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ABSTRACT

Bayesian optimization is an effective tool to optimize black-box functions and
popular for hyper-parameter tuning in machine learning. Traditional Bayesian op-
timization methods are based on Gaussian process (GP), relying on a GP-based
surrogate model for sampling points of the function of interest. In this work,
we consider transferring knowledge from related problems to target problem by
learning an initial surrogate model for warm-starting Bayesian optimization. We
propose a neural network-based surrogate model to estimate the function mean
value in GP. Then we design a novel weighted Reptile algorithm with sampling
strategy to learn an initial surrogate model from meta train set. The initial sur-
rogate model is learned to be able to well adapt to new tasks. Extensive experi-
ments show that this warm-starting technique enables us to find better minimizer
or hyper-parameters than traditional GP and previous warm-starting methods.

1 INTRODUCTION

Bayesian optimization (Mockus|, [1975} |Pelikan et al.| |1999; Gustavo Malkomes|, [2018) is an opti-
mization method to find global minimizer of a black-box function without knowing its convexity,
differentiability or continuity. Bayesian optimization iteratively samples new point by an acquisition
function, and uses Gaussian process (Rasmussen, 2003;|Gardner et al.,2014) to estimate a surrogate
model to fit f(x) based on the observed points. When using specific acquisition function, its regret
bound has been proved as O(y/n) (n is the number of sampled points) in |Srinivas et al,| (2012).
Freitas et al.|(2012) proposed a method that uses Bayesian optimization with dividing region, which
successfully accelerates convergence rate. More algorithms have been developed in [Wang et al.
(2014); Kawaguchi et al.| (2015)); |Springenberg et al.|(2016). In application, Bayesian optimization
has been widely applied in machine learning for hyper-parameter tuning (Snoek et al.|[2012).

A machine learning problem is formulated as follows. Given data set D, model M-, \) and loss
function L£(-,-), it aims to find an optimal parameter vector w to minimize £(M(w;\), D). In
practice, model M (w; \) is dependent on hyper-parameter X\, which may significantly influence
the model. Thus choosing appropriate A is a critical procedure of learning a model. For instance,
M(w; A) is a neural network to solve image classification problem, then A can be the number of
hidden units or network layers. Hyper-parameter optimization problem can be formulated as

r)r\linﬁ(/\/l(w; A),D) = m}n L(M(w*; A), D), where w* = A(L(M(w; A), D)), (1)

and A is an algorithm minimizing loss function w.r.t. w. It is challenging to optimize Eq. (I)
since A(L(M(w;A), D)) is a complicated function w.r.t A, which might be non-differentiable. In
real applications, hyper-parameter is commonly tuned by hand. Random search and grid search are
typical methods to find plausible A, but they are time-consuming to find the optimal hyper-parameter
because they sample the hyper-parameter in a brute-force way.

Bayesian optimization is an effective tool to minimize function for global optimization or hyper-
parameter tuning. Bayesian optimization iteratively samples new point and fits the function values
by a surrogate model based on Gaussian process. It starts with several random points without using
any prior knowledge on the task. In applications, we often solve several related machine learning
problems, therefore, one question is that whether we can learn common knowledge from related
problems and transfer them to new problem as an initialization for adaptation, commonly referred
to as warm-starting Bayesian optimization.
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Meta-learning is a promising approach for learning optimizer for fast optimization or initial model
for fast adaptation to novel task using a set of training problems as meta train set (Andrychowicz
et al., 2016} |L1 & Malik, [2017; [Wang et al., 2019; [Ravi & Larochelle, [2017; (Chen et al., 2017; Finn
et al.| 2017} Nichol et al., |2018)). This idea was also applied to Bayesian optimization in past years.
Poloczek et al.| (2016) built a joint statistical model of the collection of related objective functions.
Feurer et al.|(2015) initialized Bayesian optimization based on hand-crafted meta features for hyper-
parameter tuning. Given a new problem, its hyper-parameters are initialized by the most similar
problem in meta train set with distance of hand-crafted meta features. However, it is challenging
to define meta features artificially. |Kim et al.| (2017 learned meta features of problems by deep
metric learning. Wistuba et al.| (2016)); Feurer et al.|(2018]) proposed to transfer surrogate model by
linear combination of surrogate models of problems in meta train set with coefficients determined
by ranking of function values or meta features. However, representation capacity of linear combi-
nation is limited, meaning that if surrogate model of a new problem cannot be represented by linear
combination of surrogate models of meta train problems, then this approach will fail.

