
Under review as a conference paper at ICLR 2020

REVISITING GRADIENT EPISODIC MEMORY FOR CON-
TINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient Episodic Memory (GEM) is an effective model for continual learning,
where each gradient update for the current task is formulated as a quadratic pro-
gram problem with inequality constraints that alleviate catastrophic forgetting of
previous tasks. However, practical use of GEM is impeded by several limitations:
(1) the data examples stored in the episodic memory may not be representative of
past tasks; (2) the inequality constraints appear to be rather restrictive for compet-
ing or conflicting tasks; (3) the inequality constraints can only avoid catastrophic
forgetting but can not assure positive backward transfer. To address these issues,
in this paper we aim at improving the original GEM model via three handy tech-
niques without extra computational cost. Experiments on MNIST Permutations
and incremental CIFAR100 datasets demonstrate that our techniques enhance the
performance of GEM remarkably. On CIFAR100 the average accuracy is im-
proved from 66.48% to 68.76%, along with the backward (knowledge) transfer
growing from 1.38% to 4.03%.

1 INTRODUCTION

Catastrophic forgetting (McCloskey & Cohen, 1989) is a common phenomenon in deep learning
that the model performance over past tasks can be harmed by the training process of a current task
when we employ one single neural network to learn consecutive tasks. Continual learning (Ring,
1994), also known as lifelong learning (Thrun, 1994), is a specific research field in AI that focuses
on avoiding or alleviating catastrophic forgetting. It is well known that humans and large primates
can continually learn new skills and accumulate knowledge throughout their lifetime (Fagot & Cook,
2006).

Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017) is a significant method for contin-
ual learning. The basic idea is to modify each gradient of the current task such that the losses at the
memories (data examples) from previously solved tasks will not increase, hence allowing positive
backward knowledge transfer. The problem is formulated as a Quadratic Program with inequality
constraints, and then solving its dual problem provides an efficient computation for a small num-
ber of dual variables. GEM outperforms two state-of-the-art methods, Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017) and iCARL (Rebuffi et al., 2017) on variants of the MNIST and
CIFAR100 datasets.

Despite the elegance of its mathematical formulation and the computational efficiency in solving the
dual problem, the GEM model has following drawbacks for practical use.

1. The episodic memory is simply populated with the last m = M/T examples from each task in
their current implementation, where M is the total budget size of memory locations for totally T
tasks. The authors of GEM mentioned that better memory update strategies could be employed
to obtain a representative set of examples for past tasks, such as building a coreset per task (Lucic
et al., 2018).

2. The inequality constraints of gradients appear to be quite restrictive, requiring that the gradient
update can not increase any loss of all previously solved tasks. When two tasks are competing or
conflicting in the gradient update directions, especially with a large number of past tasks, these
constraints have to be violated and the feasible solution might be null.

1



Under review as a conference paper at ICLR 2020

3. The gradient constraints only assure to avoid catastrophic forgetting, but might not promote pos-
itive backward knowledge transfer in some scenarios. For instance, we may obtain a gradient
vector orthogonal to all gradients of previous tasks in the constrained optimization problem. In
this case, GEM is greedy in minimizing the loss of the current task, overlooking the need of back-
ward transfer to previous tasks. An ideal model for continual learning should consider a better
trade-off between optimizing performance of the current task and backward transfer to previously
solved tasks.

To address these issues, in this paper we propose three techniques that improve the performance of
GEM. These techniques come from successful practice in Support Vector Machines (SVMs) and
deep learning approaches. In concrete, we use the notion of margins to select representative data
points as episodic memories. We also leverage slack variables to allow violations of the constraints,
and aggressively encourage backward knowledge transfer to previous tasks. Experiments on MNIST
and CIFAR100 datasets corroborate the improvements of our techniques over the original GEM
model. Also our methods increase little overhead in computational efforts.

The paper is organized as follows. In Section 2, we first survey several recent methods on continual
learning and explain why we focus on improving GEM. Section 3 offers a brief review of the GEM
algorithm. In Section 4, we elaborate our three improvements and discuss the underlying motiva-
tions. Section 5 presents the experimental results and comparison analysis, and Section 6 concludes
the paper.

2 RELATED WORK

According to Xu & Zhu (2018), recent methods for continual learning can be roughly classified into
two large categories, distinguished by whether the network architecture changes through a contin-
uum of tasks.

