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ABSTRACT

Computer simulation provides an automatic and safe way for training robotic con-
trol policies to achieve complex tasks such as locomotion. However, a policy
trained in simulation usually does not transfer directly to the real hardware due
to the differences between the two environments. Transfer learning using domain
randomization is a promising approach, but it usually assumes that the target en-
vironment is close to the distribution of the training environments, thus relying
heavily on accurate system identification. In this paper, we present a different
approach that leverages domain randomization for transferring control policies to
unknown environments. The key idea that, instead of learning a single policy in
the simulation, we simultaneously learn a family of policies that exhibit different
behaviors. When tested in the target environment, we directly search for the best
policy in the family based on the task performance, without the need to identify
the dynamic parameters. We evaluate our method on five simulated robotic con-
trol problems with different discrepancies in the training and testing environment
and demonstrate that our method can overcome larger modeling errors compared
to training a robust policy or an adaptive policy.

1 INTRODUCTION

Recent developments in Deep Reinforcement Learning (DRL) have shown the potential to learn
complex robotic controllers in an automatic way with minimal human intervention. However, due
to the high sample complexity of DRL algorithms, directly training control policies on the hardware
still remains largely impractical for agile tasks such as locomotion.

A promising direction to address this issue is to use the idea of transfer learning which learns a model
in a source environment and transfers it to a target environment of interest. In the context of learning
robotic control policies, we can consider the real world the target environment and the computer
simulation the source environment. Learning in simulated environment provides a safe and efficient
way to explore large variety of different situations that a real robot might encounter. However, due
to the model discrepancy between physics simulation and the real-world environment, also known
as the Reality Gap (Boeing & Bräunl, 2012; Koos et al., 2010), the trained policy usually fails in
the target environment. Efforts have been made to analyze the cause of the Reality Gap (Neunert
et al., 2017) and to develop more accurate computer simulation (Tan et al., 2018) to improve the
ability of a policy when transferred it to real hardware. Orthogonal to improving the fidelity of the
physics simulation, researchers have also attempted to cross the reality gap by training more capable
policies that succeed in a large variety of simulated environments. Our method falls into the second
category.

To develop a policy capable of performing in various environments with different governing dy-
namics, one can consider to train a robust policy or to train an adaptive policy. In both cases, the
policy is trained in environments with randomized dynamics. A robust policy is trained under a
range of dynamics without identifying the specific dynamic parameters. Such a policy can only
perform well if the simulation is a good approximation of the real world dynamics. In addition, for
more agile motor skills, robust policies may appear over-conservative due to the uncertainty in the
training environments. On the other hand, when an adaptive policy is used, it learns to first identify,
implicitly or explicitly, the dynamics of its environment, and then selects the best action according
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to the identified dynamics. Being able to act differently according to the dynamics allows the adap-
tive policy to achieve higher performance on a larger range of dynamic systems. However, when
the target dynamics is notably different from the training dynamics, it may still produce sub-optimal
results for two reasons. First, when a sequence of novel observations is presented, the learned iden-
tification model in an adaptive policy may produce inaccurate estimations. Second, even when the
identification model is perfect, the corresponding action may not be optimal for the new situation.

In this work, we introduce a new method that enjoys the versatility of an adaptive policy, while
avoiding the challenges of system identification. Instead of relating the observations in the target
environment to the similar experiences in the training environment, our method searches for the best
policy directly based on the task performance in the target environment.

Our algorithm can be divided to two stages. The first stage trains a family of policies, each optimized
for a particular vector of dynamic parameters. The family of policies can be parameterized by the
dynamic parameters in a continuous representation. Each member of the family, referred to as a
strategy, is a policy associated with particular dynamic parameters. Using a locomotion controller as
an example, a strategy associated with low friction coefficient may exhibit cautious walking motion,
while a strategy associated with high friction coefficient may result in more aggressive running
motion. In the second stage we perform a search over the strategies in the target environment to find
the one that achieves the highest task performance.

We evaluate our method on three examples that demonstrate transfer of a policy learned in one
simulator DART, to another simulator MuJoCo. Due to the differences in the constraint solvers,
these simulators can produce notably different simulation results. A more detailed description of
the differences between DART and MuJoCo is provided in Appendix A. We also add latency to
the MuJoCo environment to mimic a real world scenario, which further increases the difficulty of
the transfer. In addition, we use a quadruped robot simulated in Bullet to demonstrate that our
method can overcome actuator modeling errors. Latency and actuator modeling have been found
to be important for Sim-to-Real transfer of locomotion policies (Tan et al., 2018; Neunert et al.,
2017). Finally, we transfer a policy learned for a robot composed of rigid bodies to a robot whose
end-effector is deformable, demonstrating the possiblity of using our method to transfer to problems
that are challenging to model faithfully.