In this work, we propose a novel meta-learning approach to learn prior knowledge from meta train
set as a warm-start of unseen related target problem. More specifically, we make the following two
contributions to tackle the challenges in traditional Bayesian optimization.

Firstly, as we know, traditional Bayesian optimization is data-driven and depends on a GP-based
surrogate model fitting function values without learnable parameters, limiting its ability for adapta-
tion to new problems. We propose to use neural network to model the surrogate model (dubbed as
neural surrogate model) to substitute the mean of function values in GP. We further design a ranking
loss for fitting surrogate model to sampled points to make surrogate model insensitive to the scale
of function values.

Secondly, we propose a novel meta-learning algorithm to learn an initial neural surrogate model
from meta train set of related problems, which is taken as initial surrogate model for adaptation to
new problem. To train the initial neural surrogate model, meta-learning methods such as MAM-
L (Finn et al.l |2017) are not applicable because Bayesian optimization is non-differentiable. Thus
we propose a weighted Reptile algorithm inspired by Reptile algorithm (Nichol et al.l [2018)) using
sampling strategy for exploration to train the initial neural surrogate model.

We evaluate our method on tasks including optimization of synthetic functions, hyper-parameter tun-
ing in evolutionary algorithm, neural network and SVM. These experiments show that our method
outperforms traditional Gaussian process and related warm-starting methods in these tasks.

2 PRELIMINARIES

2.1 BAYESIAN OPTIMIZATION

Bayesian optimization is to find a minimizer «* of a function f in a bounded space by iteratively
querying the function at sampled points. At n-th iteration, we first construct a probabilistic model
on D = {x;, f(x;)}, for estimating function values, then use an acquisition function a(z) to
select next point. We estimate f by surrogate model based on Gaussian process (GP). We assume
f() ~ GP(m(-),k(-,-)), where m(-) is mean function and k(-, -) is covariance function or kernel.
Given D = {z;, f(z;)}",, GP is simply a joint Gaussian f(z1.,) ~ N (m(z1.,,), K(z1.,)), where
K(z1.,,) is a n xn covariance matrix with elements of k(z;, =) defined as kernel function measuring
relation between z; and x;. We choose RBF kernel k(z;, ;) = exp(—p|z; — z;||*) in this work.
Then for a new point z,,41, we consider joint distribution of previously and newly sampled points:

f(xlzn) NN m(mlzn) K(mlzn) k(I’nJrl;xl:n) (2)
F(Tnt1) m(n+1) )7\ K(@nt1;200)T  k(Tnt1, Totr) ’
where k(2 11;21.n) = (k(z1,Tpns1), k(T2, Tpnt1), -+, k(Tn, Tpy1)). The posterior f(x,41|D)
satisfies Gaussian distribution (Bishop, [2006) with mean and variance as
,u(xn—i-l |D) = k(xn—i-l; Il:n>TK(x1:n)7lf(xlm)a (3)
02(17”+1 |D) = k(xn-‘rla zn-&-l) - k(gjn—i-l; xl:n)TK(zl:n)ilk(In-‘rl; Il:n)a (4)

which is the surrogate model of GP. Then we use acquisition function a(z) to choose which point
will be evaluated next. Expected improvement (EI) (Mockus, |1975) and upper confidence bound
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Figure 1: General pipeline of learning initial neural surrogate model using weighted Reptile algo-
rithm from meta train set of functions f;,s =1,--- , V.

(UCB) (Srinivas et al., [2012)) have been shown to be efficient. As we aim to find minimizer of f, we
minimize acquisition function:

arg mmin a(x) = arg ma;ln{u(x) — ko(x)} )

to find next point. As we can see, GP estimates function value via given data D based on surrogate
model of Eq. (3) and Eq. {@).

