
Under review as a conference paper at ICLR 2018

LARGE MARGIN NEURAL LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural language models (NLMs) are generative, and they model the distribution
of grammatical sentences. Trained on huge corpus, NLMs are pushing the limit of
modeling accuracy. Besides, they have also been applied to supervised learning
tasks that decode text, e.g., automatic speech recognition (ASR). By re-scoring
the n-best list, NLM can select grammatically more correct candidate among the
list, and significantly reduce word/char error rate. However, the generative na-
ture of NLM may not guarantee a discrimination between “good” and “bad” (in
a task-specific sense) sentences, resulting in suboptimal performance. This work
proposes an approach to adapt a generative NLM to a discriminative one. Differ-
ent from the commonly used maximum likelihood objective, the proposed method
aims at enlarging the margin between the “good” and “bad” sentences. It is trained
end-to-end and can be widely applied to tasks that involve the re-scoring of the
decoded text. Significant gains are observed in both ASR and statistical machine
translation (SMT) tasks.

1 INTRODUCTION

Language models (LMs) estimate the likelihood of a symbol sequence {si}ni=0, based on the joint
probability,

p(s0, . . . , sn) = p(s0)

n∏
i=1

p(si|si−1, si−2, . . . , s0). (1)

Perplexity (PPL) is a commonly adopted metric to measure the quality of an LM. It is exponentiated
per-symbol negative log-likelihood,

PPL def
== exp {−E [log p(si|si−1, si−2, . . . , s0)]} ,

where the expectation E is taken with respect to all the symbols. A good language model has a small
PPL, being able to assign higher likelihoods to sentences that are more likely to appear.

N-gram models (Chen & Goodman, 1996) assume that each symbol depends on the previous N − 1
symbols. This restrictive assumption is also seen in LMs that are based on feed forward net-
work (Bengio et al., 2003). To model longer-term dependencies, recurrent neural networks (e.g.,
Mikolov et al., 2010) are adopted. Recurrent neural language models (NLMs) often achieve smaller
PPLs than N-gram models (Sundermeyer et al., 2012; Zaremba et al., 2014; Jozefowicz et al., 2016).
More recently, alternative neural architectures (e.g., Dauphin et al., 2016) are proposed, aiming at
improving training efficiency.

LMs are widely applied in automatic speech recognition (ASR) (Yu & Deng, 2014) and statisti-
cal machine translation (SMT) (Koehn, 2010). Following (Koehn, 2010), one may interpret the
language model as a prior knowledge on the text to be inferred, which provides complementary
information in addition to the ASR or SMT system itself. In practice, there are several ways to
incorporate the language model. The simplest way may be re-scoring n-best list returned by the
ASR or SMT system (Mikolov et al., 2010; Sundermeyer et al., 2012). A slightly more complicated
way is to jointly consider the ASR/SMT and language model in a beam search decoder (Amodei
et al., 2016). Specifically, at each time step, the decoder appends every symbol in the vocabulary
to each sequence in the current candidate set. For every hypothesis, a score is calculated as a linear
combination of the log-likelihoods given by both the ASR/SMT and language model. Then, only
the top n hypotheses with the highest scores are retained, as an updated candidate set. More recent

1

Under review as a conference paper at ICLR 2018

works, Gulcehre et al. (2015) and Sriram et al. (2017), propose to predict the next symbol based on
a fusion of the hidden states in the ASR/SMT and language model. A gating mechanism is jointly
trained to determine how much the language model should contribute.

The afore-discussed language models are generative in the sense that they merely model the joint
distribution of a symbol sequence (Eq. (1)). While the research community is mostly focused on
pushing the limit of modeling accuracy (lower PPL) (e.g., Jozefowicz et al., 2016), very limited
attention has been paid to the discrimination ability of language models when they are applied to
supervised learning tasks, such as ASR and SMT. Discriminative language modeling aims at en-
hancing the performance in supervised learning tasks. In specific, existing works (Roark et al.,
2004; 2007; Peng et al., 2013) often target at improving ASR accuracy. The key motivation under-
lying them is that the model should be able to discriminate between “good” and “bad” sentences in
a task-specific sense, instead of just modeling grammatical ones. The common methodology is to
build a binary classifier upon hand-crafted features extracted from the sentences. However, it is not
obvious how these methods can utilize large unsupervised corpus, which is often easily available,
and the hand-crafted features are also ad hoc and may result in suboptimal performance.

