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ABSTRACT

Current deep neural networks can achieve remarkable performance on a single
task. However, when the deep neural network is continually trained on a sequence
of tasks, it seems to gradually forget the previous learned knowledge. This phe-
nomenon is referred to as catastrophic forgetting and motivates the field called
lifelong learning. The central question in lifelong learning is how to enable deep
neural networks to maintain performance on old tasks while learning a new task.
In this paper, we introduce a novel and effective lifelong learning algorithm, called
MixEd stochastic GrAdient (MEGA), which allows deep neural networks to ac-
quire the ability of retaining performance on old tasks while learning new tasks.
MEGA modulates the balance between old tasks and the new task by integrat-
ing the current gradient with the gradient computed on a small reference episodic
memory. Extensive experimental results show that the proposed MEGA algo-
rithm significantly advances the state-of-the-art on all four commonly used life-
long learning benchmarks, reducing the error by up to 18%.

1 INTRODUCTION

A significant step towards artificial general intelligence (AGI) is to enable the learning agent to
acquire the ability of remembering past experiences while being trained on a continuum of tasks.
Current deep neural networks are capable of achieving remarkable performance on a single task
(Goodfellow et al., 2016). However when the network is retrained on a new task, its performance
drops drastically on previously trained tasks, a phenomenon which is referred to as catastrophic for-
getting (Ratcliff, 1990; Robins, 1995; French, 1999; Kirkpatrick et al., 2017). In stark contrast, hu-
man cognitive system is capable of acquiring new knowledge without damaging previously learned
experiences. It is thus of great importance to develop algorithms to allow deep neural networks to
achieve continual learning capability (i.e., avoiding catastrophic forgetting).

The problem of catastrophic forgetting motivates the field called lifelong learning (Thrun &
Mitchell, 1995; Kirkpatrick et al., 2017; Parisi et al., 2019). A central dilemma in lifelong learn-
ing is how to achieve a balance between the performance on old tasks and the new task (Robins,
1995; Kirkpatrick et al., 2017). During the process of learning the new task, the originally learned
knowledge will typically be disrupted, which leads to catastrophic forgetting. On the other hand, a
learning algorithm biasing towards old tasks will interfere with the learning of the new task. Several
lines of methods are proposed recently to address this issue. Examples include regularization based
methods (Kirkpatrick et al., 2017; Zenke et al., 2017), knowledge transfer based methods (Rusu
et al., 2016), episodic memory based methods (Lopez-Paz et al., 2017; Chaudhry et al., 2018b;
Riemer et al., 2018). However, the existing methods require over-parameterized neural networks
(Kirkpatrick et al., 2017; Chaudhry et al., 2018a) or are not flexible enough handle the stochastic
nature of the learning process (Lopez-Paz et al., 2017; Chaudhry et al., 2018b) since they did not
explicitly consider the model’s performance on the current task and old tasks in the learning process.

In this paper, we propose a novel and effective lifelong learning algorithm, called MixEd stochastic
GrAdient (MEGA), to address the catastrophic forgetting problem. We cast the problem of balancing
the performance on old tasks and the new task as an optimization problem with composite objec-
tive. Our formulation is general and closely related to several recently proposed lifelong learning
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algorithms (Lopez-Paz et al., 2017; Chaudhry et al., 2018b; Riemer et al., 2018). We approximately
solve the optimization problem using one-step stochastic gradient descent with the standard gradient
replaced by the proposed mixed stochastic gradient. The mixed stochastic gradient is derived from
the gradients computed on the data of the current task and an episodic memory which stores a small
subset of observed examples from old tasks (Lopez-Paz et al., 2017; Chaudhry et al., 2018b; Riemer
et al., 2018). Based on our derivation, the direction of the mixed stochastic gradient balances the
loss on old tasks and the new task in an adaptive manner. Therefore, the proposed MEGA algorithm
allows deep neural networks to learn new tasks while avoiding catastrophic forgetting.

Our contributions are as follows. (1) We propose a novel and effective algorithm, called MEGA,
for lifelong learning problems. (2) We extensively evaluate our algorithm using conventional life-
long learning benchmark datasets, and the results show that the proposed MEGA algorithm sig-
nificantly advances the state-of-the-art performance across all the datasets. MEGA achieves an
average accuracy of 91.21±0.10% on Permuted MNIST, which is 2% better than the previous
state-of-the-art model. On Split CIFAR, our proposed MEGA achieves an average accuracy of
66.12±1.93%, which is about 5% better than the state-of-the-art method. Specially, on the Split
CUB dataset, MEGA achieves an average accuracy of 80.58±1.94%, which surpasses the multi-task
baseline which is previously believed as an upper bound performance of lifelong learning algorithms
(Chaudhry et al., 2018b). (3) Finally, we also show that the proposed MEGA algorithm can handle
increasingly non-stationary settings when the number of tasks becomes significantly larger.

2 RELATED WORK

Improving the continual learning ability of neural network is a prerequisite to extending it to more
practical vision tasks. Several lines of lifelong learning methods are proposed recently, we categorize
them into different types based on the methodology,

Regularization based approaches: EWC (Kirkpatrick et al., 2017) adopts Fisher information ma-
trix to prevent important weights for old tasks from changing drastically. In PI (Zenke et al., 2017),
the authors introduce intelligent synapses which endows each individual synapse with a local mea-
sure of “importance” to avoid old memories from being overwritten. RWALK (Chaudhry et al.,
2018a) utilizes a KL-divergence based regularization for preserving knowledge of old tasks. While
in MAS (Aljundi et al., 2018) the importance measure for each parameter of the network is computed
based on how sensitive the predicted output function is to a change in this parameter.

Knowledge transfer based methods: PROG-NN (Rusu et al., 2016) is a representative knowledge
transfer based lifelong method. In PROG-NN, a new “column” with lateral connections to previous
hidden layers is added for each new task. The lateral connections allow the new task to leverage
the knowledge extracted from the old tasks. Recently, in Lee et al. (2019), the authors proposed
a method to leverage unlabeled data in the wild to avoid catastrophic forgetting using knowledge
distillation. The authors introduce global distillation for incorporating unlabeled data in the learning
process.

Episodic memory based approaches: In episodic memory based lifelong learning methods, a small
episodic memory is used for storing a subset of the examples from old tasks. Different episodic
memory based approaches differ in the way of computing the reference gradients of the episodic
memory. GEM (Lopez-Paz et al., 2017) computes the reference gradients using each individual
previous tasks while in AGEM (Chaudhry et al., 2018b) the reference gradient is computed on
the episodic memory by randomly sampling a batch of examples. MER a (Riemer et al., 2018) is
recently proposed lifelong learning algorithm which maintains an experience replay style memory
with reservoir sampling and employs a meta-learning style training strategy. Several methods are
proposed recently to improve the episodic memory based approaches. In (Aljundi et al., 2019), a
line of methods are proposed to select important samples to store in the memory in order to reduce
memory size. Instead of storing samples, in (Farajtabar et al., 2019) the authors proposed Orthogonal
Gradient Descent (OGD) which projects the gradients on the new task onto a subspace in which the
projected gradient will not affect the model’s output on old tasks and is still useful for learning the
new task.

There are also some other lifelong learning methods which do not fall in above categories. In
(He & Jaeger, 2018), the authors proposed a variant of the standard back-propagation algorithm
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called conceptor aided backprop that shields gradients against degradation of performance on old
task. Zeng et al. (2019) proposed orthogonal weights modification (OWM) to enables networks to
continually learn different mapping rules in a context-dependent way.