2 RELATED WORK

While DRL has demonstrated its ability to learn control policies for complex and dynamic motor
skills in simulation (Schulman et al., 2015; 2017; Peng et al., 2018a; 2017; Yu et al., 2018; Heess
et al., 2017), very few learning algorithms have successfully transferred these policies to the real
world. Researchers have proposed to address this issue by optimizing or learning a simulation
model using data from the real-world (Tan et al., 2018; 2016; Deisenroth & Rasmussen, 2011; Ha &
Yamane, 2015; Abbeel & Ng, 2005). The main drawback for these methods is that for highly agile
and high dimensional control problems, fitting an accurate dynamic model can be challenging and
data inefficient.

Complementary to learning an accurate simulation model, a different line of research in sim-to-real
transfer is to learn policies that can work under a large variety of simulated environments. One
common approach is domain randomization. Training a robust policy with domain randomization
has been shown to improve the ability to transfer a policy (Tan et al., 2018; Tobin et al., 2017;
Rajeswaran et al., 2016; Pinto et al., 2017). Tobin et al. (2017) trained an object detector with
randomized appearance and applied it in a real-world gripping task. Tan et al. (2018) showed that
training a robust policy with randomized dynamic parameters is crucial for transferring quadruped
locomotion to the real world. Designing the parameters and range of the domain to be randomized
requires specific knowledge for different tasks. If the range is set too high, the policy may learn a
conservative strategy or fail to learn the task, while a small range may not provide enough variation
for the policy to transfer to real-world.

A similar idea is to train an adaptive policy with the current and the past observations as input.
Such an adaptive policy is able to identify the dynamic parameters online either implicitly (OpenAI
et al., 2018; Peng et al., 2018b) or explicitly (Yu et al., 2017) and apply actions appropriate for
different system dynamics. Recently, adaptive policies have been used for sim-to-real transfer, such
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as in-hand manipulation tasks (OpenAI et al., 2018) or non-prehensile manipulation tasks (Peng
et al., 2018b). Instead of training one robust or adaptive policy, Zhang et al. (2018) trained multiple
policies for a set of randomized environments and learned to combine them linearly in a separate
set of environments. The main advantage of these methods is that they can be trained entirely in
simulation and deployed in real-world without further fine-tuning. However, policies trained in
simulation may not generalize well when the discrepancy between the target environment and the
simulation is too large. Our method also uses dynamic randomization to train policies that exhibit
different strategies for different dynamics, however, instead of relying on the simulation to learn an
identification model for selecting the strategy, we propose to directly optimize the strategy in the
target environment.

A few recent works have also proposed the idea of training policies in a source environment and
fine-tune it in the target environment. For example, Cully et al. (2015) proposed MAP-Elite to learn
a large set of controllers and applied Bayesian optimization for fast adaptation to hardware damages.
Their approach searches for individual controllers for discrete points in a behavior space, instead of
a parameterized family of policies as in our case, making it potentially challenging to be applied to
higher dimensional behavior spaces. Rusu et al. (2016) used progressive network to adapt the policy
to new environments by designing a policy architecture that can effectively utilize previously learned
representations. Chen et al. (2018) learned an implicit representation of the environment variations
by optimizing a latent policy input for each discrete instance of the environment. They showed that
fine-tuning on this learned policy achieved improved learning efficiency. In contrast to prior work
in which the fine-tuning phase adjusts the neural network weights in the target environment, we
optimize only the dynamics parameters input to the policy. This allows our policies to adapt to the
target environments with less data and to use sparse reward signal.

3 BACKGROUND

We formulate the motor skill learning problem as a Markov Decision Process (MDP), M =
(S,A, r,P, p0, γ), where S is the state space, A is the action space, r : S × A 7→ R is the re-
ward function, P : S × A 7→ S is the transition function, p0 is the initial state distribution and γ
is the discount factor. The goal of reinforcement learning is to find a control policy π : S 7→ A
that maximizes the expected accumulated reward: JM(π) = Eτ=(s0,a0,...,sT )

∑T
t=0 γ

tr(st,at),
where s0 ∼ p0, at ∼ π(st) and st+1 = P(st,at). In practice, we usually only have access to
an observation of the robot that contains a partial information of the robot’s state. In this case, we
will have a Partially-Observable Markov Decision Process (POMDP) and the policy would become
π : O 7→ A, where O is the observation space.

In the context of transfer learning, we can define a source MDPMs and a target MDPMt and the
goal would be to learn a policy πs forMs such that it also works well onMt. In this work, P is
regarded as a parameterized space of transition functions, st+1 = Pµ(st,at), where µ is a vector
of physical parameters defining the dynamic model (e.g. friction coefficient). The transfer learning
in this context learns a policy under Ps and transfers to Pt, where Ps 6= Pt.

4 METHODS

We propose a new method for transferring a policy learned in simulated environment to a target
environment with unknown dynamics. Our algorithm consists of two stages: learning a family of
policies and optimizing strategy.