2.2 META-LEARNING METHODS

MAML (Finn et al.,|2017) and Reptile (Nichol et al.l 2018} are two typical meta-learning methods
to obtain an initialization of a model from meta train set to well adapt to new problems. Given
data set D, model M (w) and loss function L(-,-), MAML learns initialization w* by minimizing
L M(w—aVLM(w),D)),D). It implies that MAML learns a w* that can fast adapt by one
gradient descent step. Optimization in MAML uses second-order derivatives of £(w). In our ap-
plication, Bayesian optimization procedures are non-differentiable. Therefore, MAML can not be
applied to our task directly. Reptile is one of first-order meta-learning algorithms. As illustrated in
Alg.[T} to obtain an optimal initialization of model parameters w that can adapt well to new problem
7 by k-steps of optimization denoted by U (w), the parameter w is iteratively updated by vector
(w — w) that enforces w to be close to the updated parameters w of different tasks. In this work, we
borrow idea from Reptile, but design a weighted Reptile algorithm for learning initial network-based
surrogate model.

Algorithm 1 Reptile
1: Initialize w, i.e., the initial parameter

2: fori=1,2,--- ,ndo
3:  Sample task 7
4:  Compute w = UF(w), i.e., k steps optimization by SGD or Adam
5:  Update w <+ w + e(w — w)
6: end for
3  METHOD

We aim to learn to warm-starting Bayesian optimization by substituting mean in Gaussian process
by a network-based surrogate model ¢(w, ). Then we learn an initialization of the neural surrogate
model from a meta train set of related problems using a weighted Reptile algorithm, for adaptation
to new problem. We first present some key definitions.

Neural surrogate model. The surrogate model of Bayesian optimization is Eqs. (3) and (@), where
mean in Eq. (3) is the expectation of predicted function value and variance in Eq. @) represents
uncertainty. Since related problems in meta train set may have related shapes of function surfaces,
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we substitute the mean by a learnable network ¢(w, x) to learn initial surrogate model from meta
train set. We still use the variance in Eq. (@) to measure uncertainty, because the estimation uncer-
tainty should be independent in individual problems. Using network for modeling surrogate model,
we learn an initial network ¢(w*, z) from meta train set that can be adapted to new problem. Our
neural surrogate model is just the combination of ¢(w, ) and variance in Eq. @)

Neural optimization episode. An optimization episode is the iterative process for optimizing the
black-box function. For a problem () with corresponding black-box function f, in (£ + 1)-th step,
we already have surrogate network ¢(w’,z) and observed points set D = {x;, f(x;)}}—,. First,
we update neural surrogate model using L prqnk (Will be discussed in sect. 3.1) and Eq. (), and
obtain ¢(w'T! x) and o?(x). Then we use acquisition function of Eq. to choose next point
Z¢41. After that, we update points set D = D J{z¢+1, f(x+41)}. We iterate the above process to
obtain z, ", = arg ming,  n—1,..np3{f(2n)}. We called this procedure as Neural optimization
episode (NOE), as illustrated in the right part of Fig.[I]

In this work, we aim to learn initial ¢(w, x) to initialize NOE of a new problem given a set of related
problems in meta train set, as illustrated in Fig.[I] Since the dynamics of NOE is complicated and
might be non-differentiable, we propose a weighted Reptile Algorithm to learn the initial ¢(w, x)
from meta train set using reward defined based on xé\gt of problems. This learned initial model
¢(w, x) is utilized to initialize the neural surrogate model of a new problem for its NOE.

3.1 RANKING LOSS FOR LEARNING NEURAL SURROGATE MODEL

We now focus on how to update neural surrogate model given observed points and their function
values in neural optimization episode. As we know, different problems have different ranges of
function values. To make surrogate model insensitive to the specific range of function values, our
neural surrogate model is learned to predict ranking of function values of points instead of exactly
fitting the function values. Describing data sets based on pairwise rankings has been investigated in
a few machine learning approaches (Leite et al.,2012; |Wistuba et al.,[2015; Zheng et al., 2007).