Our proposed method belongs to episodic memory based appraoch and is most related to Chaudhry
et al. (2018b). Our work differs from Chaudhry et al. (2018b) in two aspects. First, we introduce a
more effective to modify the direction of the current gradient which put equal emphasis on both old
tasks and the new task. Second, we explicitly consider the performance of the model on old tasks and
the new task in the process of modifying the gradient direction. Our method is also related to several
multi-task learning works (Sener & Koltun, 2018; Kendall et al., 2018; Chen et al., 2017). In (Sener
& Koltun, 2018; Kendall et al., 2018), the authors aim at achieving a good balance between different
tasks by learning to weigh the loss on each task . In contrast, our approach directly leverages loss
information in the context of lifelong learning for overcoming catastrophic forgetting. Compared
with (Chen et al., 2017), instead of using the gradient norm information, our method and Lopez-Paz
et al. (2017); Chaudhry et al. (2018b) focus on modifying the direction of the current gradient.

3 LIFELONG LEARNING

3.1 PROBLEM STATEMENT

Lifelong learning (LLL) (Rusu et al., 2016; Kirkpatrick et al., 2017; Lopez-Paz et al., 2017;
Chaudhry et al., 2018b) considers the problem of learning a new task without degrading perfor-
mance on old tasks, i.e., to avoid catastrophic forgetting (French, 1999; Kirkpatrick et al., 2017).
Suppose there are T tasks which are characterized by T datasets: {D1, D2, .., DT }. Each dataset
Dt consists of a list of triplets (xi, yi, t), where yi is the label of i-th example xi, and t is a task
descriptor that indicates which task the example comes from. Similar to supervised learning, each
dataset Dt is split into a training set Dtr

t and a test set Dte
t .

In the learning protocol introduced in Chaudhry et al. (2018b), the tasks are separated into DCV =
{D1, D2, ..., DTCV } and DEV = {DTCV +1, DTCV +2, ..., DT }. DCV is used for cross-validation
to search for hyperparameters. DEV is used for actual training and evaluation. As pointed out
in Chaudhry et al. (2018b), some regularization-based lifelong learning algorithms, e.g., Elastic
Weight Consolidation (Kirkpatrick et al., 2017), are sensitive to the choice of the regularization
parameters. Introducing DCV can help find the best regularization parameter without exposing the
actual training and evaluation data. While searching for the hyperparameters, we can have multiple
passes over the examples in DCV , the training is performed on DEV with only a single pass over
the examples (Lopez-Paz et al., 2017; Chaudhry et al., 2018b).

In lifelong learning, a given model f(x;w) is trained sequentially on a series of tasks {DTCV +1,
DTCV +2, ..., DT }. When the model f(x;w) is trained on task Dt, the goal is to predict the labels
of the examples in Dte

t by minimizing the empirical loss `t(w) on Dtr
t in an online fashion without

suffering accuracy drop on {Dte
TCV +1, Dte

TCV +2, ..., Dte
t }.

3.2 EVALUATION METRICS

Average Accuracy and Forgetting Measure (Chaudhry et al., 2018a) are common used metrics for
evaluating performance of lifelong learning algorithms. In Chaudhry et al. (2018b), the authors
introduce another metric, called Learning Curve Area (LCA), to assess the learning speed of dif-
ferent lifelong learning algorithms. In this paper, we further introduce a new evaluation metric,
called Long-term Remembering (LTR), to characterize the ability of lifelong learning algorithms for
remembering the performance of tasks trained in the far past.

Suppose there areMk mini-batches in the training set of taskDk. Similar to Chaudhry et al. (2018b),
we define ak,i,j as the accuracy on the test set of task Dj after the model is trained on the i-th mini-
batch of task Dk. Generally, suppose the model f(x;w) is trained on a sequence of T tasks {D1,
D2, ..., DT }. Average Accuracy and Forgetting Measure after the model is trained on the task Dk

are defined as

Ak =
1

k

k∑
j=1

ak,Mk,j Fk =
1

k − 1

k−1∑
j=1

fkj (1)
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where fkj = maxl∈{1,2,..,k−1} al,Ml,j − ak,Mk,j . Clearly, AT is the average test accuracy and FT
assesses the degree of accuracy drop on old tasks after the model is trained on all the T tasks.
Learning Curve Area (LCA) (Chaudhry et al., 2018b) at β is defined as,

LCAβ =
1

β + 1

β∑
b=0

Zb (2)

where Zb = 1
T

∑T
k=1 ak,b,k. Intuitively, LCA measures the learning speed of different lifelong

learning algorithms. A higher value of LCA indicates that the model learns quickly. We refer the
readers to Chaudhry et al. (2018b) for more details about LCA.

All the metrics introduced above fail to capture one important aspect of lifelong learning algorithms,
that is, the ability to retain performance on the tasks trained in the far past. In this paper we introduce
a new metric, called Long-Term Remembering (LTR), which is defined as

LTR = − 1

T − 1

T−1∑
j=1

(T − j) min{0, aT,MT ,j − aj,Mj ,j} (3)

After the model is trained on all the T tasks, LTR quantifies the accuracy drop on task Dj relative
to aj,Mj ,j . The coefficient T − j emphasizes more on the tasks trained earlier. Different algorithms
can have the same average accuracy but very different LTR based on their ability to maintain the
performance on the past tasks (a.k.a, long-term remembering).

4 MIXED STOCHASTIC GRADIENT

In this section, we introduce the proposed Mixed Stochastic Gradient (MEGA) algorithm. Following
previous works (Lopez-Paz et al., 2017; Chaudhry et al., 2018b), when the model is trained on the
t-th task, an episodic memory M is used for storing a subset of the examples from all the old tasks
k < t. The main idea of MEGA is to minimize the loss on the episodic memory and the t-th task by
iteratively moving in the direction of the proposed mixed stochastic gradient.

In the lifelong learning setting, the learning of task t is conducted over a single pass of the training
examples in an online fashion. To establish the tradeoff between the performance on old tasks and
the t-th task, we consider the following optimization problem with composite objective:

min
w

α1`t(w) + α2`ref(w) := Eξ,ζ [α1`t(w; ξ) + α2`ref(w; ζ)] , (4)

where w ∈ Rd is the parameter of the model, ξ, ζ are random variables with finite support, `t(w) is
the expected training loss of the t-th task, `ref(w) is the expected loss calculated on the data stored
in the episodic memory, α1 and α2 are hyperparameters which control the relative importance of
`t(w) and `ref(w). Intuitively, a larger `ref(w) signifies catastrophic forgetting. Note that during
the learning process of each task, every data sample is i.i.d., and hence the current example of task
t could be viewed as a random sample due to online-to-batch conversion argument (Cesa-Bianchi
et al., 2004). In the lifelong learning setting, `t(w; ξ) is the training loss calculated on the current
mini-batch (controlled by ξ) of task t, `ref(w; ζ) is the loss calculated on a random mini-batch
(controlled by ζ) sampled from the episodic memory. In the traditional online learning, the loss
is calculated only based on the current received example but not on historical samples, and hence
α1 = 1, α2 = 0. In this case, the weights are only optimized for the current task while ignoring
previous tasks which leads to catastrophic forgetting. If α2 > 0, this formulation naturally involves
examples from old tasks. In lifelong learning, since we need to consider performance on both old
tasks and the current task, we typically do not consider the degenerate case when α2 = 0.