The first category attempts to modify the network architecture to alleviate catastrophic forgetting.
Fernando et al. (2017) proposed a neural network model called PathNet, in which there are ten or
twenty modules in each layer and for one task only three or four modules are dynamically chosen
in each layer using an evolutionary approach. Progressive neural networks (Rusu et al., 2016) aims
at accommodate the new coming task by dynamically expand the architecture with a fixed size of
nodes or layers, leading to an extremely large network structure with high redundancy. In Dynami-
cally Expandable Network (DEN) (Yoon et al., 2017) this issue is slightly alleviated by employing
group sparsity regularization when expanding the networks. However many hyperparameters are
involved, including various regularization and thresholds, and careful tuning is challenging. Xu &
Zhu (2018) proposed Reinforced Continual Learning (RCL) approach that searches for the best neu-
ral architecture for each coming task via reinforcement learning strategies. Like other expandable
networks, this approach still suffers from higher model complexity than non-expandable networks.
Also reducing its training time is a major concern.

Another category maintain a fixed network architecture with large capacity through learning. Oquab
et al. (2014) proposed a weight transfer method by freezing early layers while cloning and fine-
tuning later layers on the new task. In “synaptic” memory methods (Kirkpatrick et al., 2017; Zenke
et al., 2017), learning rates are adjusted to minimize updates in weights important for previous
tasks. Lee et al. (2017) proposed to incrementally match the moment of the posterior distribution
of the neural network trained on the first and the second task, respectively. In Zeng et al. (2018) an
Orthogonal Weights Modification (OWM) was proposed to ensure that new learning processes will
not interfere with previously learned tasks, but can not enable backward knowledge transfer. In Shin
et al. (2017); Kemker & Kanan (2018) previously acquired knowledge can be acquired by replaying
of pseudo-data generated by Generative Adversarial Networks (GANs) or generative autoencoders,
without revisiting actual past data for the coming task. Several “episodic” memory approaches (Jung
et al., 2016; Li & Hoiem, 2016; Triki et al., 2017; Rebuffi et al., 2017) aim at storing and replaying
examples from past tasks to keep predictions invariant via distillation (Hinton et al., 2015). GEM
(Lopez-Paz & Ranzato, 2017) belongs to this class of episodic memory approaches, but unlike prior
work, allows for backward transfer.

2



Under review as a conference paper at ICLR 2020

Comparing to these recent approaches on continual learning, GEM is relatively lightweight, compu-
tationally efficient and capable of achieving high accuracies. However, there is still room to improve
GEM with respect to the limitations stated in Section 1.

3 A BRIEF REVIEW OF GEM

Most of the literature on continual learning (Rusu et al., 2016; Fernando et al., 2017; Kirkpatrick
et al., 2017; Rebuffi et al., 2017) focused on a traditional setting: (1) the number of tasks is small; (2)
the number of examples per task is large; (3) the learner allows for several passes over the examples
per task; (4) the average performance across all tasks serves as the only metric. In contrast, a “more
human-like” setting was considered in GEM: (1) the number of tasks is large; (2) the number of
training examples is small for each task; (3) the learner observes the examples of per task only once;
(4) knowledge transfer in backward and forward directions is assessed. Therefore following this
new setting, the learner will observe the continuum of data in a manner of example by example

(x1, t1, y1), . . . , (xi, ti, yi), . . . , (xn, tn, yn),

where each triplet (xi, ti, yi) contains a input vector, a task index, and a target vector. Note that any
order on the tasks can be allowed.

The optimizing problem of GEM (Lopez-Paz & Ranzato, 2017) is

min
w

1

2
‖g − w‖22

s.t. 〈w, gk〉 ≥ 0, ∀k < t,
(1)

where g is the gradient vector calculated on the batch data of the current task, and gk here is the
gradient on the episodic memory Mk of the past task k. Note that the episodic memory Mk stores
a subset of the observed examples from task k. If the gradient update g of the current batch fulfills
all the constraints, the learner directly uses it to update like the usual gradient descent method.
Otherwise, we should find a projection of g in L2-norm distance to satisfy any constraint related
each previous task, and then use the solution w to update the network weights.

We obtain a standard form of Quadratic Program (QP) by expanding the squared objective and
discarding the constant term gT g:

min
w

1

2
wTw − gTw

s.t. Gw ≥ 0,
(2)

where G = (g1, . . . , gt−1). The primal QP problem can be translated into its dual problem (Dorn,
1960), which is the final optimizing problem:

min
α

1

2
αTGGTα + (Gg)Tα

s.t. α ≥ 0,
(3)

We can recover the projected gradient update as w∗ = GTα∗ + g where α∗ is the solution to the
dual problem. Note that solving the dual problem is computationally efficient since there are only
t− 1 variables in α, much smaller than the number of weights in a neural network.