In this work, we study how to improve the discrimination ability of a neural language model. The
proposed method enlarges the difference between the log-likelihoods of “good” and “bad” sentences.
In contrast to the existing works (Roark et al., 2004; 2007; Peng et al., 2013), our method does not
rely on hand-crafted features. It is trained in end-to-end manner and able to take advantage of large
external text corpus. We apply the proposed large margin language model to ASR and SMT tasks.
It reduces word error rate (WER) and increases bilingual evaluation understudy (BLEU) scores
significantly, showing notable advantage over several alternative methods that are well adopted.

2 RELATED WORK

Roark et al. (2004; 2007) and Peng et al. (2013) proposed to train discriminative language models
based on hand crafted features. They essentially build linear classifiers that give high scores on
“good” sentences but low scores on “bad” ones. These methods all rely on ad hoc choice of fea-
tures, e.g., counts of n-grams where n varies in a small range (e.g., 1 ∼ 3). Moreover, it is also
not clear how these methods would take advantage of an existing language model (trained on large
unsupervised corpus). Tachioka & Watanabe (2015) tries to overcome the above issues by adapting
an NLM on the transcriptions of a speech dataset. Although the setup is more similar to ours, their
objective is not well-behaved and difficult to optimize when there are multiple beam candidates. An
in-depth discussion will be given in Section 3.1.

Kuo et al. (2002) designed another approach to train a discriminative language model, which is based
on bi-grams. Similar to our method, the objective there aims at increasing the difference between the
scores of the best candidate and ground-truth. However, since the language model is not end-to-end,
there are several issues complicating the training, e.g., handling back-off weight.

Our proposed method is based on comparisons between pairs of sentences. Its implementation
resembles siamese network architecture (Chopra et al., 2005; Taigman et al., 2014), first proposed
for face verification tasks. Recently, siamese network has also been applied to learning similarities
on sequences (Mueller & Thyagarajan, 2016; Neculoiu et al., 2016). In spite of solving different
problems, the common methodology is to extract a pair of hidden representations for a pair of
input samples (through a shared network). It then manipulates the distance between the hidden
representations based on whether the two samples are considered similar or not. Our work also
draws some inspirations from information retrieval (IR) (Liu, 2009). As a representative IR method,
ranking SVM (Herbrich et al., 2000) assumes a linear scoring function, and imposes a hinge loss on
the difference between the scores of sample pairs.

3 PROBLEM FORMULATION

We explicitly define LM score as the log-likelihood of a sentence estimated by an NLM. Existing
works on NLM often train to maximize the score on a corpus that are assumed to be grammatical.
However, they do not utilize any negative examples, where the “negative” means incompetence for
a specific task. For example, in ASR (Amodei et al., 2016), negative samples may have spelling

2

Under review as a conference paper at ICLR 2018

or grammar errors. In a conversational model (Vinyals & Le, 2015), negative samples are non-
informative replies like “I don’t know”. An NLM trained in the maximum-likelihood fashion is not
aware of the specific task. It therefore cannot guarantee a larger score for a positive sample than a
negative one. This fact may handicap applications that need LMs to distinguish between positive and
negative candidates. Examples include automatic speech recognition (ASR) and statistical machine
translation (SMT). We aim at enhancing the LM’s discrimination in these applications.

Interestingly, negative samples are easy to obtain in the aforementioned applications. A beam search
decoder can often yield abundant negative sentences (suboptimal beam candidates) that differ from
ground-truth text (considered as positive). We motivate our method with an ASR example. A CTC-
based (Graves et al., 2006) ASR model is trained on Wall Street Journal (WSJ) dataset. We then
input an audio utterance whose ground-truth transcription is given in the first row of Table 1. Four
extracted beam candidates are listed in the following rows, from the best to the worst. Except beam 0,
beam 1 to 3 all make some mistakes compared with the ground-truth. In this case, a language model
is supposed to give a high score for beam 0 whereas low scores for beam 1 through 3. However, we
observe that the scores of beam 2 and 3 are not sufficiently smaller than beam 0.