4.1 LEARNING A FAMILY OF POLICIES

The first stage of our method is to learn a family of policies, each for a particular dynamics Psµ(·).
One can potentially train each policy individually and interpolate them to cover the space of µ (Stulp
et al., 2013; Da Silva et al., 2012). However, as the dimension of µ increases, the number of policies
required for interpolation grows exponentially.

Since many of these policies are trained under similar dynamics, our method merges them into one
neural network and trains the entire family of policies simultaneously. We follow the work by Yu
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et al. (2017), which trains a policy π : (o, µ) 7→ a that takes as input not only the observation of
the robot o, but also the physical parameters µ. At the beginning of each rollout during the training,
we randomly pick a new set of physical parameters for the simulation and fix it throughout the
rollout. After training the policy this way, we obtain a family of policies that is parameterized by the
dynamics parameters µ. Given a particular µ, we define the corresponding policy as πµ : o 7→ a.
We will call such an instantiated policy a strategy.

4.2 OPTIMIZATING STRATEGY

The second stage of our method is to search for the optimal strategy in the space of µ for the target
environment. Previous work learns a mapping between the experiences under source dynamics Psµ
and the corresponding µ. When new experiences are generated in the target environment, this map-
ping will identify a µ based on similar experiences previously generated in the source environment.
While using experience similarity as a metric to identify µ transfers well to a target environment
that has the same dynamic parameter space (Yu et al., 2017), it does not generalize well when the
dynamic parameter space is different.

Since our goal is to find a strategy that works well in the target environment, a more direct approach
is to use the performance of the task, i.e. the accumulated reward, in the target environment as the
metric to search for the strategy:

µ∗ = arg max
µ

JMt(πµ). (1)

Solving Equation 1 can be done efficiently because the search space in Equation 1 is the space of
dynamic parameters µ, rather than the space of policies, which are represented as neural networks in
our implementation. To further reduce the number of samples from the target environment needed
for solving Equation 1, we investigated a number of algorithms, including Bayesian optimization,
model-based methods and an evolutionary algorithm (CMA). A detailed description and comparison
of these methods are provided in Appendix C.

We chose Covariance Matrix Adaptation (CMA) (Hansen et al., 1995), because it reliably outper-
forms other methods in terms of sample-efficiency. At each iteration of CMA, a set of samples are
drawn from a Gaussian distribution over the space of µ. For each sample, we instantiate a strategy
πµ and use it to generate rollouts in the target environment. The fitness of the sample is determined
by evaluating the rollouts using JMt . Based on the fitness values of the samples in the current it-
eration, the mean and the covariance matrix of the Gaussian distribution are updated for the next
iteration.

5 EXPERIMENTS

To evaluate the ability of our method to overcome the reality gap, we train policies for four loco-
motion control tasks (hopper, walker2d, half cheetah, quadruped robot) and transfer each policy to
environments with different dynamics. To mimic the reality gap seen in the real-world, we use target
environments that are different from the source environments in their contact modeling, latency or
actuator modeling. In addition, we also test the ability of our method to generalize to discrepan-
cies in body mass, terrain slope and end-effector materials. Figure 1 shows the source and target
environments for all the tasks and summarizes the modeled reality gap in each task. During train-
ing, we choose different combinations of dynamic parameters to randomize and make sure they do
not overlap with the variations in the testing environments. For clarity of exposition, we denote
the dimension of the dynamic parameters that are randomized during training as dim(µ). For all
examples, we use the Proximal Policy Optimization (PPO) (Schulman et al., 2017) to optimize the
control policy. A more detailed description of the experiment setup as well as the simulated reality
gaps are provided in Appendix B. For each example presented, we run three trials with different
random seeds and report the mean and one standard deviation for the total reward.
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Figure 1: The environments used in our experiments. Environments in the top row are source
environments and environments in the bottom row are the target environments we want to transfer
the policy to. (a) Hopper from DART to MuJoCo. (b) Walker2d from DART to MuJoCo with
latency. (c) HalfCheetah from DART to MuJoCo with latency. (d) Minitaur robot from inaccurate
motor modeling to accurate motor modeling. (e) Hopper from rigid to soft foot.