Given points set D = {x;, f(z;)}7,, we update w of neural surrogate model ¢(w, -) by Lgank-
First we sort points in D by { f(x;)};_, in descent order and get D, = {x,(;), f(2,@)) }i—1, Where
r(i),i =1---nis a permutation of 1 - - - n. Then we utilize £gqnk as loss:

n

Lrank(d(w),D) => " Y~ [max(¢(w, z,(;)) — ¢(w, () + 6,0)], (6)

i=1j=1,j>i

L Rank s based on hinge loss, and minimization of Lg.,r W.r.t. w enforces that qﬁ(wmcr(i)) is
strictly larger than ¢(w, z,(;)) with margin of §. Note that final layer of our surrogate model ¢
is a sigmoid function, therefore, the output of surrogate model is constrained in range of (0, 1)
irrespective of different problems. We use gradient descent method to optimize £ rank, please see
appendix for detail. We denote GD(w, Lgank) as the learned surrogate model parameters by
minimizing £ r.nk using gradient descent method. This above process is taken as the updating step
of neural surrogate model in neural optimization episode.

3.2 WEIGHTED REPTILE ALGORITHM FOR LEARNING INITIAL SURROGATE MODEL

We next focus on how to learn an initial neural surrogate model from a set of related problems in
meta train set, taken as the initialization of neural surrogate model for NOE of a new problem. We
propose a weighted Reptile algorithm to train the initial neural surrogate model.

Reptile in Alg. 1 is an effective meta-learning algorithm that can learn a good initialization of model
parameter from a meta train set. Inspired by Reptile, our Weighted Reptile Algorithm samples a
set of initializations of surrogate model parameters for NOE of each problem in the meta train set
for exploration, and these sampled initializations are selected by reward and utilized for parameter
updating with weights defined by rewards.

Reward. Given minimizer x; of i-th problem Q;(x) in meta train set, reward at step ¢ of NOE of

problem Q;(x) is defined as rj = — ||z} ., — ||, where z! ., = argming, -1 . {fi(za)},
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Algorithm 2 Neural optimization episode (NOE).

Require: Maximum iterations N, k > 0, test problem Q with function f, initialized parameter w
Ensure: zp.s, wVT
setw! = w, D = {}
r! = argmin, ¢(w?, x)
y' = f(a'), D=D J{z' y'}
Update o(x) by Eq. (4)
fort=1: Ny —1do
2t = argmin ¢(w', z) — Ko (x)
gl = fH), D =D [ {att], gt 1)
witt = GD(U}t, AC:Rank)
Update o(z) by Eq. 4)
end for
D Tpest = Tpr, tF = argmint{yt}ij\ft
: return Tpegr, WNT
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—_—
= e

—_
[\

fi s the black-box function in problem Q;(x), z,, is sampled point at n-th step,
point up to step ¢.

; 1s the best

t
i,bes

Weighted Reptile Algorithm. In Reptile, as in line 5 of Alg.|l} the parameter w is learned to be
close to updated parameter w by adapting w in different problems. It implicitly assumes that updated
parameter w should be better than initialized w for corresponding problem. In our approach, we aim
to learn initial surrogate model ¢(w, z) from problems in meta train set. Similar to Reptile, we
learn initial network parameter w of ¢(w,x) close to updated parameters after running NOE of
problems in meta train set. To explore diverse paths of NOE, for each i-th problem in meta train set,
we sample a few (M) initial parameters {w? 24:1 ~ N (w,o?) by disturbing currently estimated
w. Then after running N steps of NOE, we obtain points {va s el
{d}fv TP }11,”:1 starting from surrogate models initialized with these sampled parameters. To learn a
good initial parameter w of surrogate model ¢, parameter is updated by w = w + SAw, where

1 and updated parameters

M N
Aw = Z Z(u?fvT’p —w) max(rf-?’pT — N7 0), (7
p=1i=1
and reward V" = _”l'i\,/bTest —zf|?, TZNPT = —||:L£VbTe£ — z}||*. For i-th problem and p-th sampled
N _ N

parameter, weight max(r; 7 — r;'7,0) is always non-negative, and it is non-zero only when the

i,p
sampled parameter w! can produce better reward than the parameter w itself if taking them as initial
surrogate model parameters for running NOE of problem ();. This rule enforces that the parameter
w of our learned initial surrogate model is close to better adapted parameters of different problems
in meta train set. Algorithm [3] presents the pipeline of meta-train process using weighted Reptile

algorithm, and it depends on the NOE as described in Alg.[2].