Table 1: Four beam candidates for an utterance in WSJ dataset. Mistakes are annotated in red.

sentence score
true user fees simply could not keep up with the soaring costs of loans and construction −81.42

0 user fees simply could not keep up with the soaring costs of loans and construction −81.42
1 user fee simply could not keep up with the soaring costs of loans and construction −84.87
2 usser fees simply could not keep up with the soaring costs of loans end construction −81.58
3 usser fees simply could not keep up with the soaring costs of loan end construction −80.34

We denote the i-th ground-truth sentence as xi where i = 1, . . . , N ; correspondingly, the j-th beam
candidate as xi,j , where j = 1, . . . , B andB is the beam size. Without loss of generality, we assume
that theseB candidates all differ from the ground-truth by some mistakes/incompetences. The NLM
is desired to assign big log-likelihoods for the xi’s but small ones for the xi,j’s.

3.1 A STRAIGHTFORWARD FORMULATION

A straightforward way is to adopt the following objective:

min
θ

1

N

N∑
i=1

− log pθ(xi) +
1

B

B∑
j=1

log pθ(xi,j)

 . (2)

Similar formulation is also seen in Tachioka & Watanabe (2015), where they only utilize one beam
candidate, i.e., B = 1. The idea is to maximize the likelihood on the positive samples, and at the
same time, minimize the likelihood on the negative samples. Optimization can be carried out by
mini-batch stochastic gradient descent (SGD). Each iteration, SGD randomly samples a batch of i’s
and j’s, computes stochastic gradient w.r.t. θ, and takes an update step. However, a potential problem
with this formulation is that the second term (corresponding to the negative samples) may dominate
the optimization. Specifically, the training is almost always driven by the negative xi,j’s, but does
not effectively enhance the discrimination. We illustrate this fact in the following experiment.

Using the aforementioned ASR system, we extract 256 beam candidates for every training sample
in the WSJ dataset. As a baseline for beam rescoring, a conventional NLM is trained on a large
corpus, i.e. common-crawl 1. From the pre-trained baseline NLM, we warm start the training and
apply SGD to optimize the objective in Eq. (2), with a mini-batch size of 128. The training loss is
shown in Figure 1a. We observe that the learning dynamic is very unstable. Using the trained model,
we want the ground-truth sentences to have larger scores than the beam candidates. Therefore, we
inspect log pθ(xi)− log pθ(xi,j), the margin between the scores of a ground-truth and a candidate.
In Figure 2a, we histogram the margins for all the i, j’s in a dev set. The distribution appears to be
symmetric around zero, which indicates poor discrimination ability. Given these facts, we conclude
that the straightforward formulation in Eq. (2) is not effective.

1http://web-language-models.s3-website-us-east-1.amazonaws.com/wmt16/deduped/en-new.xz

3

Under review as a conference paper at ICLR 2018

0 2000 4000 6000 8000 10000
iteration

−2

0

2

4

6

8

tra
in
 lo

ss

1e7

(a) learning curve of straightforward formulation,
Eq. (2)

0 2000 4000 6000 8000 10000
iteration

0.0

0.5

1.0

1.5

2.0

tra
in
 lo

ss

(b) learning curve of LMLM, Eq. (3)

Figure 1: Training losses of (a) straightforward and (b) large margin formulation

(a) (b)

Figure 2: Histogram of log p(xi) − log p(xi,j), the margin between the log-likelihoods of ground-
truth sentences and (erroneous) beam candidates. The more positive, the more the discrimination.
(a) Straightforward formulation; (b) LMLM compared with baseline NLM (a conventional language
model trained on common crawl)

3.2 LARGE MARGIN FORMULATION

To effectively utilize all the negative beam candidates, we propose the following objective,

min
θ

1

NB

N∑
i=1

B∑
j=1

max
{
τ − (log pθ(xi)− logθ(xi,j)), 0

}
, (3)

where log pθ(xi)− logθ(xi,j) is the margin between the scores of a ground-truth xi and a negative
candidate xi,j . The hinge loss on the margin encourages the log-likelihood of the ground-truth to
be at least τ larger than that of the “bad” candidate. We call the above formulation Large Margin
Language Model (LMLM).

We repeat the same experiment in section 3.1, but change the objective function to Eq. (3). We fix
τ = 1 across the paper. Figure 1b shows the training loss, which steadily decreases and approaches
zero rapidly. Compared with the learning curve of naive formulation (figure 1a), the large margin
based training is much more stable. In Figure 2b, we also examine the histogram of log pθ(xi) −
log pθ(xi,j), where pθ(·) is the language model learned by LMLM. Compared with the histogram by
the baseline NLM, LMLM significantly moves the distribution to the positive side, indicating more
discrimination.