We use wtk to denote the weight when the model is being trained on the k-th mini-batch of task t.
Clearly, both `t(w) and `ref(w) are determined by wtk during training. This implies that the rel-
ative value of `t(w) and `ref(w) is changing between mini-batches. Therefore, α1 and α2 should
be adjusted adaptively based on wtk in order to achieve a good balance between old tasks and the
current task. To this end, with a little abuse of notation, we define two parameter-dependent func-
tions α1, α2 : Rd 7→ R+ to characterize the relative importance of the current task and old tasks.
Mathematically, we propose to use the following update:

wt
k+1 = arg min

w
α1(wt

k) · `t(w) + α2(wt
k) · `ref(w), (5)
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Algorithm 1 MEGA, the proposed algorithm for lifelong learning. T is the number of tasks. nt is
the number of mini-batches of task t. M is the episodic memory. ξtk is the k-th mini-batch of task t
and ytk is the corresponding label. ζtk is a random mini-batch from the episodic memory. wt

k stands
for the parameter after k-th mini-batch during the training of t-th task. `t(wt

k; ξtk) is the training loss
calculated on ξtk. `ref(w

t
k; ζtk) is the reference loss calculated on ζtk. α1 and α2 are defined in Eq. 5

1: M ← {}
2: for t← 1 to T do
3: for k ← 1 to nt do
4: if M 6= {} then
5: ζtk ← SAMPLE(M)

6: θ̃ ← arccos(∇`t(wt
k; ξtk),∇`ref(w

t
k; ζtk))

7: Solve the optimization problem in Eq. (9) to obtain θ.
8: Obtain α1 and α2 as in Appendix A.1.
9: else

10: Set α1 = 1 and α2 = 0.
11: end if
12: Update wt

k using Eq. 6.
13: M ←M

⋃
(ξtk, y

t
k)

14: Discard the samples added initially if M is full.
15: end for
16: end for

where α1, α2 : Rd 7→ R+ are real-valued mappings.

We employ first-order methods (e.g., stochastic gradient descent) to approximately solve the opti-
mization problem (5 which naturally motivates us to design the MixEd stochastic GrAdient (MEGA)
algorithm. MEGA is doing update (6) to approximately solve (5), where one-step stochastic gradient
descent is performed with the initial point set to be wt

k:

wt
k+1 ← wt

k − η
(
α1(wt

k)∇`t(wt
k; ξtk) + α2(wt

k)∇`ref(w
t
k; ζtk)

)
, (6)

where η is the learning rate, ξtk and ζtk are random variables with finite support, ∇`t(wt
k; ξtk)

and ∇`ref(w
t
k; ζtk) are unbiased estimators of ∇`t(wt

k) and ∇`ref(w
t
k) respectively, and

α1(wt
k)∇`t(wt

k; ξtk) + α2(wt
k)∇`ref(w

t
k; ζtk) is referred to as the mixed stochastic gradient.

The main difficulty of the update (6) is to define well-behaved mappings α1(·) and α2(·) which are
consistent with the goal of lifelong learning. To this end, we introduce two approaches, angle-based
approach (Section 4.1) and a direct approach (Section 4.2) to address this difficulty. It is worth
mentioning that several recent advances on lifelong learning (Lopez-Paz et al., 2017; Chaudhry
et al., 2018b; Riemer et al., 2018) have close relationship with the angle-based approach in our
MEGA framework which will be illustrated in Section 4.1.

4.1 ANGLE-BASED APPROACH

Note that the mixed stochastic gradient is a linear combination of ∇`t(wt
k; ξtk) and ∇`ref(w

t
k; ζtk).

While keeping the magnitude the same as∇`t(wt
k; ξtk), geometrically the mixed stochastic gradient

can be viewed as an appropriate rotation of∇`t(wt
k; ξtk) by a desired angle θ. This perspective leads

to the angle-based approach in our framework. The key idea of the angle-based approach is to first
appropriately rotate the stochastic gradient calculated on the current task (i.e., ∇`t(wt

k; ξtk)) by an
angle θtk, and then use the rotated vector as the mixed stochastic gradient to conduct the update (6) in
each mini-batch. For simplicity, we omit the subscript k and superscript t later on unless specified.

We use gmix to denote the desired mixed stochastic gradient which has the same magnitude as
∇`t(w; ξ). Specifically, we look for the mixed stochastic gradient gmix which direction aligns well
with both∇`t(w; ξ) and ∇`ref(w; ζ). Mathematically, we want to maximize

〈gmix,∇`t(w; ξ)〉
‖gmix‖2 · ‖∇`t(w; ξ)‖2

+
〈gmix,∇`ref(w; ζ)〉

‖gmix‖2 · ‖∇`ref(w; ζ)‖2
, (7)
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which is equivalent to find an angle θ such that

θ ∈ arg max
β∈[0,π2 ]

cos(β) + cos(θ̃ − β). (8)

where θ̃ ∈ [0, π] is the angle between∇`t(w; ξ) and∇`ref(w; ζ). To capture the relative importance
of the current task and old tasks which is crucial for lifelong learning, we introduce `t(w; ξ) and
`ref(w; ζ) into (8),

θ ∈ arg max
β∈[0,π2 ]

`t(w; ξ) cos(β) + `ref(w; ζ) cos(θ̃ − β). (9)

Here we give some discussions of several special cases of Eq. (9),

• When `ref(w; ζ) = 0, then θ = 0, and in this case α1(w) = 1, α2(w) = 0 in (6), which
means the mixed stochastic gradient reduces to ∇`t(w; ξ). In the lifelong learning setting,
`ref(w; ζ) = 0 implies that there is almost no catastrophic forgetting, and hence we can
update the model parameters exclusively for the current task by moving in the direction of
∇`t(w; ξ).

• When `t(w; ξ) = 0, then θ = θ̃, and in this case α1(w) = 0, α2(w) =
‖∇`t(w; ξ)‖2/‖∇`ref(w; ζ)‖2, provided that ‖∇`ref(w; ζ)‖2 6= 0 (define 0/0=0). This
means the direction of the mixed stochastic gradient is the same as the stochastic gradient
calculated on the data in the episodic memory (i.e., `ref(w; ζ)). In the lifelong learning
setting, this update can help improve the performance on old tasks, i.e., avoid catastrophic
forgetting.

In the general case, we assume `ref(w; ζ) and `t(w; ξ) are both positive (the edge cases are covered
in the above discussion). Since the optimization problem (9) is possibly nonconvex, we propose
to use projected gradient ascent to approximately solve it. Mathematically, we do multiple updates
using the following formula,

β ← Π[0,π2 ]

[
β +

1

1 + r
g(β)

]
. (10)

where Π is the projection operator, g(β) = − sin(β) + `ref(w;ζ)
`t(w;ξ) sin(θ̃ − β), r = `ref(w;ζ)

`t(w;ξ) . It is not

difficult to show that the smoothness parameter of the function g′(β) = cos(β)+ `ref(w;ζ)
`t(w;ξ) cos(θ̃−β)

is 1 + r, and hence projected gradient ascent can converge to a stationary point (Nesterov, 1998). To
avoid getting stuck on saddle point or local minima or local maxima, we can use multiple random
starting points and select the one which achieves the largest function value. This strategy is proven
to be successful in our experiments.

After we find the desired angle θ, it is easy to obtain α1(w) and α2(w) in Eq. (6). For details, please
refer to Appendix A.1. Please see Algorithm 1 for the summary of the algorithm.