4 EXPERIMENTS

We evaluate our method for global optimization on synthetic functions set, and hyper-parameters
tuning in evolutionary algorithm, neural network and SVM. In the following paragraphs, our method
based on neural surrogate model and weighted Reptile algorithm will be dubbed as WRA-N. In all
experiments, we set £ = 0.1, § = 0.01, ¢ = 0.1, training epoch Ng = 30, learning rate 5 = 0.1,
number of samples M = 50. We use the mean squared error (MSE) between function values of our
found best point and the global minimizer to measure the performance of optimization. We mainly
compare with TST-R (Wistuba et al.| | 2016) and GP-UCB (Srinivas et al.,[2012). Moreover, we also
compare with meta feature-based method TST-M (Wistuba et al., 2016)) in SVM hyper-parameter
tuning. But for the remaining tasks, we did not compare with it because it is hard to well define
meta-features for these problems. The neural surrogate model is taken as a network with one hidden
layer of 15 hidden units, and both hidden and output layers are with sigmoid nonlinearity.
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Algorithm 3 Meta train by weighted Reptile algorithm.

Require: Number of iterations Ny in NOE, £ > 0, meta train set Q, number of epochs Npg,
learning rate (3, number of samples M, standard deviation o for sampling.
Ensure: w*
1: Randomly initialize w!
2. #Meta-train loop.
3: forl=1: Ngdo

4:  #Surrogate model adaptation loop.

5: fori=1:|Q|do

6: {xi\,[f?;st’ w?{VT} = NOE(NTa K, in wl)

N N- *

T Tt = _llxi,g;zst —z7|]?

8: forp=1: M do

9: set wF = w! + N(0,021)

10: {ap ok ;"P} = NOE(Nr, K, Q;, @)

N- Nr, * ~Nr,

11 Tz‘,pT:_” i,l;sﬁ_xi“Q’gf:wiTp_wl
12: end for
13:  end for

14:  #Updating initial surrogate model parameter.
Q| M N N
15 Wl =w+7 le‘l >y max(r - 7,0)g"
16: end for
17: return w* = wVet!
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Figure 2: MSEs w.r.t. optimization iterations on synthetic functions with a = 37”, m, &,

4.1 SYNTHETIC FUNCTIONS

We first evaluate on Alpine 1 function in Jamil & Yang| (2013) without using absolute value:
f(z) = zsin(z + a) + 0.1z,z € [—10,10]. We set functions with a = 4%, 2T 5T 7T a5 meta
train set, and 18 functions with @ = 2% — 1% € {1,...,21} excluding {4, 6,8} in meta train set
for testing. Figure [2] shows logarithm of MSEs w.r.t. optimization iterations of WRA-N, TST-R and
GP-UCB for a = =7, m, %” and other results are in appendix. Optimization iteration means the it-
eration in optimization episode, e.g., the iterations in NOE of our WRA-N. Since TST-R needs base
models for combination, we sample 20 points from uniform distribution in (—10, 10) to construct
base models. TST-R and GP-UCB start with 3 random points, then run in 10 iterations. Our WRA-N
starts with neural surrogate model learned by meta train set, and runs in 13 iterations, i.e., Np = 13.
Optimization was repeated 20 times for TST-R and GP-UCB. For TST-R, each time is with differ-
ently sampled points for constructing base models. Figure [2] shows curves of average MSEs with
variances in logarithm w.r.t. iterations. WRA-N starts with learned initial surrogate model, therefore
curves are deterministic. WRA-N significantly improves baseline GP-UCB and outperforms TST-R,
because test functions may not be well represented by base functions in TST-R.

