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Deep Knowledge Based Agent:
Learning to do tasks by self-thinking about imaginary worlds
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Abstract

Lifelong and meta learning aim to learn quickly
new skills by transferring knowledge from past ex-
periences. Current algorithms learn a meta-policy
from a set of hand-crafted training tasks and adapt
their policy to new but similar problems. In con-
trast, human are able to learn from very sparse
data and apply learned skills to very different situ-
ations. In this work, we integrate the old-standing
idea of knowledge-based agents with deep model-
based reinforcement learning. We show that our
model can transfer knowledge from completely
randomly generated environments to real tasks.
We argue that the weights of forward models can
be used as a knowledge-base by an inference en-
gine to infer optimal policy in real environments.
We demonstrate that this approach automatizes
both task-specification and knowledge base con-
struction.

1. Introduction
Combining non-linear function approximations through
deep neural networks with long-standing approaches in re-
inforcement learning (RL) led to unprecedented success
in complex task domains such as Atari-2600 (Mnih et al.,
2013) and Go (Silver et al., 2017). These ground break-
ing achievements are very promising for developing real
world artificial intelligence. However, in order to outper-
form human performance, these methods usually require a
large amount of training data gathered through interaction
with environments, which is computationally challenging.
Also, reusing past knowledge and experiences for faster
learning of new tasks is a major challenge for current DRL
approaches.

In order to overcome these obstacles meta and lifelong re-
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inforcement learning have been proposed and explored ex-
tensively (Wang et al., 2016; Finn et al., 2017; Chen et al.,
2018). Meta learning is a powerful paradigm to increase the
data efficiency of learning models by transferring knowl-
edge from a set of training tasks to new related and sim-
ilar test tasks. One common assumption made by most
meta-reinforcement learning models is that the test tasks
are drawn from the same distribution of training samples
and performance of meta-learned models strongly depends
on the choice of this distribution. This requires a careful
manual-design engineering which limits the scope of meta
RL applications. On the other hand, lifelong RL tries to
reuse any applicable skill gained bt agent during its lifelong
to improve its performance on future tasks. Ideally, a life-
long learner should be able to transfer knowledge between
completely uncorrelated environments. However, in both
cases of meta and lifelong learning, practical implemen-
tations don’t go beyond strongly connected test and train
tasks. Furthermore, providing training tasks is a cumber-
some procedure as it requires carefully hand-designing task
distributions.

Motivated by this discussion, we propose a novel framework
for meeting above mentioned challenges. The key idea is to
augmenting the agent with a knowledge base which carry
the burden of knowledge-transformation. Indeed having
an agent which does reasoning on internal representation
of knowledge is an old standing idea in artificial intelli-
gence, usually termed as knowledge-based agent (Russell &
Norvig, 2016). Traditional KB agents are based on manu-
ally provided KB and using logical programming such as
Prolog to infer statement about world from KB and making
a plan to reach the goal (Minker, 2012).

Here, we show that the idea of knowledge-based agent can
be naturally integrated with model-based RL technique and
resulting to a completely automated meta and lifelong ap-
proach, which we refer to as deep knowledge-base agent
(DKBA). We show that our approach automatizes both task
specification and knowledge-base building. As we shall
illustrate, under proper circumstances, DKBA is capable
of learning a meta-policy from completely unrelated and
unstructured tasks, i.e. tasks those are sampled by uniform
distribution. We then evaluate our model on some environ-
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ments with specific and different distributions, namely real
worlds. Interestingly, DKBA performs closely to optimal
policy on these new domains by doing reasoning on KB
provided by forward models.

2. Related Work
Meta-learning aims to learn the learning process (Schmid-
huber, 1987; Thrun & Pratt, 2012; Bengio et al., 1990;
Andrychowicz et al., 2016; Finn et al., 2017). There are also
a plenty of works in extending these results to reinforce-
ment learning setting, including (Schweighofer & Doya,
2003; Duan et al., 2016; Xu et al., 2018; Gupta et al., 2018;
Nagabandi et al., 2018a).

Lifelong learning, on the other hand, focuses on developing
versatile systems that accumulate and refine their knowledge
over time (Chen et al., 2018). In the context of reinforcement
learning, this means that test tasks can be very different from
train ones (Ring, 1997; Tanaka & Yamamura, 1997; Wilson
et al., 2007; Ammar et al., 2015).

Deep Model-based reinforcement learning has been ex-
plored in (Nagabandi et al., 2018b; Feinberg et al., 2018;
Kurutach et al., 2018).