Comparison with Existing Works There are several existing works setting θ in different manners.
In Lopez-Paz et al. (2017) and Chaudhry et al. (2018b), θ = θ̃ if θ̃ ≤ π

2 , and θ = θ̃ − π
2 if θ̃ ≥ π

2 .
Note that ∇`ref(w; ζ) is defined differently in Lopez-Paz et al. (2017) and Chaudhry et al. (2018a).
In Lopez-Paz et al. (2017), ∇`ref(w; ζ) is calculated on the data of each task separately stored in
the episodic memory. While in Chaudhry et al. (2018a), ∇`ref(w; ζ) is computed on a random
mini-batch sampled from the episodic memory.

Our work differs from Lopez-Paz et al. (2017); Chaudhry et al. (2018b) in two aspects. First, we ex-
plicitly maximize the correlation between the mixed stochastic gradient gmix and the current gradient
∇`t(w; ξ) (calculated on current data), and the correlation between the mixed stochastic gradient
gmix and the reference gradient ∇`ref(w; ζ) (calculated on memory data) as in Eq (7). Intuitively,
the direction of gmix will not bias towards the current task or old tasks (since it is easy to see that the
angle between gmix and ∇`t(w; ξ), and the angle between gmix and ∇`ref(w; ζ) are both acute (ex-
cept the edge case where the angle between∇`t(w; ξ) and∇`ref(w; ζ) is 180 degree). By following
gmix, each update tends to degrade the loss on both current task and old tasks. While in previous
works (Lopez-Paz et al., 2017; Chaudhry et al., 2018b), the corresponding gmix is found by project-
ing the current gradient to be perpendicular to ∇`ref(w; ζ) when the angle between them is obtuse
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(in this case, gmix · ∇`ref(w; ζ) = 0). Intuitively, both GEM and A-GEM put more emphasis on the
current task (when gmix is perpendicular to ∇`ref(w; ζ), the update following the direction of gmix
will not directly reduce the loss on old tasks). Second, we introduce the loss on the current batch and
on the sampled batch from episodic memory. This allows us to better balance the performance on
the current task and old tasks. Since it is preferable to put more emphasis on the tasks (task) which
achieve(s) low performance.

4.2 DIRECT APPROACH

We also introduce MEGA-D which is a direct approach for implementing MEGA. In MEGA-D,
instead of rotating the stochastic gradient computed on the data in the current mini-batch as in the
angle-based approach, we define α1(·) and α2(·) in the definition of mixed stochastic gradient in
a direct manner. Specifically, in the update of (6), we set α1 = 1, α2 = `ref(w; ζ)/`t(w; ξ) if
`t(w; ξ) > 0, and α1 = 0, α2 = 1 if `t(w; ξ) = 0. Intuitively, if `t(w; ξ) = 0, then it means that
the model performs well on the current task and can focus on improving performance on the data
stored in the episodic memory, and hence α1 = 0, α2 = 1. Otherwise, we keep the balance of the
two terms of mixed stochastic gradient according to `t(w; ξ) and `ref(w; ζ). MEGA-D is a simple
variant of MEGA which balances current task and old tasks by only leveraging loss information.

5 EXPERIMENTS

5.1 DATASETS

In the experiments, we consider the following four conventional lifelong learning benchmarks,

• Permuted MNIST (Kirkpatrick et al., 2017): this is a variant of standard MNIST dataset (LeCun
et al., 1998) of handwritten digits with 20 tasks. Each task has a fixed random permutation of the
input pixels which is applied to all the images of that task.

• Split CIFAR (Zenke et al., 2017): this dataset consists of 20 disjoint subsets of CIFAR-100
dataset (Krizhevsky et al., 2009), where each subset is formed by randomly sampling 5 classes
without replacement from the original 100 classes.

• Split CUB (Chaudhry et al., 2018b): the CUB dataset (Wah et al., 2011) is split into 20 disjoint
subsets by randomly sampling 10 classes without replacement from the original 200 classes.

• Split AWA (Chaudhry et al., 2018b): this dataset consists of 20 subsets of the AWA dataset
(Lampert et al., 2009). Each subset is constructed by sampling 5 classes with replacement from
a total of 50 classes. Note that the same class can appear in different subsets. As in Chaudhry
et al. (2018b), in order to guarantee that each training example only appears once in the learning
process, based on the occurrences in different subsets the training data of each class is split into
disjoint sets.

We also include Many Permutations which is a variant of Permuted MNIST to introduce more
non-stationality into the learning process. In Many Permutations, there are a total 100 tasks with
200 examples per task. The way to generate the tasks is the same as in Permuted MNIST, that is,
a fixed random permutation of input pixels is applied to all the examples for a particular task.

5.2 NETWORK ARCHITECTURES

To be consistent with the previous works (Lopez-Paz et al., 2017; Chaudhry et al., 2018b), for
Permuted MNIST we adopt a standard fully-connected network with two hidden layers. Each
layer has 256 units with ReLU activation. For Split CIFAR we use a reduced ResNet18. For Split
CUB and Split AWA, we use a standard ResNet18 (He et al., 2016).

5.3 BASELINES AND EXPERIMENTAL SETTINGS

We compare the proposed MEGA with several state-of-the-art lifelong learning methods,

• VAN: in VAN, a single network is trained continuously on a sequence of tasks in a standard
supervised learning manner.
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Figure 1: Performance of lifelong learning models across different measures on Permuted MNIST,
Split CIFAR, Split CUB and Split AWA.

• MULTI-TASK: in MULTI-TASK, a single network is trained on the shuffled data from all the
tasks with a single pass.

• Episodic memory based approach: GEM (Lopez-Paz et al., 2017) and AGEM (Chaudhry et al.,
2018b) are episodic memory based approaches which modify the current gradient when its angle
between the gradient computed on the episodic memory is obtuse. MER (Riemer et al., 2018)
is another recently proposed episodic memory based approach which maintains an experience
replay style memory with reservoir sampling and employs a meta-learning style training strategy.

• Regularization-based approaches: EWC (Kirkpatrick et al., 2017), PI (Zenke et al., 2017),
RWALK (Chaudhry et al., 2018a) and MAS (Aljundi et al., 2018) are regularization-based ap-
proaches which prevent the important weights of the old tasks from changing too much.

• Knowledge transfer based approach: in PROG-NN (Rusu et al., 2016), a new column with lateral
connections with previous hidden layers is added for each new task. This allows knowledge
transfer between old tasks and the new task.

To be consistent with Chaudhry et al. (2018b), for episodic memory based approaches, the episodic
memory size for each task is 250, 65, 50, and 100, and the batch size for computing the gradients
on the episodic memory (if needed) is 256, 1300, 128 and 128 for MNIST, CIFAR, CUB and AWA,
respectively. To fill the episodic memory, the examples are chosen uniformly at random for each task
as in Chaudhry et al. (2018b). For each dataset, 17 tasks are used for training and 3 tasks are used for
hyperparameter search. For MEGA and MER Riemer et al. (2018), we do not conduct exhaustive
hyperparameter search and reuse the hyperparameters of AGEM (Chaudhry et al., 2018b). For
other baselines, we use best hyperparameters found by Chaudhry et al. (2018b). For the detailed
hyperparameters, please see Appendix G of Chaudhry et al. (2018b). In MEGA, we solve Eq.9 three
times with different random starting points and the update in Eq.10 is repeated for ten iterations.
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Figure 2: Evolution of average accuracy during the lifelong learning process.

