process and we still use masks to block the
back propagation of duplicates. The flip-over schematic diagram is shown in Fig. 4.

However, the predicted disparities of the right branch won’t make any sense if we take the flipped
left image as input and are totally mismatched with the ground truths as is shown in Fig 4. As
a result, we delete the predicting branch of the right disparity and add another encoder-decoder
network which takes right images as input and predicts right disparities as is shown in Fig 2. This
doubled encoder-decoder network enables us to preform left-right consistency loss at the cost of
doubling the training parameters. However, it won’t slow down the test speed since only one branch
of encoder-decoder network is used when testing. We also tried another network architecture with
shared the encoder-decoder network which achieves comparable result as non-shared network while
halves the training time. More details can be found in 6.1

3.4 TRAINING LOSS

We use similar training loss as Godard et al. (2017). The losses are performed on four different
scale and are finally summed as the total loss. C =

∑4
s=1 Cs. For each scale, three different losses

including appearance match loss(Cap), disparity smoothness loss(Cds) and LR consistency loss(Clr)
are performs as follows.

Cs = αap(C
l
ap + Cr

ap) + αds(C
l
ds + Cr

ds) + αlr(C
l
lr + Cr

lr), (1)

Intuitively, appearance matching loss measures photometric error between the reconstructed
image(Ĩ lij)) and the ground truth image(I lij), which is defined as the weighted sum of L1 and SSIM
shown as follows,

Cl
ap =

1

N

∑
i,j

α
1− SSIM(I lij , Ĩ

l
ij)

2
+ (1− α)

∥∥∥I lij − Ĩ lij∥∥∥ . (2)

Disparity smoothness loss aims to force the smoothness of predicted disparities through

Cl
ds =

1

N

∑
i,j

∣∣∂xdlij∣∣ e−‖∂xI
l
ij‖ +

∣∣∂ydlij∣∣ e−‖∂yI
l
ij‖. (3)
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Figure 4: Schematic diagram. The orange squares refer to an object such as pedestrians or vehicles.
The blue and black squares refer to blurred disparity region and masked region respectively. Left:
Naive masking process. Warping mask(black) is overlap with blurred region(blue). As a result,
masks will block the learning of those region. Right: Flip-over training scheme. We flipped the
left images(f(I l)) as input and flipped the output disparities(f(d(f(I l)))) back to reconstruct the
image(Ĩ l). Different from the diagram shown in left, the blurred region will switch to the opposite
side to avoid the mask. As a result, losses will be introduced leading to clear boundaries. We can
also observed that the right branch (flipped predicted right disparity of flipped left image(f(d(Ir))))
is totally mismatch with the ground truth right image, so we delete this branch and add another
encoder-decoder branch as shown in Fig. 2.

Finally, L1 penalty is added to constrict the left-right consistency, which further reduce the artifacts,

Cl
lr =

1

N

∑
i,j

∣∣∣dlij − drij+dl
ij

∣∣∣ . (4)

3.5 IMPLEMENT DETAILS

Our network is based on Godard et al. (2017) and is implemented in Tensorflow (Abadi et al.). The
network contains encoder network based on VGG16 or Resnet50 and decoder network with 7 up-
convolutional layers, 7 merging layers and 4 disparity prediction layers. With 7 skip connections,
the network can better handles features at different scales. Different from Godard et al, we modified
the channel number of disparity prediction layers to predict only one disparity instead of two.

Also, we tuned the default hyper parameters α and αds. The rest are the same with Godard et al
with αap = 1, αlr = 1. The learning rate λ remains 10−4 for the first 30 epoch and halves every 10
epoch when trained for 50 epoch. We also tried batch norm but might lead to unstable result. Data
augmentation is performed on the fly similar as Godard et al including flipping and color shifting.

4 EXPERIMENT

We trained our model on rectified stereo image pairs in KITTI and Cityscapes dataset and evaluated
mainly on KITTI split(Geiger et al. (2012)), Eigen split(Eigen et al. (2014)) and virtual-KITTI
datasets(Gaidon et al. (2016)). Also, we find the problem of KITTI 2015 evaluation such as sparsity
and man-made defects which infects our evaluation result. When testing on dense datasets like
virtual-KITTI, the superiority becomes more obvious.