Knowledge-based and logical agents have a long story
and we refer interested reader to (Russell & Norvig, 2016;
Minker, 2012) and references therein for more details and
information.

3. Background
Reinforcement Learning. We consider the standard
reinforcement learning paradigm where an agent interacts
with an environment in discrete time steps t. We may model
the environment as finite episodic Markov decision process
(MDP), which is defined by 6-tupleM = (S,A, p, r, π, γ).
Here, S is finite set of states (S = |S|), A the finite
action space (A = |A|), p(st+1|st, at) is the transition
distribution conditioned on state-actions, and r(st, at) is
a reward function. FurthermoreM has a policy π(at|st)
for selecting actions at each time step and a discount factor
γ ∈ [0, 1). The goal of agent is to maximize long-term
expected discounted return Eπ[

∑T
t=0 γ

t r(st, at)]. Without
loss of generality we set γ = 1 in what follows.

Model-based Reinforcement Learning. In model-based
reinforcement learning agent predict how the environment
will respond to its actions by learning a parametric transi-
tion function fθs(st, at) for predicting next state st+1 and
a reward model fθr (st, at) which predicts reward rt. In
high dimensional domains, deep neural networks, as univer-
sal function approximators, can be used to represents these
models of world. The parameters of learned models, θs and

θr or θ for brevity, are correspond to weights of deep neural
networks. The networks can be trained in standard super-
vised fashion by minimizing the prediction errors Es,r over
a set of trajectories D gathered by agent’s own experience:

argmin
θs

∑
D

Es(st+1, fθs(st, at)),

argmin
θr

∑
D

Er(rt, fθr (st, at))

Where Es and Er are appropriate loss objectives for estimat-
ing state and reward functions. We use cross entropy for
both of them in this work but this choice is task-dependent,
essentially.

The learned models can then be used in conjunction with
a planing mechanism or control method to simulate the
environment and planning actions to maximize rewards.
The intention behind using model based methods is their
ability in reaching high performance with significantly
fewer experiences comparing with model-free approaches
and improving sample complexity.

Meta Reinforcement Learning. Meta-RL primarily aims
to learn quickly a new optimal policy in MDPs,M, drawn
from a distribution ρ(M). In order to train agent a set of RL
tasks,Mk, are generated according to distribution ρ(M).
Sampled environments might have any new aspect includ-
ing reward and transition function, however typically it is
assumed that state and action space are fixed. The goal of
few-shot meta learner is to quickly acquire a policy close
to optimal one for test tasks using only a small number of
samples. Collecting training set of tasks, the meta-learner’s
objective is to maximize expected return over these envi-
ronments by learning a meta policy πρ(M) through solving
following optimization problem:

argmax
πρ(M)

EMk∼ρ(M)
st∼pk

at∼πρ(M)

[ T∑
t=0

r(st, at)

]
(1)

At test time, the meta learner is evaluated on unseen tasks
generated from the same distribution ρ(M). Although
meta-RL generalizes the learning ability of simple RL
agent, in practice test and train tasks are strongly correlated.
For example the agent is trained on several mazes and at the
test time agent should navigate new maps.

Lifelong Reinforcement Learning. One common as-
sumption made by meta-learning techniques is that MDPs
in training and test data are from the same distribution
ρ(M). Lifelong learning goes one step further by relaxing
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this condition and tries to use any knowledge from past
experiences that are applicable to new MDPs. Namely, the
distribution of MDPs is unknown and fixed in lifelong-RL
setting and the agent has to transfer knowledge across the
task distribution. Although, in practice lifelong tasks are
strongly connected. For instance, the agent is trained on
several levels of a game and then evaluated on new levels of
the same game.

Knowledge-Based Agent. One early approach in creat-
ing artificial intelligent system was building a knowledge
base and using an inference mechanism to infer optimal
decisions from that. A knowledge base (KB) contains any
relevant information about the domain of application, includ-
ing facts, rules and relations between elements and possibly
also methods for solving problems. A knowledge-based
agent is composed of a knowledge base and an inference
system which knows how to use the knowledge in the base
and do reasoning.

The language whose sentences represent facts about the
world in KB is called knowledge representation (KR) lan-
guage . Logical agents are subclass of knowledge-based
agents where KR language is propositional or first order
logic and inference mechanism is the standard logical de-
duction. In other words, logical AI involves representing
knowledge of world, goals and current state of agent by sen-
tences or axioms in logic, and agent can find a sequence of
actions such that these axioms entail the goal by employing
inference engine. This approach to AI in its declarative form
led to logical programming frameworks including Prolog
programming system.