5.1 BASELINE METHODS

We compare our method, Strategy Optimization with CMA-ES (SO-CMA) to three baseline meth-
ods: training a robust policy (Robust), training an adaptive policy (Hist) and training a Universal
Policy with Online System Identification (UPOSI) (Yu et al., 2017). The robust policy is repre-
sented as a feed forward neural network, which takes as input the most recent observation from the
robot, i.e. πrobust : o 7→ a. The policy needs to learn actions that work for all the training envi-
ronments, but the dynamic parameters cannot be identified from its input. In contrast, an adaptive
policy is given a history of observations as input, i.e. πadapt : (ot−h, . . . ,ot) 7→ at. This allows the
policy to potentially identify the environment being tested and adaptively choose the actions based
on the identified environment. There are many possible ways to train an adaptive policy, for exam-
ple, one can use an LSTM network to represent the policy or use a history of observations as input to
a feed-forward network. We find that for the tasks we demonstrate, directly training an LSTM policy
using PPO is much less efficient and reaches lower end performance than training a feed-forward
network with history input. Therefore, in our experiments we use a feed-forward network with a
history of 10 observations to represent the adaptive policy πadapt. We also compare our method
to UPOSI, which decouples the learning of an adaptive policy into training a universal policy via
reinforcement learning and a system identification model via supervised learning. In theory UPOSI
and Hist should achieve similar performance, while in practice we expect UPOSI to learn more ef-
ficiently due to the decoupling. We adopt the same training procedure as done by Yu et al. (2017),
and use a history of 10 observations as input to the online system identification model. For fair com-
parison, we continue to train the baseline methods after transferring to the target environment, using
the same amount of samples SO-CMA consumes in the target environment. We refer this additional
training step as ‘fine-tuning’. In addition to the baseline methods, we also compare our method to
the performance of policies trained directly in the target environments, which serves as an ‘Oracle’
benchmark. The Oracle policies for Hopper, Walke2d, HalfCheetah and Hopper Soft was trained
for 1, 000, 000 samples in the target environment as in Schulman et al. (2017). For the quadruped
example, we run PPO for 5, 000, 000 samples, similar to Tan et al. (2018). We detail the process of
‘fine-tuning’ in Appendix B.4

5.2 HOPPER DART TO MUJOCO

In the first example, we build a single-legged robot in DART similar to the Hopper environment
simulated by MuJoCo in OpenAI Gym (Brockman et al., 2016). We investigate two questions in
this example: 1) does SO-CMA work better than alternative methods in transferring to unknown
environments? and 2) how does the choice of dim(µ) affect the performance of policy transfer? To
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this end, we perform experiments with dim(µ) = 2, 5 and 10. For the experiment with dim(µ) = 2,
we randomize the mass of the robot’s foot and the restitution coefficient between the foot and the
ground. For dim(µ) = 5, we in addition randomize the friction coefficient, the mass of the robot’s
torso and the joint strength of the robot. We further include the mass of the rest two body parts and
the joint damping to construct the randomized dynamic parameters for dim(µ) = 10. The specific
ranges of randomization are described in Appendix B.4.

We first evaluate how the performance of different methods varies with the number of samples in
the target environment. As shown in Figure 2, when dim(µ) is low, none of the four methods were
able to transfer to the MuJoCo Hopper successfully. This is possibly due to there not being enough
variation in the dynamics to learn diverse strategies. When dim(µ) = 5, SO-CMA can successfully
transfer the policy to MuJoCo Hopper with good performance, while the baseline methods were not
able to adapt to the new environment using the same sample budget. We further increase dim(µ) to
10 as shown in Figure 2 (c) and find that SO-CMA achieved similar end performance to dim(µ) = 5,
while the baselines do not transfer well to the target environment.

We further investigate whether SO-CMA can generalize to differences in joint limits in addition to
the discrepancies between DART and MuJoCo. Specifically, we vary the magnitude of the ankle
joint limit in [0.5, 1.0] radians (default is 0.785) for the MuJoCo Hopper, and run all the methods
with 30, 000 samples. The result can be found in Figure 3. We can see a similar trend that with low
dim(µ) the transfer is challenging, and with higher value of dim(µ) SO-CMA is able to achieve
notably better transfer performance than the baseline methods.

Figure 2: Transfer performance vs Sample number in target environment for the Hopper example.
Policies are trained to transfer from DART to MuJoCo.

Figure 3: Transfer performance for the Hopper example. Policies are traiend to transfer from DART
to MuJoCo with different ankle joint limits (horizontal axis). All trials run with total sample number
of 30, 000 in the target environment.

5.3 WALKER2D DART TO MUJOCO WITH LATENCY

In this example, we use the lower body of a biped robot constrained to a 2D plane, according to
the Walker2d environment in OpenAI Gym. We find that with different initializations of the policy
network, training could lead to drastically different gaits, e.g. hopping with both legs, running with
one legs dragging the other, normal running, etc. Some of these gaits are more robust to environ-
ment changes than others, which makes analyzing the performance of transfer learning algorithms
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challenging. To make sure the policies are more comparable, we use the symmetry loss from Yu
et al. (2018), which leads to all policies learning a symmetric running gait. To mimic modeling
error seen on real robots, we add a latency of 8ms to the MuJoCo simulator. We train policies with
dim(µ) = 8, for which we randomize the friction coefficient, restitution coefficient and the joint
damping of the six joints during training. Figure 4 (a) shows the transfer performance of different
method with respect to the sample numbers in the target environment.

We further vary the mass of the robot’s right foot in [2, 9]kg in the MuJoCo Walker2d environment
and compare the transfer performance of SO-CMA to the baselines. The default foot mass is 2.9 kg.
We use in total 30, 000 samples in the target environment for all methods being compared and the
results can be found in Figure 4 (b). In both cases, our method achieves notably better performance
than Hist and UPOSI, while being comparable to Robust.