6 RESULTS

6.1 MEGA VS BASELINES

In Fig. 1 we show the results across different measures on all the benchmark datasets. We have the
following observations based on the results. First, the proposed MEGA outperforms all baselines
across the benchmarks, except that PROG-NN achieves a slightly higher accuracy on Permuted
MNIST. As we can see from the memory comparison, PROG-NN is very memory inefficient since
it allocates a new network for each task, thus the number of parameters grows super-linearly with
the number of tasks. This becomes problematic when large networks are being used. For example,
PROG-NN runs out of memory on Split CUB and Split AWA which prevents it from scaling up
to real-life problems. On other datasets, MEGA consistently performs better than all the baselines,
from Fig. 2 we can see that on Split CUB, MEGA even surpasses the multi-task baseline which
is previously believed as an upper bound performance of lifelong learning algorithms (Chaudhry
et al., 2018b). Second, MEGA achieves the lowest Forgetting Measure across all the datasets which
indicates its ability to overcome catastrophic forgetting. Third, the proposed MEGA also obtains
a high LCA across all the datasets which shows that MEGA also learns quickly. The evolution of
LCA in the first ten mini-batches across all the datasets is shown in Fig. 3. Last, compared with
AGEM (Chaudhry et al., 2018b), which is the state-of-the-art method for lifelong learning, MEGA
has the same memory cost and similar time complexity. For detailed results, please refer to Table 4
and Table 5 in Appendix A.2.

In Fig. 2 we show the evolution of average accuracy during the lifelong learning process. As more
tasks are added, while the average accuracy of the baselines generally drops due to catastrophic
forgetting, MEGA can maintain and even improve its performance. This shows MEGA has a clear
advantage over the state-of-the-art lifelong learning methods.

6.2 LONG-TERM REMEMBERING

In Table 1 we show the results of Long-term Remembering (LTR) of some representative lifelong
learning methods on different datasets. As stated before, an algorithm with low LTR indicates that
it can maintain the performance on the tasks trained initially. From Table 1 we can see that the
proposed MEGA algorithm achieves the lowest LTR across all the datasets. This demonstrates that
MEGA can learn tasks in succession without forgetting the initial tasks which is crucial for real-
world lifelong learning applications.
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Table 1: Results of Long-term Remembering (LTR).

Methods Permuted MNIST Split CIFAR Split CUB Split AWA
MEGA 0.524 ± 0.017 0.356 ± 0.114 0.002 ± 0.002 0.070 ± 0.114
AGEM 0.716 ± 0.048 0.643 ± 0.124 0.456 ± 0.174 0.178 ± 0.082
EWC 3.292 ± 0.135 2.493 ± 0.427 1.021 ± 0.210 0.675 ± 0.214
VAN 5.375 ± 0.194 2.613 ± 0.174 0.976 ± 0.215 0.202 ± 0.090
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Figure 3: LCA of first ten mini-batches on different datasets.

6.3 DIRECT APPROACH

We show the comparison of MEGA and MEGA-D in Table 2. The performance of MEGA-D is on
par with MEGA across all the datasets. This shows that it is important to explicitly consider the loss
on the episodic memory in order to overcome catastrophic forgetting.

Table 2: Comparison of MEGA and MEGA-D.

Methods Permuted MNIST Split CIFAR Split CUB Split AWA
AT (%) FT AT (%) FT AT (%) FT AT (%) FT

MEGA 91.21 ± 0.10 0.05 ± 0.01 66.12 ± 1.93 0.05 ± 0.02 80.58 ± 1.94 0.01 ± 0.01 54.28 ± 4.84 0.04 ± 0.04
MEGA-D 91.14 ± 0.16 0.05 ± 0.02 66.72 ± 1.50 0.04 ± 0.01 79.68 ± 2.37 0.01 ± 0.02 54.67 ± 4.69 0.04 ± 0.03

6.4 MANY PERMUTATION

We show the results on Many Permutation in Table 3. Compared with Permuted MNIST, Many
Permutation has 5 times more tasks (100) and much fewer examples per task (200). This intro-
duces more non-stationarity into the learning process. Nevertheless, the proposed MEGA achieves
competitive results in this setting. Compared with MER which achieves similar results to MEGA,
MEGA is much more time efficient since it does not rely on the meta-learning procedure. Update
MEGA-D result in the table.

Methods VAN EWC GEM AGEM MER MEGA-D MEGA
Average Accuracy (%) 32.62 ± 0.43 33.46 ± 0.46 56.76 ± 0.29 34.15 ± 0.55 62.52 ± 0.32 56.52± 0.43 62.48 ± 0.51

Table 3: Results on Many Permutation.

7 CONCLUSION

In this paper, we present a lifelong learning algorithm called MEGA which achieves the state-of-
the-art performance across all the benchmark datasets. In MEGA, we cast the lifelong learning
problem as an optimization problem with composite objective and solve it with the proposed mixed
stochastic gradient. We also propose an important lifelong learning metric called LTR to characterize
the ability of lifelong learning algorithms to maintain performance on the tasks trained in the far past.
Extensive experimental results show that the proposed MEGA achieves superior results across all
the considered metrics and establishes the new state-of-the-art on all the datasets.
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A APPENDIX

A.1 SOME DERIVATIONS

For notation simplicity, we use g, ĝ, a, b to replace ∇`t(w; ξ), ∇`ref(w; ζ), α1(w), α2(w) respec-
tively. If g = ĝ, then a = 1, b = 0. Otherwise, the goal is to solve

ag>g + bg>ĝ = ‖g‖22 cos θ

ag>ĝ + b‖ĝ‖22 = ‖g‖‖ĝ‖ cos(θ̃ − θ)
(11)

The solution of (11) is

a =
1

‖g‖22‖ĝ‖22 − g>ĝ

[
‖ĝ‖22‖g‖22 cos θ − (g>ĝ)‖g‖2‖ĝ‖2 cos(θ̃ − θ)

]
b =

1

‖g‖22‖ĝ‖22 − g>ĝ

[
−(g>ĝ)‖g‖22 cos θ + ‖g‖32‖ĝ‖2 cos(θ̃ − θ)

] (12)

A.2 RESULT TABLES

Table 4: The results of Average Accuracy (AT ), Forgetting Measure (FT ) and LCA of different
methods on Permuted MNIST and Split CIFAR. The results are averaged across 5 runs with dif-
ferent random seeds.

Methods Permuted MNIST Split CIFAR
AT (%) FT LCA10 AT (%) FT LCA10

VAN 47.55±2.37 0.52±0.026 0.259±0.005 40.44±1.02 0.27±0.006 0.309±0.011
EWC 68.68±0.98 0.28±0.010 0.276±0.002 42.67±4.24 0.26±0.039 0.336±0.010
MAS 70.30±1.67 0.26±0.018 0.298±0.006 42.35±3.52 0.26±0.030 0.332±0.010

RWALK 85.60±0.71 0.08±0.007 0.319±0.003 42.11±3.69 0.27±0.032 0.334±0.012
MER - - - 37.27±1.68 0.03±0.030 0.051±0.101

PROG-NN 93.55±0.06 0.0±0.000 0.198±0.006 59.79±1.23 0.0±0.000 0.208±0.002
GEM 89.50±0.48 0.06±0.004 0.230±0.005 61.20±0.78 0.06±0.007 0.360±0.007

AGEM 89.32±0.46 0.07±0.004 0.277±0.008 61.28±1.88 0.09±0.018 0.350 ±0.013
MEGA 91.21±0.10 0.05±0.001 0.283±0.004 66.12±1.94 0.06±0.015 0.375±0.012

Table 5: The results of Average Accuracy (AT ), Forgetting Measure (FT ) and LCA of different
methods on Split CUB and Split AWA. The results are averaged across 10 runs with different
random seeds.