4

Under review as a conference paper at ICLR 2018

3.3 ENHANCED LARGE MARGIN: USING RANKING INFORMATION

In most cases, all beam candidates are imperfect. It would be beneficial to exploit the information
that some candidates are relatively better than the others. We consider ranking them according to
some metrics w.r.t. the ground-truth sentences. For ASR, the metric is edit distance, and for SMT,
the metric is BLEU score. We define xi,0 , xi and assume that the candidates {xi,j}Bj=1 in the
beam are sorted such that

editDist(xi,xi,j−1) < editDist(xi,xi,j)

for ASR, and
BLEU(xi,xi,j−1) > BLEU(xi,xi,j)

for SMT. In other words, xi,j−1 has better quality than xi,j .

We then enforce the “better” sentences to have a score at least τ larger than those “worse” ones.
This leads to the following formulation,

min
θ

1

NB(B − 1)/2

N∑
i=1

B−1∑
j=0

B∑
k=j+1

max
{
τ − (log pθ(xi,j)− logθ(xi,k)), 0

}
. (4)

Compared with LMLM formulation Eq. (3), the above introduces more comparisons among the
candidates, and hence more computational cost during training. We call this formulation rank-
LMLM.

4 EXPERIMENTS

In this section, we study LMLM and rank-LMLM through extensive experiments on ASR and SMT.
We demonstrate that both LMLM and rank-LMLM significantly outperform a baseline language
model (baseline-LM) and two other domain adapted models.

The baseline-LM architecture, shown in Figure 3, starts with a 2048 dimensional embedding layer,
followed by two LSTM layers, each with 2048 nodes. The LSTM hidden states are then projected
down to dimension 512. Finally, a softmax layer with 400K dimensional output is appended to
produce a distribution over the vocabulary. The huge vocabulary size incurs a large computational
cost, and we use sampled softmax technique (Jean et al., 2014) to accelerate training. This type of
neural architecture has been shown effective in conventional language modeling tasks (Jozefowicz
et al., 2016). We trained the baseline-LM on the common-crawl corpus. Common-crawl corpus has
a vocabulary size about 400K. This large vocabulary ensures a small out of vocabulary (OOV) rate
for the used ASR and SMT datasets, details of which are summarized in Table 2. The baseline-
LM achieves a reasonably good perplexity of 110 on a dev set with 400K sentences, significantly
outperforming a 5-gram model, which has a dev perplexity of about 300.

Table 2: Statistics of the used datasets

dataset common-crawl WSJ Fisher IWSLT
task baseline-LM ASR ASR SMT

train 1.1G 37.4K 2.1M 133.3K
dev 400K 503 1,000 1,533
test N/A 333 4,458 1,268
OOV 0% 0.28% 0.05% 1.07%

LSTM LSTM

Embedding Sampled
softmax

2048 2048 512 2048 512 400K

Figure 3: Architecture of baseline-LM

4.1 EXPERIMENTAL PROTOCOL

The experimental setup is as follows. First we train an ASR/SMT model on the training set. Then we
extract B beam candidates for every training sample. This beam set, together with the correspond-
ing ground-truth text, are used as the training data for LMLM and rank-LMLM. We then re-score
the beams by linearly combining ASR/SMT and language model scores. The combination weight

5

Under review as a conference paper at ICLR 2018

is found by optimizing the WER/BLEU on the dev set. Finally, WER/BLEU on the test set are
reported.

For comparison, we also include two other approaches that adapt the baseline-LM to the text in the
specific task. One way is to fine-tune the baseline NLM using the task-specific text but still under
the minimum-perplexity objective (Kim, 2014). We call it refine-LM. The other way is to train a
smaller NLM from scratch on the task-specific data, and then linearly interpolate with the baseline-
LM (Hsu, 2007). We call it interp-LM. In all the experiments with LMLM and rank-LMLM, we set
τ = 1. For rank-LMLM, since the total number of pairs is huge, we randomly sample 20% of them.