4 OUR IMPROVEMENTS

We propose three improvements to GEM: a technique to choose examples which can represent the
past tasks better — support examples; a technique to tolerant some slight violation in gradient con-
straints on past tasks — soft gradient constraints; a technique to aggressively encourage gradient
descend over previous tasks — positive backward transfer.

4.1 SUPPORT EXAMPLES

The first improvement is inspired from the idea of margins in Support Vector Machines (SVMs)
(Williams, 2003). Due to the KKT theorem, a small set of support vectors obtained from a Quadratic

3



Under review as a conference paper at ICLR 2020

Program determines the decision boundary of SVM for binary classification. In the context of con-
tinual learning, the decision is crucial to identify what samples should be chosen in the episodic
memory, since we can only store a limited budget of representative samples from previous task. In
SVMs support vectors arise naturally as a solution from the QP problem of SVM; however such
optimization problem does not apply to neural networks. In GEM a simple method is adopted, that
is, the last m examples of task t are stored into the episodic memory Mt. Also the examples are
shuffled randomly, which means that the storage is essentially random and ad hoc.

In this work, we propose an idea of choosing samples based on the notion of margins. We assume
that the problem to solve here is multi-class classification, so the prediction from the network’s
forward propagation can be available. Suppose the output prediction h(x, t, y) on a triplet example
(x, t, y) is computed through a softmax activation function, with value falling in the range [0, 1].
The following gives the definition of margins:

margin := h(x, t, y)−max
y′ 6=y

h(x, t, y′). (4)

When the classifier h makes a correct prediction, the margin is positive. Otherwise when h misclas-
sifies the example, we have margin ≤ 0. A margin value indicates the confidence of the prediction
of an triplet example: larger the margin is in magnitude, more confidence we have in the prediction.

In order to alleviate catastrophic forgetting, the most important thing is to ensure that the examples of
past tasks can be correctly classified to retain the prediction performance. Usually we have a much
smaller budget for the episodic memory than the number of examples per task. For instance, in
experiment on CIFAR100, the number of total samples is 2500 per task, while the episodic memory
is 256 per task. On the one hand, we can not afford to assign the memory to the examples whose
margins are smaller than 0, which means they could not be classified correctly in the past task or even
these examples are outliers. On the other hand, for the examples whose margins are relatively large,
indicating that the network can classify them with a strong confidence, these example should not
be put into the memory either. We define the Support Examples as those examples being classified
correctly but with a limited confidence. In experiments we simply use a confidence interval to
select the support examples (we specify the interval as hyperparameters per task). In this way,
the episodic memory can be used more efficiently, and at the same time, we argue that the chosen
support examples can represent the past tasks better.

4.2 SOFT GRADIENT CONSTRAINTS

This idea is inspired by the soft-margin technique in SVMs, which is a compromise to some wrongly
classified examples by linear classifiers. In continual learning, the difficulty of optimizing the gra-
dient to be consistent to every gradient direction of past tasks is increasing along the process of
learning new tasks. The constraints in (2) mean that we want the optimized gradient must have a
similar direction with all of the gradients of past tasks, which is too restrictive, especially when the
number of tasks is large or the tasks are competing or conflicting.

So we propose the following soft gradient constraints:

min
w

1

2
wTw − gTw + CΣt−1k=1ξk,

s.t. Gw ≥ −ξ, ξk ≥ 0 ∀k < t,
(5)

ξ = (ξ1, . . . , ξt−1) is the slack vector, C is the trade-off parameter (the bigger, the stricter for w to
satisfy the constraints). Once any original constraint in Gw ≥ 0 is violated, we impose a penalty
in the objective. With the KKT theorem, we have the following dual problem as α is the Lagrange
multiplier vector:

min
α

1

2
αTGGTα + (Gg)Tα,

s.t. 0 ≤ α ≤ C1n.
(6)

Like in SVMs, the hyperparameter C needs to be tuned. For the first several tasks, it is relatively
easy to make the gradient update completely satisfy the constraints on all the past tasks. When the
number of past tasks is increasing, it is much more difficult to have the similar direction to all the
past tasks’ gradient simultaneously. So we need to loose the constraint to some extent.