Methods Split CUB Split AWA
AT (%) FT LCA10 AT (%) FT LCA10

VAN 53.89±2.00 0.13±0.020 0.292±0.008 30.35±2.81 0.04±0.013 0.214±0.008
EWC 53.56±1.67 0.14±0.024 0.292±0.009 33.43±3.07 0.08±0.021 0.257±0.011
MAS 54.12±1.72 0.13±0.013 0.293±0.008 33.83±2.99 0.08±0.022 0.257±0.011

RWALk 54.11±1.71 0.13±0.013 0.293±0.009 33.63±2.64 0.08±0.023 0.258±0.011
PI 55.04±3.05 0.12±0.026 0.292±0.010 33.86±2.77 0.08±0.022 0.259±0.011

AGEM 61.82±3.72 0.08±0.021 0.302±0.011 44.95±2.97 0.05±0.014 0.287±0.012
MEGA 80.58±1.94 0.01±0.017 0.311±0.010 54.28±4.84 0.05±0.040 0.305±0.015

A.3 ABLATION STUDIES

In this section, we include ablation studies to why the proposed method can improve upon A-GEM
Chaudhry et al. (2018b). We only consider maximizing the correlation between the mixed stochastic
gradient gmix and the current gradient ∇`t(w; ξ) (calculated on current data), and the correlation
between the mixed stochastic gradient gmix and the reference gradient ∇`ref(w; ζ) (calculated on
memory data) as in Eq (7). We call this method MEGA-C. The only difference between MEGA-C
and A-GEM is the way of modifying the gradient direction. We compare MEGA-C to MEGA and
A-GEM in the Table 6. The experimental settings are the same as in Section 5.3.
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Table 6: Comparison of MEGA-C, MEGA and A-GEM

Methods Permuted
MNIST Split CIFAR Split CUB Split AWA

AT (%) AT (%) AT (%) AT (%)
MEGA 91.21 ± 0.10 66.12 ± 1.93 80.58 ± 1.94 54.28 ± 4.84

MEGA-C 91.15 ± 0.12 58.04 ± 1.89 68.60 ± 1.98 47.95 ± 4.54
A-GEM 89.32 ± 0.46 61.28 ± 1.88 61.82 ± 3.72 44.95 ± 2.97

From Table 6 we observe that except on Split CIFAR, MEGA-C outperforms A-GEM on all the
datasets. This demonstrate the benefits of the proposed approach for modifying gradient direction.
By considering the loss information as in MEGA, we further improve the results on all the datasets.
This shows that both of the two components (gradient direction modification and loss information)
contribute to the improvement of the proposed approach.

A.4 LEARNING PROCESS

In this section we report the result matrices for MEGA and AGEM (Chaudhry et al., 2018b) on each
dataset. The entry (i, j) of the matrix is the test accuracy of the j-th task after the model is trained
on the i-th task.

A.4.1 PERMUTED MNIST

MEGA

0.9613 0.1091 0.1229 0.0832 0.1374 0.0708 0.0907 0.1017 0.1165 0.1286 0.0979 0.1182 0.1188 0.0886 0.0968 0.0854 0.0928

0.9535 0.9645 0.0895 0.0997 0.1191 0.0685 0.0803 0.1022 0.1165 0.1472 0.1054 0.1112 0.1264 0.1027 0.0872 0.0979 0.0993

0.9391 0.9556 0.9596 0.0996 0.1020 0.0900 0.0807 0.1083 0.0959 0.1400 0.1001 0.1012 0.1096 0.1085 0.0977 0.0716 0.0768

0.9295 0.9473 0.9527 0.9477 0.1113 0.0725 0.0856 0.1033 0.0884 0.1209 0.0847 0.1149 0.1285 0.0939 0.1193 0.0867 0.0824

0.9206 0.9405 0.9437 0.9569 0.9611 0.0785 0.0884 0.1113 0.0926 0.1189 0.0936 0.1337 0.1544 0.1154 0.1282 0.1010 0.0994

0.9119 0.9347 0.9378 0.9481 0.9547 0.9594 0.0916 0.1200 0.1013 0.1042 0.0908 0.1380 0.1415 0.1199 0.1210 0.0908 0.0847

0.9083 0.9261 0.9348 0.9419 0.9478 0.9556 0.9575 0.1092 0.1040 0.1083 0.0863 0.1202 0.1286 0.1177 0.1250 0.0801 0.0931

0.9100 0.9192 0.9291 0.9332 0.9419 0.9462 0.9527 0.9598 0.1152 0.1132 0.0945 0.1054 0.1248 0.1228 0.1187 0.0945 0.0934

0.9022 0.9133 0.9215 0.9271 0.9344 0.9381 0.9430 0.9476 0.9551 0.1187 0.1162 0.1119 0.1364 0.1249 0.1108 0.1012 0.1059

0.8974 0.9074 0.9147 0.9242 0.9289 0.9348 0.9367 0.9404 0.9519 0.9571 0.1102 0.1032 0.1536 0.1261 0.1122 0.1036 0.1093

0.8957 0.9042 0.9146 0.9193 0.9229 0.9313 0.9321 0.9318 0.9409 0.9545 0.9591 0.1144 0.1368 0.1373 0.1143 0.1092 0.1169

0.8863 0.8981 0.9056 0.9127 0.9148 0.9220 0.9270 0.9249 0.9335 0.9444 0.9528 0.9564 0.1517 0.1103 0.1051 0.1002 0.1390

0.8840 0.8992 0.9054 0.9085 0.9149 0.9179 0.9238 0.9198 0.9304 0.9419 0.9441 0.9523 0.9570 0.1292 0.1083 0.0926 0.1301

0.8808 0.8901 0.8994 0.8986 0.9084 0.9113 0.9168 0.9185 0.9239 0.9360 0.9382 0.9453 0.9522 0.9589 0.1017 0.0941 0.1277

0.8770 0.8850 0.8957 0.8926 0.9012 0.9101 0.909 0 0.9132 0.9188 0.9301 0.9358 0.9368 0.9430 0.9508 0.9521 0.0946 0.1334

0.8752 0.8806 0.8911 0.8854 0.8965 0.9070 0.9062 0.9059 0.9145 0.9265 0.9286 0.9338 0.9374 0.9434 0.9462 0.9601 0.1291

0.8732 0.8765 0.8824 0.8809 0.8945 0.9024 0.9016 0.9007 0.9088 0.9202 0.9228 0.9276 0.9279 0.9376 0.9408 0.9521 0.9556

AGEM

0.9613 0.1091 0.1229 0.0832 0.1374 0.0708 0.0907 0.1017 0.1165 0.1286 0.0979 0.1182 0.1188 0.0886 0.0968 0.0854 0.0928

0.9509 0.9645 0.0956 0.0991 0.1304 0.0696 0.0840 0.1033 0.1219 0.1454 0.1064 0.1133 0.1314 0.1043 0.0883 0.0979 0.0973

0.9410 0.9545 0.9615 0.0995 0.0964 0.0921 0.0710 0.1126 0.1176 0.1402 0.1112 0.1026 0.1185 0.1204 0.1077 0.0779 0.0761

0.9299 0.9450 0.9540 0.9546 0.1046 0.0788 0.0959 0.1033 0.1096 0.1266 0.1015 0.1152 0.1476 0.0885 0.1375 0.0984 0.0831

0.9151 0.9361 0.9425 0.9551 0.9588 0.0803 0.0809 0.1143 0.1063 0.1227 0.1066 0.1253 0.1436 0.1154 0.1131 0.1079 0.0915