Figure 4: Transfer performance for the Walker2d example. (a) Transfer performance vs sample
number in target environment on flat surface. (b) Transfer performance vs foot mass, trained with
30, 000 samples in the target environment.

5.4 HALFCHEETAH DART TO MUJOCO WITH DELAY

In the third example, we train policies for the HalfCheetah environment from OpenAI Gym. We
again test the performance of transfer from DART to MuJoCo for this example. In addition, we add
a latency of 50ms to the target environment. We randomize 11 dynamic parameters in the source
environment consisting of the mass of all body parts, the friction coefficient and the restitution
coefficient during training, i.e. dim(µ) = 11. The results of the performance with respect to sample
numbers in target environment can be found in Figure 5 (a). We in addition evaluate transfer to
environments where the slope of the ground varies, as shown in Figure 5 (b). We can see that
SO-CMA outperforms Robust and Hist, while achieves similar performance as UPOSI.

Figure 5: Transfer performance for the HalfCheetah example. (a) Transfer performance vs sample
number in target environment on flat surface. (b) Transfer performance vs surface slope, trained
with 30, 000 samples in the target environment.
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5.5 QUADRUPED ROBOT WITH ACTUATOR MODELING ERROR

As demonstrated by Tan et al. (2018), when a robust policy is used, having an accurate actuator
model is important to the successful transfer of policy from simulation to real-world for a quadruped
robot, Minitaur (Figure 1 (d)). Specifically, they found that when a linear torque-current relation is
assumed in the actuator dynamics in the simulation, the policy learned in simulation transfers poorly
to the real hardware. When the actuator dynamics is modeled more accurately, in their case using a
non-linear torque-current relation, the transfer performance were notably improved.

In our experiment, we investigate whether SO-CMA is able to overcome the error in actuator mod-
els. We use the same simulation environment from Tan et al. (2018), which is simulated in Bullet
(Coumans & Bai, 2016-2017). During the training of the policy, we use a linear torque-current rela-
tion for the actuator model, and we transfer the learned policy to an environment with the more accu-
rate non-linear torque-current relation. We use the same 25 dynamic parameters and corresponding
ranges used by Tan et al. (2018) for dynamics randomization during training. When applying the
robust policy to the accurate actuator model, we observe that the quadruped tends to sink to the
ground, similar to what was observed by Tan et al. (2018). SO-CMA, on the other hand, can suc-
cessfully transfer a policy trained with a crude actuator model to an environment with more realistic
actuators(Figure 6 (a)).

Figure 6: Transfer performance for the Quadruped example (a) and the Soft-foot Hopper example
(b).

5.6 HOPPER RIGID TO DEFORMABLE FOOT

Applying deep reinforcement learning to environments with deformable objects can be computa-
tionally inefficient (Clegg et al., 2018). Being able to transfer a policy trained in a purely rigid-body
environment to an environment containing deformable objects can greatly improve the efficiency of
learning. In our last example, we transfer a policy trained for the Hopper example with rigid objects
only to a Hopper model with a deformable foot (Figre 1 (e)). The soft foot is modeled using the soft
shape in DART, which uses an approximate but relatively efficient way of modeling deformable ob-
jects (Jain & Liu, 2011). We train policies in the rigid Hopper environment and randomize the same
set of dynamic parameters as in the in the DART-to-MuJoCo transfer example with dim(µ) = 5.
We then transfer the learned policy to the soft Hopper environment where the Hopper’s foot is de-
formable. The results can be found in Figure 6 (b). SO-CMA is able to successfully control the
robot to move forward without falling, while the baseline methods fail to do so.

6 DISCUSSIONS

We have demonstrated that our method, SO-CMA, can successfully transfer policies trained in one
environment to a notably different one with a relatively low amount of samples. One advantage of
SO-CMA, compared to the baselines, is that it works consistently well across different examples,
while none of the baseline methods achieve successful transfer for all the examples.

We hypothesize that the large variance in the performance of the baseline methods is due to their
sensitivity to the type of task being tested. For example, if there exists a robust controller that
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works for a large range of different dynamic parameters µ in the task, such as a bipedal running
motion in the Walker2d example, training a Robust policy may achieve good performance in transfer.
However, when the optimal controller is more sensitive to µ, Robust policies may learn to use
overly-conservative strategies, leading to sub-optimal performance (e.g. in HalfCheetah) or fail to
perform the task (e.g. in Hopper). On the other hand, if the target environment is not significantly
different from the training environments, UPOSI may achieve good performance, as in HalfCheetah.
However, as the reality gap becomes larger, the system identification model in UPOSI may fail
to produce good estimates and result in non-optimal actions. Furthermore, Hist did not achieve
successful transfer in any of the examples, possibly due to two reasons: 1) it shares similar limitation
to UPOSI when the reality gap is large and 2) it is in general more difficult to train Hist due to the
larger input space, so that with a limited sample budget it is challenging to fine-tune Hist effectively.