4.1 KITTI SPLIT

For comparison, we use the same split as Godard et al. (2017) which 29000 out of 42382 rectified
stereo image pairs with size of 1242*375 are used for training. The evaluation is performed on 200
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Figure 5: The sparsity problem of KITTI 2015 evaluation split. Vacancy are visible on the left of
the image and near the boundaries of cars and trees, which would have an impact on the evaluation
result.

high quality disparity image issued by official KITTI dataset. It is worth mentioned that though these
disparity images are of better quality than projected velodyne laser point and with CAD models
inserted in cars, most part of ground truth are extremely sparse, especially in terms of occluded
regions. As the red boxes in the Fig. 5 shown, there is some blank space on the left side of image
and occluded regions which is not involved in the evaluation. Thus, those blank space just covers
the shortcomings the disparity ramps on the occluded regions. As a result, our result shows less
superiority over Godard et al on KITTI stereo 2015 dataset.

As shown in Table 1, we use the metrics from Eigen et al. (2014) and D1-all metrics from KITTI.
Our model achieves comparable result with Godard et al when both trained on KITTI dataset only
for 50 epoch, and superior result when both trained longer for 100 epoch.

Method encoder Dataset Abs Rel Sq Rel RMSE RMSE log D1-all δ < 1.25 δ < 1.252 δ < 1.253

Godard 50 epoch vgg K 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975
Godard 100 epoch vgg K 0.124 1.378 6.146 0.216 31.522 0.837 0.936 0.975
Godard resnet pp resnet CS + K 0.097 0.896 5.093 0.176 23.811 0.879 0.962 0.986
Ours non-shared 50epoch vgg K 0.124 1.415 6.126 0.215 30.988 0.842 0.937 0.975
Ours non-shared 100epoch vgg K 0.121 1.228 5.977 0.209 31.10 0.846 0.941 0.977
Ours non-shared resnet pp resnet CS + K 0.097 0.960 5.030 0.170 22.585 0.884 0.963 0.985

Lower is better

Higher is better

Table 1: Evaluation result on KITTI 2015 stereo dataset(Geiger et al. (2012)). K means the model
is only trained on KITTI dataset, while CS + K means the model is trained on Cityscapes dataset and
then finetune on KITTI dataset. Also, pp means post processing step, and more details about post
processing can be found in 6.3. For a fair comparison, we train the network proposed by Godard
et al and our non-shared network both to 50 and 100 epoch, and find that our network has larger
improvement and better performance than Godard et al. (2017) when trained longer to 100 epoch.
We guess that our network requires longer time to converge. We choose different hyperparameters
from Godard et al for our network. Though it is unfair to evaluation on sparse KITTI dataset, our
result still outperforms that of Godard et al.

4.2 EIGEN SPLIT

Similar to Godard et al, we use the test split of 697 images proposed by Eigen et al. (2014). Each
image contains 3D points captured by velodyne laser which was used to generate ground truth depth.
We keep the same 22600 stereo pairs for training. According to Godard et al, all evaluation results
are done under the Garg crop(Garg et al. (2016)) except for Eigen results for a fair comparison. We
also present the uncropped result which our models’ superiority become more obvious, because it
will crop the disparity ramps on the left side for evaluation which boosting Godard et al’s result.
Also, ground truths are captured by velodyne Lidar thus rather sparse which would reduce our
superiority over Godard et al. The evaluation result is in Table 2