0.9068 0.9312 0.9401 0.9450 0.9566 0.9590 0.0892 0.1189 0.1285 0.1086 0.1007 0.1433 0.1279 0.1179 0.1097 0.0892 0.0865

0.9015 0.9228 0.9339 0.9385 0.9473 0.9548 0.9586 0.1063 0.1073 0.1102 0.1048 0.1164 0.1291 0.1284 0.1341 0.0854 0.1024

0.8980 0.9155 0.9248 0.9280 0.9356 0.9403 0.9539 0.9580 0.1015 0.1231 0.1129 0.1125 0.1267 0.1133 0.1220 0.0921 0.0985

0.8952 0.9055 0.9201 0.9182 0.9273 0.9310 0.9447 0.9435 0.9512 0.1098 0.1374 0.1166 0.1264 0.1064 0.1183 0.0986 0.1048

0.8846 0.8996 0.9083 0.9154 0.9189 0.9267 0.9363 0.9339 0.9513 0.9558 0.1243 0.1095 0.1179 0.1137 0.1126 0.0945 0.0979

0.8764 0.8977 0.9011 0.9073 0.9086 0.9167 0.9292 0.9274 0.9386 0.9481 0.9631 0.1116 0.1099 0.1417 0.1100 0.0975 0.1166

0.8710 0.8882 0.8937 0.8922 0.9043 0.9077 0.9151 0.9174 0.9279 0.9324 0.9518 0.9572 0.1346 0.1240 0.0964 0.0930 0.1283

0.8625 0.8822 0.8847 0.8855 0.9013 0.8990 0.9093 0.9088 0.9189 0.9295 0.9411 0.9458 0.9533 0.1309 0.1059 0.0987 0.1139

0.8581 0.8784 0.8774 0.8817 0.8954 0.8938 0.8986 0.9003 0.9082 0.9225 0.9307 0.9350 0.9435 0.9603 0.1048 0.1023 0.1048

0.8492 0.8674 0.8732 0.8697 0.8828 0.8826 0.8930 0.8898 0.8962 0.9098 0.9184 0.9267 0.9290 0.9425 0.9542 0.1012 0.1070
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0.8322 0.8700 0.8644 0.8493 0.8765 0.8787 0.8904 0.8848 0.8883 0.8979 0.9110 0.9158 0.9177 0.9299 0.9403 0.9609 0.1179

0.8438 0.8603 0.8555 0.8488 0.8864 0.8785 0.8798 0.8702 0.8916 0.8968 0.9076 0.9094 0.9092 0.9228 0.9228 0.9463 0.9551

A.4.2 SPLIT CIFAR

MEGA

0.6472 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6260 0.5824 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6324 0.5700 0.6300 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6236 0.5496 0.5624 0.6452 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6132 0.5612 0.6048 0.6736 0.6960 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6140 0.5628 0.5692 0.6632 0.6792 0.7688 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5780 0.5500 0.5864 0.6364 0.6792 0.7420 0.6868 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5756 0.5308 0.5764 0.6292 0.6500 0.6820 0.6580 0.6580 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6212 0.5704 0.5876 0.6376 0.6600 0.7056 0.6636 0.6916 0.7376 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5992 0.5580 0.5828 0.6212 0.6528 0.6512 0.6496 0.6700 0.7276 0.6732 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6104 0.5552 0.5804 0.6396 0.6700 0.6960 0.6568 0.6752 0.7412 0.6752 0.7432 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5880 0.5516 0.5816 0.6248 0.6552 0.6568 0.6412 0.6284 0.7044 0.6304 0.7196 0.6660 0.0000 0.0000 0.0000 0.0000 0.0000

0.6020 0.5628 0.5792 0.6164 0.6444 0.6636 0.6356 0.6536 0.7008 0.6132 0.7000 0.6336 0.7108 0.0000 0.0000 0.0000 0.0000

0.6124 0.5692 0.5924 0.6420 0.6516 0.6912 0.6352 0.6492 0.6848 0.6400 0.6872 0.6312 0.7280 0.7596 0.0000 0.0000 0.0000

0.6012 0.5468 0.5908 0.6128 0.6552 0.6852 0.6288 0.6428 0.6704 0.6176 0.6988 0.6268 0.7088 0.7348 0.6324 0.0000 0.0000

0.6244 0.5588 0.5960 0.6432 0.6448 0.6868 0.6388 0.6540 0.6896 0.6056 0.6920 0.6192 0.7124 0.7344 0.6560 0.7604 0.0000

0.6088 0.5896 0.5840 0.6552 0.6716 0.6904 0.6584 0.6372 0.7032 0.6300 0.6900 0.5864 0.6832 0.7140 0.6348 0.7264 0.7780

AGEM

0.6772 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5948 0.5764 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6324 0.5828 0.6432 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5980 0.5384 0.5396 0.6456 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5864 0.5404 0.5576 0.6436 0.7004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5728 0.5392 0.5068 0.5940 0.6344 0.7180 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5572 0.5404 0.5308 0.6224 0.6116 0.6520 0.6688 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6064 0.5356 0.5492 0.5872 0.6164 0.6532 0.6296 0.6724 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6060 0.5472 0.5528 0.6236 0.5920 0.6348 0.6076 0.6348 0.6972 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6004 0.5080 0.4960 0.6128 0.5656 0.6356 0.5752 0.6140 0.6580 0.6792 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5992 0.5408 0.5332 0.5964 0.5928 0.6520 0.5928 0.6304 0.6764 0.5916 0.7364 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5748 0.5020 0.5104 0.5936 0.6016 0.6184 0.5772 0.6164 0.6408 0.5688 0.6776 0.6436 0.0000 0.0000 0.0000 0.0000 0.0000

0.6056 0.5100 0.5200 0.5916 0.6012 0.6056 0.5816 0.6060 0.6236 0.5808 0.6288 0.5768 0.7332 0.0000 0.0000 0.0000 0.0000

0.6184 0.5344 0.5308 0.5888 0.6116 0.6188 0.6012 0.6248 0.6136 0.5836 0.6428 0.5688 0.6524 0.7392 0.0000 0.0000 0.0000

0.6012 0.5220 0.5488 0.6008 0.5828 0.6048 0.5728 0.5884 0.6356 0.5740 0.6476 0.5540 0.6520 0.6804 0.6460 0.0000 0.0000

0.5984 0.5360 0.5520 0.5808 0.5704 0.6184 0.6068 0.6108 0.6452 0.5404 0.6520 0.5256 0.6624 0.6512 0.5864 0.7388 0.0000

0.6232 0.5356 0.5412 0.6104 0.6080 0.6248 0.5944 0.5900 0.6492 0.5872 0.6468 0.5352 0.6336 0.6520 0.5908 0.6444 0.7508

A.4.3 SPLIT CUB

MEGA

0.4050 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6876 0.5088 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6844 0.7244 0.6263 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7071 0.7445 0.7753 0.6553 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7294 0.7483 0.7941 0.7787 0.6857 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7049 0.7266 0.7712 0.7538 0.7528 0.6366 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7271 0.7488 0.7877 0.7893 0.7861 0.7905 0.6830 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7316 0.7737 0.7920 0.7867 0.7851 0.7956 0.8179 0.6816 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7503 0.7525 0.7860 0.7947 0.7838 0.7818 0.8148 0.7912 0.6934 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7445 0.7475 0.7819 0.7599 0.7680 0.7834 0.7901 0.7858 0.7883 0.7085 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7506 0.7732 0.8053 0.8129 0.8049 0.8099 0.8275 0.7938 0.8041 0.8146 0.7211 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7475 0.7670 0.7860 0.7982 0.7818 0.7892 0.8133 0.7881 0.8014 0.8145 0.7958 0.7144 0.0000 0.0000 0.0000 0.0000 0.0000
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0.7393 0.7572 0.7907 0.8006 0.7821 0.8043 0.8123 0.7629 0.7905 0.7902 0.8161 0.7622 0.7262 0.0000 0.0000 0.0000 0.0000