We also note that although in some examples certain baseline method may achieve successful trans-
fer, the fine-tuning process of these methods relies on having a dense reward signal. In practice,
one may only have access to a sparse reward signal in the target environment, e.g. distance traveled
before falling to the ground. Our method, using an evolutionary algorithm (CMA), naturally han-
dles sparse rewards and thus the performance gap between our method (SO-CMA) and the baseline
methods will likely be large if a sparse reward is used.

7 CONCLUSION

We have proposed a policy transfer algorithm where we first learn a family of policies simultane-
ously in a source environment that exhibits different behaviors and then search directly for a policy
in the family that performs the best in the target environment. We show that our proposed method
can overcome large modeling errors, including those commonly seen on real robotic platforms with
relatively low amount of samples in the target environment. These results suggest that our method
has the potential to transfer policies trained in simulation to real hardware.

There are a few interesting directions that merit further investigations. First, it would be interesting
to explore other approaches for learning a family of policies that exhibit different behaviors. One
such example is the method proposed by Eysenbach et al. (2018), where an agent learns diverse
skills without a reward function in an unsupervised manner. Another example is the HCP-I policy
proposed by Chen et al. (2018), which learns a latent representation of the environment variations
implicitly. Equipping our policy with memories is another interesting direction to investigate. The
addition of memory will extend our method to target environments that vary over time. We have
investigated in a few options for strategy optimization and found that CMA-ES works well for our
examples. However, it would be desired if we can find a way to further reduce the sample required
in the target environment. One possible direction is to warm-start the optimization using models
learned in simulation, such as the calibration model in Zhang et al. (2018) or the online system
identification model in Yu et al. (2017).
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A DIFFERENCES BETWEEN DART AND MUJOCO

DART (Lee et al., 2018) and MuJoCo (Todorov et al., 2012) are both physically-based simulators
that computes how the state of virtual character or robot evolves over time and interacts with other
objects in a physical way. Both of them have been demonstrated for transferring controllers learned
for a simulated robot to a real hardware (Tan et al., 2018; 2016), and there has been work trying
to transfer policies between DART and MuJoCo (Wulfmeier et al., 2017). The two simulators are
similar in many aspects, for example both of them uses generalized coordinates for representing
the state of a robot. Despite the many similarities between DART and MuJoCo, there are a few
important differences between them that makes transferring a policy trained in one simulator to the
other challenging. For the examples of DART-to-MuJoCo transfer presented in this paper, there are
three major differences as described below:

1. Contact Handling
Contact modeling is important for robotic control applications, especially for locomotion
tasks, where robots heavily rely on manipulating contacts between end-effector and the
ground to move forward. In DART, contacts are handled by solving a linear complemen-
tarity problem (LCP) (Tan et al.), which ensures that in the next timestep, the objects will
not penetrate with each other, while satisfying the laws of physics. In MuJoCo, the contact
dynamics is modeled using a complementarity-free formulation, which means the objects
might penetrate with each other. The resulting impulse will increase with the penetration
depth and separate the penetrating objects eventually.

2. Joint Limits
Similar to the contact solver, DART tries to solve the joint limit constraints exactly so that
the joint limit is not violated in the next timestep, while MuJoCo uses a soft constraint
formulation, which means the character may violate the joint limit constraint.

3. Armature
In MuJoCo, a diagonal matrix σIn is added to the joint space inertia matrix that can help
stabilize the simulation, where σ ∈ R is a scalar named Armature in MuJoCo and In is the
n× n identity matrix. This is not modeled in DART.

To illustrate how much difference these simulator characteristics can lead to, we compare the Hopper
example in DART and MuJoCo by simulating both using the same sequence of randomly generated
actions from an identical state. We plot the linear position and velocity of the torso and foot of the
robot, which is shown in Figure 7. We can see that due to the differences in the dynamics, the two
simulators would control the robot to reach notably different states even though the initial state and
control signals are identical.

Figure 7: Comparison of DART and MuJoCo environments under the same control signals. The red
curves represent position or velocity in the forward direction and the green curves represent position
or velocity in the upward direction.

B EXPERIMENT DETAILS

B.1 EXPERIMENT SETTINGS

We use Proximal Policy Optimization (PPO) implemented in OpenAI Baselines (Dhariwal et al.,
2017) for training all the policies in our experiments. For simulation in DART, we use DartEnv (Yu
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Table 1: Environment Details
Environment Observation Action Reward

Hopper 11 3 svelt − 0.001||at||22 + 1
Walker2d 17 6 svelt − 0.001||at||22 + 1
HalfCheetah 17 6 svelt − 0.1||at||22 + 1
Quadruped 12 8 svelt ∆t− 0.008∆t|at · q̇t|

& Liu, 2017), which implements the continuous control benchmarks in OpenAI Gym using PyDart
(Ha, 2016). For all of our examples, we represent the policy as a feed-forward neural network with
three hidden layers, each consists of 64 hidden nodes.