4.3 VIRTUAL-KITTI

To prevent sparsity induced inaccurate result, we evaluate models on the Virtual-KITTI
dataset(Geiger et al. (2012)). Virtual-KITTI dataset contains 50 monocular videos generated from
five different virtual worlds in urban settings under different weather conditions with corresponding
pixel-level ground truth depth. With the same resolution, scenes and camera parameters as KITTI
2015, Virtual-KITTI dataset can be implement naively when testing. Since KITTI 2015 dataset we
used for training does not cover those weathers, only 2126 labbeled images without weather condi-
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Method Supervised Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. (2014) coarse Yes K 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. (2014) fine Yes K 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Godard No K 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Godard resnet pp No CS + K 0.114 0.898 4.935 0.206 0.861 0.949 0.976
Ours No K 0.146 1.134 5.887 0.246 0.805 0.926 0.965
Ours non-shared resnet pp No CS + K 0.113 0.890 4.894 0.203 0.866 0.952 0.978
Garg et al L12 Aug 8×cap50m No K 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Godard cap 50m No K 0.140 0.976 4.471 0.232 0.818 0.931 0.969
Godard resnet pp cap 50m No CS + K 0.108 0.657 3.729 0.194 0.873 0.954 0.979
Ours non-shared cap 50m No K 0.1389 0.9796 4.477 0.231 0.820 0.935 0.970
Ours non-shared resnet pp cap 50m No CS + K 0.107 0.648 3.703 0.192 0.878 0.957 0.980
Godard uncropped No K 0.215 4.137 7.718 0.315 0.772 0.899 0.947
Godard resnet pp uncropped No CS + K 0.130 1.197 5.222 0.226 0.843 0.940 0.971
Ours non-shared uncropped No K 0.165 1.625 6.157 0.264 0.784 0.913 0.958
Ours non-shared resnet pp uncropped No CS + K 0.124 1.071 5.097 0.216 0.851 0.945 0.974

Lower is better

Higher is better

Table 2: Result on Eigen split Eigen et al. (2014). K is KITTI and CS is cityscapes dataset for
training. We use the evaluation result provided in Godard et al. (2017). For a fair comparison,
we use the crop the same as Garg et al. (2016) except for Eigen et al. (2014) and apply the same
hyper-parameters as Godard et al on our model. Besides, we set the maximun evaluation depth to
50 meters(cap 50m) in the second row which is the same as Garg et al. (2016) , while others remain
80 meters. Also, we compared uncropped result with Godard et al, on which the superiority become
more obvious.

tion are used for evaluation. The evaluation result is shown in Table 3. For visual result, please see
our supplementary 6.2.

Method Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Godard K 0.295 6.824 11.543 0.427 0.638 0.800 0.884
Godard pp K 0.222 3.121 9.993 0.374 0.659 0.811 0.900
Godard resnet pp CS + K 0.191 2.923 9.269 0.313 0.700 0.871 0.942
Ours non-shared K 0.229 3.501 10.286 0.369 0.655 0.825 0.908
Ours non-shared pp K 0.218 3.099 10.086 0.361 0.661 0.827 0.905
Ours non-shared resnet pp CS + K 0.176 2.216 8.721 0.283 0.738 0.893 0.952
Godard crop K 0.2165 3.1826 10.126 0.369 0.665 0.822 0.903
Godard pp crop K 0.2093 2.9135 9.820 0.354 0.673 0.930 0.910
Godard 70 epoch crop K 0.2149 3.2421 9.765 0.363 0.675 0.939 0.910
Godard resnet pp crop CS + K 0.1812 2.4501 9.132 0.301 0.707 0.871 0.942
Ours non-shared crop K 0.2123 3.129 10.050 0.353 0.678 0.836 0.916
Ours non-shared pp crop K 0.2043 2.8846 9.839 0.341 0.678 0.841 0.921
Ours non-shared 70 epoch crop K 0.2074 2.907 9.933 0.351 0.673 0.836 0.915
Ours non-shared resnet pp crop CS + K 0.1649 1.982 8.570 0.271 0.749 0.900 0.957
Godard crop&cap 50m K 0.198 2.277 7.119 0.336 0.707 0.820 0.919
Godard pp crop&cap 50m K 0.193 2.132 6.294 0.321 0.714 0.858 0.927
Godard 70 epoch crop&cap 50m K 0.199 2.348 6.992 0.334 0.713 0.861 0.924
Godard resnet pp crop&cap 50m CS + K 0.162 1.584 6.006 0.262 0.753 0.908 0.961
Ours non-shared crop&cap 50m K 0.193 2.165 6.945 0.315 0.715 0.867 0.934
Ours non-shared pp crop&cap 50m K 0.186 1.981 6.768 0.304 0.721 0.871 0.939
Ours non-shared 70 epoch crop&cap 50m K 0.188 1.991 6.792 0.314 0.718 0.869 0.932
Ours non-shared resnet pp crop&cap 50m CS + K 0.147 1.250 5.526 0.233 0.795 0.929 0.959