4. Model
One drawback of conventional knowledge-based approaches
to AI is that providing knowledge bases is not an automated
process and for complex domains requires a tedious hand-
made programming. Also reusing learned knowledge for
new tasks is not a straightforward procedure. In this work we
suggest a method to address these obstacles by integrating
the concept of knowledge-based agents with model-based
reinforcement learning. This approach that we term as deep
knowledge-based agent (DKBA) leads to an automated meta
and lifelong reinforcement learning. The core idea is us-
ing the parameters of learned models, θ, as a knowledge
base and utilizing an inference mechanism to infer optimal
actions from it. However, instead of using logical rules,
we train inference module in supervised manner by provid-
ing samples from randomly generated environments,Mi .
Each sample-point comprises 4-tuple (θ∗s,i, θ

∗
r,i, st,i, a

∗
t,i),

where θ∗s,i and θ∗r,i are weights of trained forward models
and a∗t,i is the optimal action in state st,i, all correspond-
ing to Mi. The inference engine can be represented by

a meta-policy ΠΘ(at,j |st,j ;θ∗s,j ,θ
∗
r,j) which predicts opti-

mal action in state st,j using knowledge about environment
Mj provided by θ∗s,j and θ∗r,j . The parameters of meta-
policy, Θ, are computed by minimizing following cross
entropy over the set of training tasks, D:

argmin
Θ

∑
D
−a∗

t,i log ΠΘ(at,i|st,i;θ∗s,i,θ
∗
r,i) (2)

We show that if forward models are trained in a deterministic
way, the DKBA is able to infer optimal actions based on
knowledge encoded in parameters θ∗. This also allows
us to transfer knowledge between completely dynamically-
unrelated domains.

Furthermore, DKBA automatizes both task-designing and
knowledge-base construction. Actually, in practice we adapt
extreme situation by training agent on MDPs whose dynam-
ics are drawn from uniform distribution and are completely
uncorrelated. Indeed these generated environments may not
correspond to any realistic world. At the test time, we eval-
uate the agent on real environments. Interestingly, DKBA
is able to perform close to optimal agent by transferring
knowledge from imaginary to real worlds.

Algorithm 1 provides an overview of vanilla DKBA. In train
phase, we start by gathering some samples from randomly
generated environments according to uniform distribution.
We train world models to learn the dynamics of sampled
environments using deterministic gradient descent. More
specifically, we always begin from a fixed random parame-
ters, θ̂s and θ̂r for each environment and perform gradient
descent for a fixed number of epochs and learning rate. In
this way we can assign a unique knowledge base to each
task. Empirically, we found this way of training very crucial
in order to inference mechanism be able recognize simi-
lar patterns among different knowledge bases and transfer
knowledge between tasks. The algorithm continues by find-
ing optimal policy for the generated MDP. We may employ
any standard RL method for this step. After collecting data,
we optimize the parameters of meta-policy according to
eq 2. At test time the agent receives new tasks generated
by any distribution as long as action and state spaces are
compatible with training data. We then train fθs and fθr
exactly in same way as training phase, i.e. starting from the
same initial weights, θ̂, and using the same values for hyper
parameters including learning rate and number of epochs.
At the end agent returns prediction for optimal policy by
using learned parameters in the previous step.

5. Experiments
In order to evaluate our approach that outlined above, we
provide a detailed experimental analysis in this section. We
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Algorithm 1 DEEP KNOWLEDGE-BASED AGENT (DKBA)

Training Phase

Input: Size of action space, dimentionality of state’s
representation, random parameters θ̂s and θ̂r , number of
generated samples N , step size hyperparameters α and
number of epochs E for training forward models.
Output: A parametric meta-learned policy ΠΘ.

• Initialize dataset D ← ∅..
for n = 1 to N do
• Ggenerate a MPD,Mn, according to uniform distri-
bution with given action size and state representation.
• Sample K trajectories fromMn.
• Initilize parameters of fθs and fθr to θ̂s and θ̂r
respectively.
• Train world models fθs and fθr by performing deter-
ministic gradient descent with step size α for E epochs
using K trajectories.
• Compute optimal actions, a∗t for each state in K
trajectories using any RL method.
• Add (θ∗s,θ

∗
r, st, a

∗
t ) to D for all states in trajectories.

end for
• Randomly initialize meta learner parameters Θ.
• Update meta parameters Θ by minimizing error in
predicting optimal actions as in eq 2.
Return Θ

Test Phase

Input: An MDP, M, generated from any distribution
with action and state space compatible with training
phase.
Output: Optimal policy overM.
• Sample K trajectories fromM.
• Initialize parameters of fθs and fθr to θ̂s and θ̂r re-
spectively.
• Train world models fθs and fθr by performing deter-
ministic gradient descent with step size α for E epochs
using K trajectories.
Return ΠΘ(a|s; θ∗s , θ∗r)

aim to understand whether DKBA is able to transfer knowl-
edge between dynamically uncorrelated environments.