4.2 HYPER-PARAMETERS TUNING IN DIFFERENTIAL EVOLUTIONARY ALGORITHM

Differential evolution (DE) (Galletly, |1996; Das & Suganthan|, 2011) is a global optimization
algorithm to minimize function f : RY — R!. DE starts with initial population X° =
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Figure 4: MSEs w.r.t. optimization iterations for hyper-parameters tuning of neural networks on
data sets of Sy, S5, S¢.-

(29,28, 2%, ] € RUNo, and iterates ul+! = a + F(af,, — ) + F(ak,) — a¥,). where
xff( i) (i = 1,2) are randomly chosen from X%, x’gest is the best point in k-th iteration, F is hyper-
parameter. Then we can use binomial crossover and selection methods to create X**+1. We general-
ize this iteration formulation to be

uf ™t = af + F(ag,, — o)) + D(xffu) - xf(z))

using 2 hyper-parameters F' and D, which is a general formulation covering most DE formulations.
F and D influence optimization performance of DE (e.g., finding minimum of functions by DE)
significantly, and thus we can utilize our method to tune these hyper-parameters. We use function set
of CEC 2017 (Awad et al., 2016) for optimization by DE and use our method to find optimal hyper-
parameters. The neural surrogate model is to predict the function values w.r.t. hyper-parameters. We
set function dimension as 10, construct meta train set containing basic functions of f1, fs, fs, f4, and
learn initial surrogate model that can find optimal hyper-parameters well in f5 — f1( for testing. The
formulas of these functions are shown in appendix. For TST-R, we sample 20 points uniformly in
feasible domain and use these points to construct base models. TST-R and GP-UCB start with 3
randomly chosen points, and then proceed sequentially for 20 iterations. Our method starts with
surrogate model learned by meta train set, and proceeds for a total of 23 iterations. The optimization
was repeated 20 times similar to the experiments on synthetic function set. Figure [3] shows results
on f5 and fg, and results on the other functions are shown in appendix. Our method produces best
hyper-parameter tuning performance. Note that the functions in meta train set are in different scales
of function values. For TST-R, we follow its original implementation by normalizing point values of
base models to normal distribution. However, in our approach, the neural surrogate model is updated
using ranking-based loss, therefore it is not sensitive to the different scales of functions.

4.3 HYPER-PARAMETERS TUNING IN NEURAL NETWORK

We will optimize hyper-parameters of neural networks for image classification. We use EMNIST
data set (Cohen et al.l 2017), i.e., an extension of MNIST to handwritten letters. There are 62
classes of [0-9], [a-z] and [A-Z], and several classes that are similar between uppercase and low-
ercase are merged, and finally we have 47 classes in data set. The network is with one hidden
layer, sigmoid as activation function and softmax for classification, followed by cross-entropy loss.
We first randomly sample 10 classes in 3 times from EMNIST with 1000 images for each class,



Under review as a conference paper at ICLR 2020

‘—WRA-N —TST-R—GP-UCB TST.M‘ —=-=WRA-N (1 hidden layer with 15 units)
| O =7 [=-=Reptile (1 hidden layer with 15 units)

hm of MSE
- T Y

Logarithm of MSE

VS N
Logarithm of MSE

0 5 10 15 20 2 0 0 2 4 6 3 0 12 14 0 B 4 6 3 0 12 14
Iterations Iterations Iterations

Figure 5: MSEs w.r.t. iterations for Figure 6: Ablation study.
hyper-parameters tuning of SVMs.

and construct sets of S;,7 = 1,2,3 as meta train sets. From the remaining classes, we con-
struct test sets by randomly sampling 10 classes with 1000 images for each class in 8 times and
produce Sy — S11. We aim to tune the number of hidden units Nj, and learning rate I of S-
GD as hyper-parameters. The candidate sets of Ny, and Ir are respectively {10, 15, -+ ,200} and
{0.001,0.002,---,0.01,0.02,0.03,--- ,0.1,0.2,0.3,--- ,1,2,3,--- ,10}. For this task, training
accuracy is higher with increase of number of hidden units because more units produce higher ca-
pacity but may over-fit training data. Thus we define a criterion to balance accuracy (denoted by
AC) and model capacity determined by N}, using ERR = (N}, + ¢)/AC where c is the trade-off co-
efficient and set to 1000. Then neural surrogate model is to predict ERR w.r.t. to hyper-parameters.
Note that we can also use other criterion for learning hyper-parameters. Figure [4]shows MSEs (be-
tween ERRs of best hyper-parameters and estimated hyper-parameters) w.r.t. optimization iterations
by different methods. We can observe that our method performs best for this task.