4.2 ON THE IMPORTANCE OF WARM-STARTING

An advantage of LMLM (and rank-LMLM) is being able to utilize huge unsupervised data. This
is achieved by warm-starting the LMLM with a conventional language model trained on any unsu-
pervised corpus. However, one would doubt why it is necessary to warm-start, since LMLM might
easily learn to make binary decisions on pairs of “good” and “bad” sentences. Interestingly, we
show that warm-starting is very important. Without warm-starting, the LMLM training will be stuck
to “bad” local minimal and cannot generalize well. Earlier works in various applications (Hinton
& Salakhutdinov, 2006; Erhan et al., 2010) have observed similar behavior and suggested using
unsupervised model to warm-start supervised training. The observation on LMLM is yet another
supportive evidence, elaborated in the following experiment.

Using the same ASR system in Section 3.1, we extract 64 beam candidates for every training ut-
terance in the WSJ dataset. We then train LMLM either with or without warm-starting from the
baseline-LM.

0 2000 4000 6000 8000 100000.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

tra
in
 lo

ss

w/o warm start
w/ warm start

0 2000 4000 6000 8000 10000
iteration

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

de
v
lo
ss

w/o warm start
w/ warm start

(a) training and dev loss with/without warm starting (b) histogram of margin with/without warm starting

Figure 4: Compare the training of LMLM wither with or without warm starting

Figure 4a compares the learning curves for both cases. With warm starting, training and dev losses
start to decay from smaller values, approaching zero at convergence. The stronger generalization
ability is further illustrated in Figure 4b. Figure 4b shows the histogram of the margins between
the scores for the ground-truths and beam candidates in the dev set. The more positive the margin
is, the more the separation between positive and negative examples. In the warm-started case, the
distribution is shifted rightwards, indicating more discrimination.

4.3 WSJ EXAMPLE REVISITED

We revisit the example in Table 1, in order to understand why LMLM and rank-LMLM can work.
We estimate the language model scores using LMLM and rank-LMLM. Scores are listed in Table 3,
in comparison with those by the baseline-LM, which we have seen in Table 1. Numbers in the
brackets are the margins. A large positive margin indicates effective identification of the erroneous
sentence. Overall, with LMLM and rank-LMLM, the margins become significantly more positive.

6

Under review as a conference paper at ICLR 2018

Table 3: Scores for the four beam candidates in table 1

sentence scores (margin)
baseline-LM LMLM rank-LMLM

true user fees . . . loans and . . . −81.42 −86.48 −104.21
0 user fees . . . loans and . . . −81.42 (+0.00) −86.48 (+0.00) −104.21 (+0.00)
1 user fee . . . loans and . . . −84.87 (+3.45) −89.82 (+3.34) −110.21 (+6.00)
2 usser fees . . . loans end . . . −81.58 (+0.16) −112.38 (+25.90) −124.54 (+20.33)
3 usser fees . . . loan end . . . −80.34 (−1.08) −111.47 (+24.99) −127.43 (+23.22)

Table 4: WER and CER on WSJ test set

no re-score baseline-LM refine-LM interp-LM LMLM rank-LMLM
WER 7.58 6.89 6.73 6.80 5.67 5.53
CER 2.72 2.67 2.58 2.65 2.24 2.19

Table 5: WER and CER on Fisher test set (SWBD and CallHome)

no re-score baseline-LM refine-LM interp-LM LMLM rank-LMLM
WER 28.38 27.57 26.89 27.58 26.01 25.99
CER 11.66 11.56 11.49 11.56 11.32 11.30

Table 6: BLEU scores on IWSLT test set

no re-score baseline-LM refine-LM interp-LM LMLM rank-LMLM
BLEU 14.18 14.18 14.18 14.18 15.51 15.80

More interestingly, rank-LMLM is able to assign larger score for beam 2 than beam 3, showing more
selectivity than LMLM.

We also notice that all the scores by LMLM and rank-LMLM are smaller than those by the baseline-
LM, since the proposed methods are not guided by the conventional max-likelihood objective. Com-
pared with LMLM, rank-LMLM scores are even smaller. This is due to more pairwise constraints
imposed in training, which makes rank-LMLM deviate even more from the max-likelihood objec-
tive. However, we argue that the max-likelihood training is not well aligned with beam re-scoring
purpose, which we shall see in the reported WERs soon.