To keep the number of parameters tractable, in this proof of
concept work, we evaluate our model on low-dimensional
domains. We trained DKBA on uniformly sampled MDPs
with S = 8, 10, 15 and two actions, A = 2. The generated
MPDs are structured as follows: The states are represented
as one-hot vectors and one state is selected as goal state, sg .
Also for simplicity, we choose a fixed reward function with
r(st, at) = δst+1,sg − 1, i.e. reward is −1 on all transitions
except those into goal state where it is zero. In order to

generate dynamics of environments, we randomly select
one state st+1 as the resulting state of applying action at in
state st. Then we train action-conditioned forward models
to learn both transition and reward function.

The architecture of fθs and fθr consist of two fully-
connected layer with tanh activation followed by a soft-
max layer. The number of nodes in the first and second
layers of fθs are (5, 10), (5, 10), (8, 12) for S = 8, 10, 15,
respectively. The corresponding numbers for reward for-
ward model are (5, 5), (5, 5), (8, 8). In total, we have 388,
452 and 876 parameters in forward models for S = 8, 10, 15.
In all our experiments we set number of epochs and learning
rate to 300 and 0.01.

We also use a deep multilayer perceptron with ten layers
and leaky-relu activation function (Maas et al., 2013) for
representing inference engine. The number of neurons
are 1200, 1000, 800, 600, 400, 200, 100, 50, 20 and are kept
fixed in all experiments.

The model was evaluated in two different ways. In the first
scenario, we generated new test MPDs and computed the
average return gained by agent, G, over them. More specif-
ically, we generated 200 test environments and measured
average return of agent on these in 10 episodes. In order to
compare different setups, it would be beneficial to normalize
the average returns as follows:

Ĝ =
G−Grandom

Goptimal −Grandom
(3)

where Grandom and Goptimal are average returns of random
and optimal agents, respectively. Here by optimal agent we
mean an agent which is trained on individual environments
to perform optimally. We may use any standard RL method
to train this agent. However, for our low-dimensional spaces
we used brute force search to find it. It is worth mentioning
optimal agent does not have any ability to transfer knowl-
edge and should be trained on each MDP from scratch. Fig 1
depicts the normalized returns in terms of the size of training
data or seen environments, N . These results highlight the
strength of DKBA in terms of sample efficiency. Indeed the
total number of possible worlds are around 1014, 1020, 1035

for S = 8, 10, 15, respectively. Therefore DKBA is able
to perform close to optimal agent in new sampled envi-
ronments without any further training by just utilizing the
knowledge encoded in model parameters.

In the second scenario, we examine our trained agent on
real environments. To do so, we employed a set of environ-
ments with different dynamics including: grid world, cliff
walking, windy world and chip game. Figure ... shows the
performance of DKBA on these real tasks. Interestingly,
the results confirm the ability of DKBA in transforming
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Figure 1. performance of DKBA on (a) test environments, (b)grid world,(c) cliff walking and (d) windy grid world.

knowledge from randomly sampled environments to real
ones, as promised.

6. Conclusion and future directions
Adopting quickly to new tasks by operating on prior biases
is a key feature of an intelligent system. Current meta-
lifelong approaches provide such kind of agents on very
correlated and similar tasks. In the present work, we pro-
pose a novel method for transferring knowledge between
completely unrelated and unstructured tasks by learning the
logic behind of reasoning. Our approach is general and can
be used in conjunction with model based RL techniques
without requiring any hand-specified task designing.

Our experimental results demonstrate that the parameters of
trained world models can provide an expressive knowledge-
base if the corresponding networks are trained in a determin-
istic way. Since learning the dynamics of complex domains
requires utilizing very deep networks with lots of parame-
ters, a challenge for applying our model in such domains
is to keep the number of trained parameters under control.
To this end, we may use an auto-encoder to compress the
knowledge-base. Based on our results, this step should be
also done in a deterministic way. Another solution would
be distilling the knowledge in knowledge-base by replacing
forward models with more smaller networks (Hinton et al.,
2015). We leave these extensions to the future works.
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