4



Under review as a conference paper at ICLR 2020

Here, we propose a method just like the learning rate decay in neural network training: we can
initialize C to a relatively big value, which should ensure a very strict constraint for first several
tasks, while let C decay along the process of training. In other words, after finishing training a
certain number of tasks, we set C smaller to tolerant more freedoms in constraint violations. This
trick will maintain a good performance, and at the same time make the model more robust.

The authors of GEM claimed that adding a small offset γ ≥ 0 to the Lagrangian multipliers in (2)
can enable the network to perform better. However, this is an ad-hoc practice and lacks rationality: it
is not faithfully follow their mathematical formulation. In our method, we can just avoid this ad-hoc
practice and guarantee that just use the original constraints with slack variables will produce a good
performance. Our soft constraints offer a better explanation to this issue.

4.2.1 POSITIVE BACKWARD TRANSFER

GEM assumes that if the inner product of the proposed gradient update and the gradients of past
tasks is no less than zero, the current update will not cause catastrophic forgetting. Some extreme
scenarios might occur that the found gradient projection is orthogonal to all the gradients of previous
tasks, indicating that there is no contribution to backward transfer. Further, the non-negative con-
straints in inner products only require the angles between two gradient vectors lying in the interval
[−90◦, 90◦], totally ignoring the cosine similarity in magnitude.

In our opinion, we should specify the magnitude of the inner products of two gradient vectors for
enhancing positive backward transfer to previously solved tasks. We can modify (2) to impose
magnitude penalties:

min
w

1

2
‖g − w‖22

s.t. 〈w, gk〉 ≥ ε‖w‖‖gk‖, ∀ k < t, ε ≥ 0.

This new constraint imposes cosine similarity actually, so it can represent the angle and the magni-
tude simultaneously. Because we do not know ‖w‖ in advance, we can use ‖g‖ as a proxy since w
is the projection of g:

min
w

1

2
‖g − w‖22

s.t. 〈w, gk〉 ≥ ε‖g‖‖gk‖, ∀ k < t, ε ≥ 0.
(7)

Similarly we get the final dual optimizing problem, which includes soft gradient constraints.

min
α

1

2
αTGGTα + (Gg + ε‖g‖‖gk‖1n)Tα,

s.t. 0 ≤ α ≤ C1n.
(8)

After we solve α, which has the variables equal to the number of past tasks, we can use w =
GTα + g to get the modified gradient and use it to update current network.

Here ε is a hyperparameter. Similarly, the first several tasks are easier for network to enable positive
backward transfer. And when the number of tasks increase, we can reuse the idea of ‘decay’ to
weaken the magnitude of inner-product similarity, approaching zero gradually.

5 EXPERIMENTS

5.1 DATASETS AND SETTINGS

We do experiments on two dataset same to GEM (Lopez-Paz & Ranzato, 2017): MNIST Permuta-
tions (Kirkpatrick et al., 2017) and Incremental CIFAR100 (Rebuffi et al., 2017). Besides, we also
do experiment on MNIST Mix (Xu & Zhu, 2018),

1. The MNIST Permutations dataset is derived from the famous dataset on handwritten digits (Le-
Cun et al., 1998), which randomly generates different pattern of pixel permutation for each task
to exchange the position of the original images of MNIST.

5



Under review as a conference paper at ICLR 2020

2. The Incremental CIFAR100 dataset is derived from CIFAR100 (Krizhevsky, 2009), which aver-
agely devides the whole classes in CIFAR100 into T parts, and T here is the number of tasks. So
in each task, there is 100/T different classes that are not included in other tasks.

3. The MNIST Mix dataset is also derived from MNIST, which has 10 MNIST Permutations
(P1, P2, ..., P10) and 10 MNIST Rotations (R1, R2, ..., R10) (Lopez-Paz & Ranzato, 2017),
whose image is rotated by a fixed angle from original image of MNIST. The consecutive tasks
are arranged in the order P1, R1, P2, R2, ..., P10, R10.

To compare our method to the original GEM, we use the same settings on datasets. The number of
tasks is set as T = 20. On the MNIST Permutations dataset there are 1000 examples per task and
On the Incremental CIFAR100 dataset there are 2500 examples per task. In the basic comparison,
the size of the total budget on episodic memory is set as 5120, which means that we can store 256
examples for each task.