B.2 ENVIRONMENT DETAILS

The observation space, action space and the reward function used in all of our examples can be found
in Table 1. For the Walker2d environment, we found that with the original environment settings in
OpenAI Gym, the robot sometimes learn to hop forward, possibly due to the ankle being too strong.
Therefore, we reduce the torque limit of the ankle joint in both DART and MuJoCo environment for
the Walker2d problem from [−100, 100] to [−20, 20]. We found that with this modification, we can
reliably learn locomotion gaits that are closer to a human running gait.

Below we list the dynamic randomization settings used in our experiments. Table 2, Table 3 and
Table 4 shows the range of the randomization for different dynamic parameters in different environ-
ments. For the quadruped example, we used the same settings as in Tan et al. (2018).

Table 2: Dynamic Randomization details for Hopper

Dynamic Parmeter Range

Friction Coefficient [0.2, 1.0]
Restitution Coefficient [0.0, 0.3]
Mass [2.0, 15.0]kg
Joint Damping [0.5, 3]
Joint Torque Scale [50%, 150%]

Table 3: Dynamic Randomization details for Walker2d

Dynamic Parmeter Range

Friction Coefficient [0.2, 1.0]
Restitution Coefficient [0.0, 0.8]
Joint Damping [0.1, 3.0]

B.3 SIMULATED REALITY GAPS

To evaluate the ability of our method to overcome the modeling error, we designed six types of
modeling errors. Each example shown in our experiments contains one or more modeling errors
listed below.

1. DART to MuJoCo
For the Hopper, Walker2d and HalfCheetah example, we trained policies that transfers
from DART environment to MuJoCo environment. As discussed in Appendix A, the major
differences between DART and MuJoCo are contacts, joint limits and armature.

2. Latency
The second type of modeling error we tested is latency in the signals. Specifically, we
model the latency between when an observation o is sent out from the robot, and when the
action corresponding to this observation a = π(o) is executed on the robot. When a policy

13



Published as a conference paper at ICLR 2019

Table 4: Dynamic Randomization details for HalfCheetah

Dynamic Parmeter Range

Friction Coefficient [0.2, 1.0]
Restitution Coefficient [0.0, 0.5]
Mass [1.0, 15.0]kg
Joint Torque Scale [30%, 150%]

is trained without any delay, it is usually very challenging to transfer it to problems with
delay added. The value of delay is usually below 50ms and we use 8ms and 50ms in our
examples.

3. Actuator Modeling Error
As noted by Tan et al. (2018), error in actuator modeling is an important factor that con-
tributes to the reality gap. They solved it by identifying a more accurate actuator model
by fitting a piece-wise linear function for the torque-current relation. We use their identi-
fied actuator model as the ground-truth target environment in our experiments and used the
ideal linear torque-current relation in the source environments.

4. Foot Mass
In the example of Walker2d, we vary the mass of the right foot on the robot to create a
family of target environments for testing. The range of the torso mass varies in [2, 9]kg.

5. Terrain Slope
In the example of HalfCheetah, we vary the slope of the ground to create a family of target
environments for testing. This is implemented as rotating the gravity direction by the same
angle. The angle varies in the range [−0.18, 0.0] radians.

6. Rigid to Deformable
The last type of modeling error we test is that a deformable object in the target environment
is modeled as a rigid object in the source environment. The deformable object is modeled
using the soft shape object in DART. In our example, we created a deformable box of
size 0.5m × 0.19m × 0.13m around the foot of the Hopper. We set the stiffness of the
deformable object to be 10, 000 and the damping to be 1.0. We refer readers to Jain & Liu
(2011) for more details of the softbody simulation.

B.4 POLICY TRAINING

For training policies in the source environment, we run PPO for 500 iterations. In each iteration, we
sample 40, 000 steps from the source environment to update the policy. For the rest of the hyper-
parameters, we use the default value from OpenAI Baselines (Dhariwal et al., 2017). We use a
large batch size in our experiments as the policy needs to be trained to work on different dynamic
parameters µ.

For fine-tuning of the Robust and Adaptive policy in the target environment, we sample 2, 000 steps
from the target environment at each iteration of PPO, which is the default value used in OpenAI
Baselines. Here we use a smaller batch size for two reasons: 1) since the policy is trained to work
on only one dynamics, we do not need as many samples to optimize the policy in general and 2)
the fine-tuning process has a limited sample budget and thus we want to use a smaller batch size so
that the policy can be improved more. In the case where we use a maximum of 50, 000 samples for
fine-tuning, this amounts to 50 iterations of PPO updates. Furthermore, we use a maximum rollout
length of 1, 000, while the actual length of the rollout collected during training is general shorter due
to the early termination, e.g. when the robot falls to the ground. Therefore, with 50, 000 samples in
total, the fine-tuning process usually consists of 100 ∼ 300 rollouts, depending on the task.