0.7492 0.7501 0.8031 0.8098 0.7956 0.8020 0.8053 0.7811 0.7873 0.8081 0.8159 0.7672 0.7981 0.6794 0.0000 0.0000 0.0000

0.7488 0.7661 0.7958 0.7830 0.7845 0.7873 0.8007 0.7759 0.7902 0.8139 0.8142 0.7746 0.7984 0.7651 0.6831 0.0000 0.0000

0.7538 0.7857 0.8116 0.8170 0.8050 0.8052 0.8277 0.8024 0.8070 0.8220 0.8301 0.7767 0.8210 0.7839 0.7777 0.7505 0.0000

0.7728 0.7846 0.8203 0.7995 0.8141 0.8219 0.8201 0.7973 0.8109 0.8366 0.8390 0.7880 0.8300 0.7948 0.8078 0.8112 0.7418

AGEM

0.4263 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4383 0.5243 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4642 0.5220 0.6064 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4850 0.5420 0.6057 0.6765 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4935 0.5378 0.6328 0.6042 0.6621 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4678 0.5071 0.6369 0.5585 0.5966 0.6137 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4909 0.5630 0.6435 0.6369 0.6140 0.6278 0.6825 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4928 0.5607 0.6157 0.5992 0.6025 0.6037 0.6572 0.6617 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4850 0.5401 0.6090 0.5830 0.6004 0.5980 0.6384 0.6520 0.6850 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4901 0.5542 0.6086 0.5858 0.6080 0.5985 0.6206 0.6533 0.6607 0.6964 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4909 0.5455 0.6465 0.6220 0.6241 0.6186 0.6094 0.6197 0.6181 0.6569 0.7128 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5075 0.5675 0.6266 0.6126 0.5999 0.6037 0.6073 0.6214 0.6004 0.6424 0.6547 0.6673 0.0000 0.0000 0.0000 0.0000 0.0000

0.4909 0.5588 0.5943 0.5852 0.5898 0.6018 0.6188 0.5974 0.6266 0.6228 0.6792 0.6281 0.7035 0.0000 0.0000 0.0000 0.0000

0.5297 0.5535 0.6220 0.6281 0.6383 0.6037 0.6234 0.5967 0.6277 0.6051 0.6393 0.5950 0.6965 0.6630 0.0000 0.0000 0.0000

0.5104 0.5677 0.6446 0.6198 0.6135 0.6093 0.6100 0.5710 0.5912 0.6314 0.6312 0.5951 0.6924 0.6422 0.6584 0.0000 0.0000

0.5196 0.5527 0.6350 0.6043 0.6384 0.6009 0.6226 0.5971 0.6028 0.6210 0.6507 0.6318 0.6757 0.6003 0.5899 0.7272 0.0000

0.5345 0.5519 0.6395 0.6064 0.6335 0.6000 0.5879 0.5899 0.5869 0.6509 0.6486 0.6332 0.6914 0.6130 0.5983 0.6806 0.7216

A.4.4 SPLIT AWA

MEGA

0.4101 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4791 0.4377 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5061 0.5174 0.4116 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5184 0.5219 0.4962 0.4741 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4931 0.5219 0.4828 0.5142 0.4026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5122 0.5357 0.4894 0.5293 0.5053 0.4680 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5242 0.5226 0.5038 0.5219 0.5215 0.5605 0.4820 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5383 0.5359 0.5216 0.5323 0.5204 0.5551 0.5774 0.4682 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5291 0.5179 0.4850 0.5367 0.5043 0.5380 0.5565 0.5111 0.4698 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5386 0.5106 0.4995 0.5245 0.5150 0.5470 0.5457 0.4862 0.5380 0.4619 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5612 0.5569 0.5260 0.5566 0.5387 0.5765 0.5847 0.5483 0.5444 0.5622 0.5542 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5593 0.5593 0.5416 0.5611 0.5345 0.5348 0.5539 0.5358 0.5418 0.5363 0.5720 0.4725 0.0000 0.0000 0.0000 0.0000 0.0000

0.5471 0.5522 0.5333 0.5383 0.5159 0.5410 0.5638 0.5234 0.5234 0.5342 0.5614 0.5611 0.5026 0.0000 0.0000 0.0000 0.0000

0.5557 0.5561 0.5391 0.5368 0.5093 0.5442 0.5743 0.5026 0.5484 0.5126 0.5788 0.5548 0.5641 0.5386 0.0000 0.0000 0.0000

0.5240 0.5563 0.5366 0.5465 0.5102 0.5659 0.5688 0.5071 0.5320 0.5183 0.5865 0.5705 0.5295 0.6206 0.5483 0.0000 0.0000

0.5541 0.5575 0.5219 0.5559 0.5310 0.5490 0.5983 0.5121 0.5466 0.5204 0.5929 0.5626 0.5466 0.6064 0.6291 0.4661 0.0000

0.5542 0.5469 0.5093 0.5677 0.5136 0.5471 0.5581 0.4954 0.5326 0.5169 0.5857 0.5771 0.5345 0.5964 0.6081 0.5187 0.4655

A-GEM

0.4127 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4256 0.4422 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4436 0.4445 0.4058 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4371 0.4784 0.4334 0.4463 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4339 0.4795 0.4236 0.4258 0.3963 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4226 0.4674 0.4311 0.4505 0.3864 0.4495 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4279 0.4462 0.4268 0.4217 0.3854 0.4254 0.4239 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4621 0.4733 0.4421 0.4563 0.4239 0.4356 0.4489 0.4299 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4672 0.4774 0.4363 0.4402 0.4265 0.4387 0.4503 0.4129 0.4431 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4659 0.4417 0.4385 0.4386 0.4188 0.4419 0.4655 0.4075 0.3971 0.4286 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.4555 0.4657 0.4495 0.4645 0.4133 0.4374 0.4717 0.4083 0.4289 0.4144 0.5037 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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0.4425 0.4463 0.4277 0.4532 0.4301 0.4319 0.4865 0.4288 0.4043 0.4021 0.4172 0.4478 0.0000 0.0000 0.0000 0.0000 0.0000

0.4427 0.4582 0.4438 0.4527 0.4345 0.4638 0.4895 0.4327 0.4181 0.4295 0.4745 0.4303 0.4889 0.0000 0.0000 0.0000 0.0000

0.4538 0.4519 0.4066 0.4696 0.4099 0.4459 0.4859 0.4080 0.3931 0.3827 0.4382 0.3854 0.4055 0.4736 0.0000 0.0000 0.0000

0.4476 0.4786 0.4148 0.4879 0.4269 0.4576 0.5014 0.4532 0.4264 0.4137 0.4535 0.4178 0.3955 0.4809 0.4941 0.0000 0.0000

0.4482 0.4635 0.4114 0.4720 0.4231 0.4527 0.5082 0.4076 0.4231 0.4262 0.4436 0.4122 0.3915 0.4809 0.4762 0.4286 0.0000

0.4530 0.4605 0.4294 0.4519 0.4388 0.4649 0.4885 0.4514 0.4395 0.4236 0.4760 0.4495 0.4105 0.4621 0.4730 0.4039 0.4646
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