4.4 EXPERIMENTS ON ASR

In this section, we apply the proposed methods for ASR tasks, and report WERs and CERs on test
sets. The datasets we used are WSJ and Fisher, whose statistics are summarized in the 3rd and 4th
columns of Table 2. Note that for Fisher task, we follow the standard setup (Povey et al., 2016),
which evaluates on the hub5 set, including two subsets (SWBD and CallHome). In total, there are
4,458 utterances for test.

The ASR models for WSJ has one convolutional layer, followed by 5 layers of RNNs. The ASR
model for Fisher has two convolutional layers, followed by 6 layers of GRUs. The final hidden
representations are input into fully connected layers and then the models are trained using CTC
loss (Graves et al., 2006). Note that the ASR models are trained using only in-domain data. That
is, the training utterances of WSJ or Fisher respectively. Using a language model during decoding
may significantly improve the performance. Therefore, during decoding, we also applied an n-gram
model learned from the in-domain training text. The beam search decoder has a beam width of 2000.
The top-1 beam candidates give us strong baseline WERs, e.g., for WSJ task, the test WER is 7.58.

The extracted beams candidates are then re-scored using the baseline-LM, refine-LM, interp-LM,
LMLM and rank-LMLM. Training of these language models follow the experimental protocol in
section 4.1. We report the WERs of the rescored top-1 candidates on the test set. The same exper-

7

Under review as a conference paper at ICLR 2018

iment is repeated on WSJ and Fisher tasks. Results are listed in Table 4 and Table 5 respectively.
Bold numbers are the best and italics are runner-ups. Among all the language models for re-scoring,
rank-LMLM achieves the best WER and CER, and LMLM is also very competitive with rank-LMLM.
They both significantly outperform the other methods, all of which are generative language models.
Based on these observations, we argue that a language model has to be adapted in a way that is
suitable for re-scoring purpose in supervised tasks, rather than just maximizing likelihood.

4.5 EXPERIMENTS ON SMT

LMLM and rank-LMLM are general in the sense that they can be applied to any re-scoring problem
on text data. In this section, we show a proof-of-concept example on an SMT task. We experiment
with IWSLT15 Vietnamese-to-English dataset2. We use “tst2012” as dev set and “tst2013” as test
set. The dataset is simplified by decapitalizing all the words and removing punctuations. This
results in a vocabulary size of about 44K, and only a tiny fraction of them are out of the vocabulary
of common crawl. Details of the cleaned dataset are listed in the last column of Table 2.

We train an SMT model based on the attention mechanism in Luong et al. (2015). The encoder and
decoder both have two layers of LSTMs, each with 128 activations. We follow the experimental
protocol outlined in Section 4.1. Table 6 reports the BLEU scores on the test set. LMLM and rank-
LMLM both significantly outperform the other methods. In contrast, all the generative language
models (3rd to 5th column in Table 6) do not improve upon the case without re-scoring. In fact, for
these three cases, we found that the best weight to combine the language model is zero, meaning
that the language model is not providing any complementary information to the SMT model. A
key point to understand this phenomenon is that the decoder in a seq-to-seq model implicitly works
as a conventional language model (Sutskever et al., 2014). This results in very grammatical beam
candidates, but their qualities differ in some semantic sense. A generative language model acts more
or less like a grammar checker, and has no power of discrimination in the semantic field.

5 CONCLUSION

Conventional language models are guided by minimizing perplexity, and they are generative models.
This work proposes an approach to enhance the discrimination ability of language models. It is
trained end-to-end by maximizing the margin between “good” and “bad” (in a task-specific sense)
sentences. The method is general and can be applied to various tasks that require re-scoring of text
data. Experiments on ASR and SMT have shown a consistent gain over several baselines. These
facts argue that min-perplexity is not necessarily an appropriate guideline when we want to apply
language models in some supervised learning problems. A future direction is to apply the proposed
method to conversation generation. The goal is to discriminate between boring (e.g., “I don’t know”)
and informative replies, thus deprecating the former. Another interesting future work is to apply the
LMLM/rank-LMLM to lattices during decoding.

REFERENCES

D. Amodei, R. Anubhai, E. Battenberg, et al. Deep speech 2: End-to-end speech recognition in
english and mandarin. In International Conference on Machine Learning, 2016.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model. Journal
of machine learning research, 3(Feb):1137–1155, 2003.

S. Chen and J. Goodman. An empirical study of smoothing techniques for language modeling. In
34th annual meeting on Association for Computational Linguistics, pp. 310–318. Association for
Computational Linguistics, 1996.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application
to face verification. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, volume 1, pp. 539–546, 2005.