The network architectures are also same to the experiments of the original GEM: for MNIST Per-
mutations, we use fully-connected neural networks with two hidden layers of 100 ReLU units; for
Incremental CIFAR100, we use a smaller version of ResNet18 (He et al., 2016), which has three
times less feature maps for each layer than the orginal ResNet18 and has a final linear classifier for
each task.

5.2 COMPETING METHODS

To solve the optimizing problem of soft gradient constraint, we have to change the toolbox in original
code of GEM as cvxpy. So we conduct experiments both on our run of the original GEM and the
GEM with the cvxpy toolbox.

Besides, we compare with other several methods:

1. Single, a single predictor for all the tasks.

2. Multimodal, a multimodal predictor, whose architecture is same to “single” and has a dedicated
input layer for each task (only tested on MNIST Permutations dataset).

3. Independent, a network that there is a specific independent predictor for each task which has the
same architecture as “single” while the number of hidden units are T times less than “single”.

4. Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017).

5. iCARL (Rebuffi et al., 2017), the class-incremental learner uses episodic memory and a nearest-
exemplar algorithm (tested only on Incremental CIFAR100).

These compared methods are same to the settings in (Lopez-Paz & Ranzato, 2017). In Basic Com-
parison, we report the results reported in original paper of GEM, as well as our run of the original
GEM, the GEM using cvxpy toolbox and our improved method. In other experiments, the method
GEM is always the version of using cvxpy.

5.3 EVALUATION METRICS

The evaluations we use are average accuracy and positive backward transfer. The backward transfer
can be calculated as:

Backward Transfer :=
1

T − 1

T−1∑
i=1

(ATi −Aii)

where Aij is the accuracy of task j after learning of task i.

5.4 BASIC COMPARISON

Table 1 shows the basic comparison results. To be succinct, MNIST Permutation is denoted by
MNIST P and MNIST Mix is denoted by MNIST M. We can see that our method can perform
better both on average accuracy and positive backward transfer than the original GEM on all three
datasets. For example on CIFAR100, our method improves from 66.48% (our run of GEM) to

6



Under review as a conference paper at ICLR 2020

Table 1: Results in basic comparison.

Metrics single independent multimodal EWC

MNIST P
Average Accuracy 0.5742 0.3700 0.7158 0.6185
Backward Transfer -0.2220 0.0000 -0.0683 -0.1653

Metrics GEM GEM (rerun) GEM-cvx Ours

MNIST P
Average Accuracy 0.8260 0.8232 0.8213 0.8331
Backward Transfer 0.0247 0.0386 0.0230 0.0409

Metrics single independent iCARL EWC

CIFAR100
Average Accuracy 0.4666 0.4415 0.5359 0.4984
Backward Transfer -0.1240 0.0000 -0.0405 -0.0799

Metrics GEM GEM (rerun) GEM-cvx Ours

CIFAR100
Average Accuracy 0.6783 0.6648 0.6703 0.6876
Backward Transfer 0.0042 0.0138 0.0147 0.0403

Metrics single independent multimodal EWC

MNIST M
Average Accuracy 0.7206 0.5275 0.7656 0.7285
Backward Transfer -0.1107 0.0000 -0.0194 -0.0885

Metrics GEM (our run) GEM-cvx Ours

MNIST M
Average Accuracy 0.8521 0.8446 0.8537
Backward Transfer 0.0246 0.0129 0.0237

Table 2: Hyperparameters of basic comparison

Support examples Soft gradient constraint Positive backward transfer
MNIST P [0.1, 0.8] ∞ & ∗1 per 20 tasks 0.2 & ∗0.8 per 3 tasks
CIFAR100 [0.2, 0.8] 5 & ∗0.6 per 3 tasks 0.2 & ∗0.8 per 3 tasks
MNIST M [0.1, 0.8] ∞ & ∗1 per 20 tasks 0.25 & ∗0.8 per 5 tasks

68.76%, with backward transfer growing from 1.38% to 4.03%. Table 2 lists the hyperparamters
used in experiments.

Figure 1 reports the evolution curves of average accuracy for all tasks and the accuracy of the first
task as well. The details of numerical values are given in Appendix A. The evolution of average
accuracy of all tasks indicates the comprehensive performance of the method. Our method perform
best comparing to all other methods on average accuracies. Also on all three datasets, our method
keeps a relatively stable performance on the first task and always has improvements through the
whole learning process. We think the performance evolution of the first task only provide an small
aspect of the comparison; improvements of average accuracy could be more important.