4.4 HYPER-PARAMETERS TUNING IN SVM

Support vector machine (SVM) dataset (Wistuba et al., |2016) consists of 50 classification datasets
randomly chosen from UCI repository. The SVMs use Gaussian kernel with hyper-parameters of
trade-off parameter C' and width v of Gaussian kernel. The candidate hyper-parameters are C' €
{27%,...,25} and v € {107%,1073,1072,0.05,0.1,0.5, 1, 2,5, 10, 20,50, 102, 103}. The neural
surrogate model is to predict misclassification rate w.r.t. to hyper-parameters C, . In experiments,
we randomly choose 5 datasets as meta train sets, and the others as test sets. All the experiments are
performed in 10 times. Figure [5|shows the average MSEs w.r.t. optimization iterations by different
methods. Here we compare our WRA-N with TST-M (Wistuba et al., 2016), which also relies on
linear combination of surrogate models of meta train problems but using meta features. We can
see that our WRA-N performs better than both TST-R and TST-M. Both our WRA-N and TST-R
perform significantly better than baseline GP-UCB.

4.5 ABLATION STUDY

We now justify effectiveness of weighted Reptile algorithm (WRA) and different network structures
of surrogate model ¢. All following networks are evaluated on synthetic set in section 4.1. In
Fig. [0] (left), we compare our WRA with traditional Reptile algorithm without using sampling and
weighting strategy. The average MSE curves show that our WRA performs better than Reptile. We
further compare different structures of surrogate models including networks with one hidden layer
of 10, 15, 25 units and 2 hidden layers with 15 units. We observe that they perform similarly for
networks with one hidden layer, and adding more layers does not apparently improve performance.

5 CONCLUSION

We have proposed a novel neural surrogate model and a weighted Reptile algorithm to learn an
initial neural surrogate model for warm-starting Bayesian optimization. Extensive experiments on
synthetic functions optimization and hyper-parameters tuning in multiple tasks have shown promis-
ing performance. In the future, we are interested to apply it to more global optimization or hyper-
parameters tuning tasks, and analyze its theoretical properties.
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A APPENDIX

In the appendix, we will first introduce how to optimize the ranking loss in A.1. Second, we will
show the functions in CEC 2017 for DE hyper-parameters tuning in A.2. Third, in A.3, we will show
more experimental results for synthetic function optimization, hyper-parameters tuning in DE and
neural network. Fourth, we will show example to illustrate the neural surrogate model optimized by
minimizing £ pq.x in A.4. Fifth, we will show the training curves of our weighted Reptile algorithm
for experiments in A.5. Finally, we will discuss on the relation between neural surrogate model and
Gaussian process in A.6.

A.1 GRADIENT METHOD FOR MINIMIZING L Rank

We first recall the definition of Lg4,k in section 3.1. Given points set D = {x;, f(x;)}7,, we
sort points in D by { f(z;)}7—, in descent order and get Ds = {3, f(Tr(3)) }iey, Where 7(i), i =
1---nis a permutation of 1 ---n. Then the LR, is defined as

n n
Lrank(6(w),D) => " Y~ ([$(w, z,(;)) — d(w, i) + 0]4)7,
i=1 j=1,j>i
where [g]+ = max(g,0). Then GD(w, LRrank) is a gradient based method that iteratively runs the
following procedure. Given each pair of sampled points (z,(;), T,(;)), we update parameter w of
surrogate model by

W =w' = plop(w’, z.)) = dwi, zr)) + 54 (Vo(wp, 2, 5)) — Vo(w]', 2.3:))),
where 7 is step size.

10
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A.2 FUNCTIONS IN CEC 2017 FOR DE HYPER-PARAMETERS TUNING

The ten functions are listed as follows.

fi(z) —$1+106Z% fa(x Z|$z|l+1

H
fax) =Dz + 05Zx (0.52%-)4

Aot -
falw) =, (100(z;? = @i1)? + (a5 — 1)?)