2https://sites.google.com/site/iwsltevaluation2015/mt-track

8

Under review as a conference paper at ICLR 2018

Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated convolutional
networks. arXiv preprint arXiv:1612.08083, 2016.

D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol, P. Vincent, and S. Bengio. Why does unsuper-
vised pre-training help deep learning? Journal of Machine Learning Research, 11(Feb):625–660,
2010.

A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural networks. In the 23rd international
conference on Machine learning, pp. 369–376, 2006.

C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, et al. On using monolingual corpora in neural
machine translation. arXiv preprint arXiv:1503.03535, 2015.

R. Herbrich, K. Obermayer, and T. Graepel. Large margin rank boundaries for ordinal regression.
In Advances in Large Margin Classifiers, pp. 115–132, 2000.

G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006.

B. J. Hsu. Generalized linear interpolation of language models. In IEEE Workshop on Automatic
Speech Recognition and Understanding, pp. 136–140, 2007.

S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On using very large target vocabulary for neural
machine translation. arXiv preprint arXiv:1412.2007, 2014.

R. Jozefowicz, O. Vinyals, M. Schuster M, N. Shazeer N, and Y. Wu. Exploring the limits of
language modeling. arXiv preprint arXiv:1602.02410, 2016.

Y. Kim. Convolutional neural networks for sentence classification. In Conference on Empirical
Methods in Natural Language Processing, pp. 1746–1751, 2014.

P. Koehn. Statistical Machine Translation. Cambridge University Press, New York, NY, USA,,
2010.

H. J. Kuo, E. Fosler-Lussier, H. Jiang, and C. Lee. Discriminative training of language models for
speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 2002.

T. Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

M. T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural machine
translation. arXiv preprint arXiv:1508.04025, 2015.

T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur. Recurrent neural network based
language model. In Interspeech, 2010.

J. Mueller and A. Thyagarajan. Siamese recurrent architectures for learning sentence similarity. In
AAAI, pp. 2786–2792, 2016.

P. Neculoiu, M. Versteegh, M. Rotaru, and T. B. Amsterdam. Learning text similarity with siamese
recurrent networks. In ACL, 2016.

F. Peng, S. Roy, B. Shahshahani, and F. Beaufays. Search results based n-best hypothesis rescoring
with maximum entropy classification. In ASRU, 2013.

D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na, Y. Wang, and S. Khudanpur.
Purely sequence-trained neural networks for asr based on lattice-free mmi. In InINTERSPEECH,
2016.

B. Roark, M. Saraclar, M. Collins, and M. Johnson. Discriminative language modeling with condi-
tional random fields and the perceptron algorithmjul. In The 42nd Annual Meeting on Association
for Computational Linguistics 2004. Association for Computational Linguistics, 2004.

9

Under review as a conference paper at ICLR 2018

B. Roark, M. Saraclar, and M. Collins. Discriminative n-gram language modeling. Computer Speech
and Language, 21(2):373–392, 2007.

A. Sriram, H. Jun, S. Satheesh, and A. Coates. Cold fusion: Training seq2seq models together with
language models. arXiv preprint arXiv:1708.06426, 2017.

M. Sundermeyer, R. Schlüter, and H. Ney. Lstm neural networks for language modeling. In In 13th
Annual Conference of the International Speech Communication Association, 2012.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pp. 3104–3112, 2014.

Y. Tachioka and S. Watanabe. Discriminative method for recurrent neural network language models.
In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015.

Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level
performance in face verification 2014. In IEEE conference on computer vision and pattern recog-
nition, pp. 1701–1708, 2014.

O. Vinyals and Q. Le. A neural conversational model. arXiv preprint arXiv:1506.05869, 2015.

D. Yu and L. Deng. Automatic Speech Recognition: A Deep Learning Approach. Springer Publish-
ing Company, Incorporated, 2014.

W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014.

10

	Introduction
	Related Work
	Problem Formulation
	A Straightforward Formulation
	Large Margin Formulation
	Enhanced Large Margin: Using Ranking Information

	Experiments
	Experimental Protocol
	On the Importance of Warm-Starting
	WSJ Example Revisited
	Experiments on ASR
	Experiments on SMT

	Conclusion