B.5 STRATEGY OPTIMIZATION WITH CMA-ES

We use the CMA-ES implementation in python by (PyC). At each iteration of CMA-ES, we generate
4 + b3 ∗ log(N)c samples from the latest Gaussian distribution, where N is the dimension of the
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dynamic parameters. During evaluation of each sample µi, we run the policy πµi
in the target

environment for three trials and average the returns to obtain the fitness of this sample.

C ALTERNATIVE METHODS FOR STRATEGY OPTIMIZATION

In addition to CMA-ES, we have also experimented with a few other options for finding the best
µ such that πµ works well in the target environment. Here we show some experiment results for
Strategy Optimization with Bayesian Optimization (SO-BO) and Model-based Optimization (SO-
MB).

C.1 BAYESIAN OPTIMIZATION

Bayesian Optimization is a gradient-free optimization method that is known to work well for low
dimensional continuous problems where evaluating the quality of each sample can be expensive.
The main idea in Bayesian optimization is to incrementally build a Gaussian process (GP) model
that estimates the loss of a given search parameter. At each iteration, a new sample is drawn by
optimizing an acquisition function on the GP model. The acquisition function takes into account
the exploration (search where the GP has low uncertainty) and exploitation (search where the GP
predicts low loss). The new sample is then evaluated and added to the training dataset for GP.

We test Bayesian Optimization on the Hopper and Quadruped example, as shown in Figure 8. We
can see that Bayesian Optimization can achieve comparable performance as CMA-ES and thus is a
viable choice to our problem. However, SO-BA appears in general noisier than CMA-ES and is in
general less computationally efficient due to the re-fitting of GP models.

Figure 8: Comparison of SO-CMA and SO-BA for Hopper and Quadruped examples.

C.2 MODEL-BASED OPTIMIZATION

Another possible way to perform strategy optimization is to use a model-based method. In a model-
based method, we learn the dynamics of the target environment using generic models such as neural
networks, Gaussian process, linear functions, etc. After we have learned a dynamics model, we can
use it as an approximation of the target environment to optimize µ.

We first tried using feed-forward neural networks to learn the dynamics and optimize µ. However,
this method was not able to reliably find µ that lead to good performance. This is possibly due
to that any error in the prediction of the states would quickly accumulate over time and lead to
inaccurate predictions. In addition, this method would not be able to handle problems where latency
is involved.

In the experiments presented here, we learn the dynamics of the target environment with a Long
Short Term Memory (LSTM) network (Hochreiter & Schmidhuber, 1997). Given a target environ-
ment, we first sample µ uniformly and collect experience using πµ until we have 5, 000 samples. We
use these samples to fit an initial LSTM dynamic model. We then alternate between finding the best
dynamic parameters µ̂ such that πµ̂ achieves the best performance under the latest LSTM dynamic
model and update the LSTM dynamic model using data generated from πµ̂. This is repeated until
we have reached the sample budget.

We found that LSTM notably outperformed feed-forward networks when applied to strategy opti-
mization. One result for Hopper DART-to-MuJoCo can be found in Figure 9. It can be seen that
Model-based method with LSTM is able to achieve similar performance as CMA-ES.
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Figure 9: Comparison of SO-CMA and SO-MB for Hopper DART-to-MuJoCo transfer.

Model-based method provides more flexibility over CMA-ES and Bayesian optimization. For ex-
ample, if the target environment changes over time, it may be desired to have µ also be time-varying.
However, this would lead to a high dimensional search space, which might require significantly more
samples for CMA-ES or Bayesian Optimization to solve the problem. If we can learn an accurate
enough model from the data, we can use it to generate synthetic data for solving the problem.

However, there are two major drawbacks for Model-based method. The first is that to learn the
dynamics model, we need to have access to the full state of the robot, which can be challenging
or troublesome in the real-world. In contrast, CMA-ES and Bayesian optimization only require the
final return of a rollout. Second, the Model-based method is significantly slower to run than the
other methods due to the frequent training of the LSTM network.

16


	Introduction
	Related Work
	Background
	Methods
	Learning a Family of Policies
	Optimizating Strategy

	Experiments
	Baseline Methods
	Hopper DART to MuJoCo
	Walker2d DART to MuJoCo with latency
	HalfCheetah DART to MuJoCo with delay
	Quadruped robot with actuator modeling error
	Hopper rigid to deformable foot

	Discussions
	Conclusion
	Differences between DART and MuJoCo
	Experiment Details
	Experiment Settings
	Environment Details
	Simulated Reality Gaps
	Policy Training
	Strategy Optimization with CMA-ES

	Alternative Methods for Strategy Optimization
	Bayesian Optimization
	Model-based Optimization