Lower is better

Higher is better

Table 3: Evaluation result on virtual-KITTI. Once our ground truth become dense, our model out
performance other models for its sharp and clear boundaries on predicted depth map. Even we
crop the black edges of Godard et al (the left 10% of the whole disparity map) in the second row,
our model is still superior to Godard et al. (2017) (the state of art unsupervised monocular depth
estimation using left and right information only). We evaluate on 3 different methods: naive, crop
the black edge, both crop the edge and set the maximun evaluation depth to 50 meters

5 CONCLUSION

In this work, we present an occlusion mask and filp-over training scheme to enable effective learning
of object boundaries when using image warping. With our new network, our model achieves state of
art result using only stereo images. Moreover, as warping based image reconstruction is commonly
used in depth estimation problem, our method provides a solution to the fundamental difficulty of
occluded areas introduced by image warping.

In the future, our method can be incorporated with more accurate network trained on trinocular data
(temporal Stereo sequence) such as Zhan et al. (2018), Poggi et al. (2018) and Godard et al. (2018),
which would further boost the accuracy.
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6 SUPPLEMENTARY MATERIALS

6.1 SHARED WEIGHT NETWORK

The shared weight network is similar to the non-shared weight network except for the shared weight.
The architecture is shown in 2. Fortunately, the shared weight model naturally handled the problem.
Because the blurriness always occur in the occluded region, say, disparity ramps (burriness) in left
disparity maps will only appear on the left side of the occluders, the network cannot distinguish
which side the input image belongs to and which side to blur when trained on the left and right
image simultaneously with shared weights. Thus, any wrong blurriness (blurriness on the wrong
side, say, right blurriness in the left disparity maps) will lead to punishment in raising reconstructed
loss since no mask was adding on the other side (wrong side, say, right side). As a result, the network
achieves comparable result as non-shared network while halves the training time.However, shared
method is slightly inferior to non-shared network but still out performance Godard et al. The test
result is shown in Fig 6.

6.2 VIRTUAL-KITTI TEST RESULT

Addition comparison results on virtual-kitti dataset are shown in Fig. 5

Figure 6: virtual-kitti test results

6.3 POST-PROCESSING

Godard et al weighted summed the flipped disparity of flipped image and original disparity as post
processing step. To eliminate the black edge on the left side of image as shown in Fig 1(b), Godard
et al used non-linear weight. Because our model do not predict black edge, so we simply average
them as our post-processing.

6.4 EXAMPLE OF BLURRED RESULTS AND FLIP-OVER SCHEME

Here we use the network by Godard et al. (2017) to illustrate how flip-over scheme could solve the
problem of back-propagate, so the predicted disparities are rather blurred. In Fig 7, from left to
right: left disparity(dl), reconstructed left image(Ĩ l), corresponding mask(maskl), ground truth(I l),
flipped disparity of flipped input imagef(d(f(I l))). To minimize the reconstruction error, the net-
work predicts blurred result forcing the network to sample from the background, which leads to
more similar stretched patterns instead of high loss duplicates as shown in Fig 3(d). However, the
blurred regions are aligned with the mask, which freezes the fine-tuning process of blurred regions.
To solve the problem, we randomly flip the colored image as input(Input = f(I l)), then flipped the
output back as final disparities for warping(f(d(f(I l)))). As shown in the last column, the blurred
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regions are no longer aligned with the masks which enables further learning process. As the training
process goes on, the boundaries will become clearer as shown in Fig. 1. We also use schematic
diagram to illustrate in Fig. 4

Figure 7: Example of blurred results and flip-over scheme.
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