2;1
fs(x) = Z( 2 — 10cos(2mx;) + 10)
fo(x) (93171’2)+g($2,5€3)+"'+9($H7$1)

H

fr(x) = min(Z( 2 dH + SZ )+ 10(H — Zcos (27Z;))

i=1 i=1

fs(z) = Z(zf — 10cos(27z;) + 10)

fo(z) = sin?(mw) 2[1 + 10sin? (rw; + 1)] + (wg — 1)2[1 + sin®(2mw )]

H—
;
fro(z) = 418.9829H — Z
=1
sin (\/ 24+y2)—0.5

g(x,y) in fg is defined as g(z,y) = 0.5+ 170,001 (225 7)) *

2016)) for details on parameters.

Please refer to CEC 2017 (Awad et al.}

A.3 ADDITIONAL RESULTS IN EXPERIMENTS

Figure [7| shows the function optimization results on 15 remaining test functions in synthetic func-
tion set. Figure [§]shows curves of average MSEs w.r.t. different optimization iterations for tuning
hyper-parameters of number of hidden units and learning rate of SGD on EMNIST data sets of
S7, 83, Sy, S10, S11. Figure[Qshows these curves for tuning hyper-parameters in DE on functions of
f7 — f10in CEC 2017.

A.4 AN ILLUSTRATION OF NEURAL SURROGATE MODEL BY MINIMIZING L Rank

Figure [I0]shows the neural surrogate model by minimizing £ gy, Working on DE hyper-parameters
tuning. In this task, we use neural surrogate model to predict the mapping from hyper-parameters
D, F to function values of points. Figure [I0a) shows the surrogate model learned by neural net-
work. Figure[I0(b) shows the real function values w.r.t. hyper parameters. Figure[I0fc) shows the
logarithm of real function values w.r.t. hyper-parameters. Then we see that the neural surrogate
model is within range of [0, 1] and it has similar local minimum with real function (by comparing
Figs.[I0[a) and (c)), but it is more smooth than real function surface. We further illustrate the distri-
butions using histograms of function values of real function and neural surrogate model. As shown
in Fig.[I0](d), x-axis is the percentage (i.e. ratio) of maximal function value, y-axis is the percentage
of number of data with function values falling in these ratios to maximal function values. We see
that, for real function, most values are less than 0.25 of maximum function value, while our neural
surrogate model is more uniform.

11
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Figure 7: MSEs (in logarithm) w.r.t. different optimization iterations on 15 remaining test functions

in synthetic function set.
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Figure 8: MSEs (in logarithm) w.r.t. different optimization iterations for tuning number of hidden
units and learning rate on EMNIST data sets of S7, Sg, So, S10, S11-

A.5 THE TRAINING CURVES OF OUR WEIGHTED REPTILE ALGORITHM

In the four experiments in section 4, we use our weighted Reptile algorithm to learn the initial neural
surrogate model. We now show the training curves when training initial surrogate model from meta
train set. In Fig. we show the curves of total rewards of T’zN T on all problems in meta train set
for four experiments. They show that weighted Reptile algorithm does increase the reward when
training the initial surrogate model with increase of training epochs.
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Figure 9: MSEs (in logarithm) w.r.t. different optimization iterations for tuning hyper-parameters of
DE on f7 — f19 of CEC 2017.

» Neural surrogate model g9’ Real function g 1
g 1 g 10 E M Il Neural surrogate model
= .
_5 05 _5 5 c 08 [JReal function |
S 0 S 0 =
206 1
o
Q) =
= 0.4 1
., Logarithm of real function o
E] 50
s 100 %0.2 I I 1
s 0 3]
2 =
2100 S0 1 i
2 1 0.25 0.5 0.75 1
F Percentage of maximum function value
(d)

Figure 10: An Illustration of neural surrogate model for hyper-parameter tuning of DE.
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A.6 RELATION BETWEEN NEURAL SURROGATE MODEL AND GAUSSIAN PROCESS

Neal| (2012) has proved that a network with random weights and one hidden layer converges to a
Gaussian process when the number of hidden units increases. In this work, we directly model the
surrogate model using neural network by substituting the formulation of function value prediction in
Gaussian process. Different to Gaussian process, our network is with finite number of hidden units
and learnable parameters, facilitating effective model learning for the task of learning to initialize
surrogate model from a meta train set.
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