5.5 PERFORMANCE ON DIFFERENT MEMORIES

We also do some experiments on different budget of memories for the three datasets, with results
shown in Table 3. We can see that larger budgets of memories can enhance the accuracy, and
our method improves the original GEM on all settings. Table 4 shows the hyperprameters for our
method.

5.6 ABLATION STUDY

We conduct ablation study to figure out the contribution of each improvements, with results shown
in Figure 2. The details of numerical results are reported in Appendix B.

7



Under review as a conference paper at ICLR 2020

(a) Average accuracy on CIFAR100 (b) Average accuracy on MNIST P

(c) Average accuracy on MNIST M (d) Accuracy of the first task on CIFAR100

(e) Accuracy of the first task on MNIST P (f) Accuracy of the first task on MNIST M

Figure 1: Evolution curves along with more tasks.

Table 3: Average accuracy in different memories

Memories GEM-cvx Ours

MNIST P
256 0.8213 0.8351
128 0.8046 0.8096
64 0.7636 0.7762

CIFAR100
256 0.6703 0.6876
128 0.6489 0.6556
64 0.6193 0.6248

MNIST M
256 0.8446 0.8537
128 0.8165 0.8309
64 0.8072 0.8169

We can see that using the positive backward transfer separately can give an improvement, but the
support examples and soft gradient constraint can not independently improve the performance. How-
ever, support examples can give an improvement combined with soft gradient constraint or positive
backward transfer, while soft gradient constraint can probably produce a further promotion with the
combination to the other two methods. So the combination of support examples and positive back-
ward transfer can provide stable improvements, whereas the contribution of soft gradient constraint
depends on the dataset.

8



Under review as a conference paper at ICLR 2020

Table 4: Hyperparameters of different memories

Memories Support examples Soft gradient constraint Positive backward transfer

MNIST P
256 [0.1, 0.8] ∞ & ∗1 per 20 tasks 0.2 & ∗0.8 per 3 tasks
128 [0.15, 0.89] ∞ & ∗1 per 20 tasks 0.2 & ∗0.8 per 3 tasks
64 [0.15, 0.85] ∞ & ∗1 per 20 tasks 0.2 & ∗0.8 per 3 tasks

CIFAR100
256 [0.2, 0.8] 5 & ∗0.6 per 3 tasks 0.2 & ∗0.8 per 3 tasks
128 [0.2, 0.8] 5 & ∗0.6 per 3 tasks 0.2 & ∗0.8 per 3 tasks
64 [0.2, 0.8] 10 & ∗0.6 per 3 tasks 0.2 & ∗0.8 per 3 tasks

MNIST M
256 [0.1, 0.8] ∞ & ∗1 per 20 tasks 0.25 & ∗0.8 per 5 tasks
128 [0.1, 0.8] ∞ & ∗1 per 20 tasks 0.25 & ∗0.8 per 5 tasks
64 [0.15, 0.9] ∞ & ∗1 per 20 tasks 0.25 & ∗0.8 per 5 tasks

(a) CIFAR100 (b) MNIST

Figure 2: Left: Ablation study on CIFAR100. Right: Ablation study on MNIST.

6 CONCLUSION

We notice the fact of the precious space of memories in continual learning and the incremental
difficulty through progressive learning. The GEM model is relatively lightweight, computationally
fast and robust to yield high accuracy, so we propose three techniques to improve GEM. Specifically,
we propose support examples to make good use of memories, formulate soft gradient constraints to
accommodate competing tasks, present cosine similarity to encourage positive backward transfer
over previously solved tasks. From experiments we can see the performance improvements of our
techniques over the original GEM, obtaining better average accuracy and higher backward transfer.
Also our method increase little computational burdens, with the cost of several hyper-parameters
needing to tune. Therefore we argue that our improvements can promote GEM to be applied to
more practical applications.

REFERENCES

William S Dorn. Duality in quadratic programming. Quarterly of Applied Mathematics, 52(5):
155–162, 1960.

Joël Fagot and Robert G. Cook. Evidence for large long-term memory capacities in baboons and
pigeons and its implications for learning and the evolution of cognition. Proceedings of the
National Academy of Sciences, 103(46):17564–17567, 2006.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

9



Under review as a conference paper at ICLR 2020

Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in deep neural
networks. arXiv preprint arXiv:1607.00122, 2016.

Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental learning. In
International Conference on Learning Representations, 2018.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, and Agnieszka Grabska-Barwinska.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of
Sciences, 114(13):3521–3526, 2017.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of handwritten digits, 1998. URL
http://yann.lecun.com/exdb/mnist/.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In Advances in Neural Information
Processing Systems, pp. 4655–4665, 2017.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In European Conference on Computer
Vision, 2016.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467–6476, 2017.

Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan Feldman. Training mixture models at
scale via coresets. Journal of Machine Learning Research, 18(160):1–25, 2018.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation, 1989.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In IEEE International Conference on
Computer Vision and Pattern Recognition, 2014.

Sylvestre A. Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl: In-
cremental classifier and representation learning. In IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

Mark B. Ring. Continual Learning in Reinforcement Environments. PhD thesis, University of Texas
at Austin, 1994.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, and Raia Hadsell. Pro-
gressive neural networks. In Advances in Neural Information Processing Systems, 2016.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, 2017.

Sebastian Thrun. A lifelong learning perspective for mobile robot control. In IEEE/RSJ/GI Interna-
tional Conference on Intelligent Robots and Systems, 1994.

Amal R. Triki, Rahaf Aljundi, Matthew B. Blaschko, and Tinne Tuytelaars. Encoder based lifelong
learning. arXiv preprint arXiv:1704.01920, 2017.

Christopher K. I Williams. Learning with kernels: Support vector machines, regularization, opti-
mization, and beyond. Publications of the American Statistical Association, 98(462):1, 2003.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. In Advances in Neural Information Pro-
cessing Systems, 2018.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In International Conference on Learning Representations, 2017.

10

http: //yann.lecun.com/exdb/mnist/


Under review as a conference paper at ICLR 2020

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continuous learning of context-dependent
processing in neural networks. arXiv preprint arXiv1810.01256, 2018.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, 2017.

A A RESULTS IN ALL TASKS’ AVERAGE ACCURACY AND THE ACCURACY OF
THE FIRST TASK

Table 5: Results of all tasks’ average accuracy in CIFAR100

Ours
0.2074 0.2328 0.2368 0.2629 0.294 0.3248 0.3589 0.3777 0.3744 0.4158
0.4472 0.4759 0.5014 0.5181 0.5555 0.568 0.581 0.6283 0.668 0.6876

GEM
0.2074 0.2284 0.2485 0.2748 0.296 0.325 0.3583 0.3819 0.3924 0.4318
0.4493 0.4733 0.496 0.5049 0.5419 0.5617 0.5788 0.6224 0.6538 0.6703

iCARL
0.2111 0.2167 0.2236 0.2342 0.2532 0.274 0.2882 0.3076 0.3123 0.3333
0.3536 0.3606 0.3835 0.4096 0.4332 0.4589 0.4867 0.4805 0.509 0.5359

EWC
0.2189 0.2164 0.1968 0.2157 0.2499 0.2486 0.2411 0.2649 0.2936 0.2964
0.3134 0.2716 0.3318 0.3346 0.3424 0.3718 0.3968 0.4007 0.4314 0.4657

single
0.2189 0.2152 0.2183 0.2343 0.24 0.2503 0.2449 0.2782 0.2827 0.2953
0.3243 0.2816 0.3382 0.3474 0.377 0.3703 0.4043 0.4134 0.4406 0.4666

independent
0.2139 0.2268 0.233 0.2401 0.2595 0.2666 0.2802 0.2894 0.3009 0.3147
0.3356 0.344 0.3599 0.3692 0.38 0.3822 0.397 0.4119 0.4256 0.4415

Table 6: Results of the first task’s accuracy in CIFAR100

Ours
0.468 0.578 0.55 0.552 0.528 0.558 0.512 0.516 0.508 0.516
0.544 0.548 0.532 0.544 0.554 0.51 0.464 0.502 0.548

GEM
0.468 0.622 0.584 0.56 0.502 0.536 0.544 0.61 0.558 0.598
0.614 0.62 0.608 0.626 0.62 0.622 0.644 0.572 0.61

iCARL
0.426 0.468 0.378 0.412 0.414 0.408 0.432 0.43 0.488 0.462
0.436 0.398 0.51 0.518 0.528 0.526 0.528 0.514 0.518

EWC
0.416 0.31 0.282 0.232 0.256 0.252 0.24 0.23 0.28 0.29
0.26 0.32 0.246 0.208 0.198 0.222 0.228 0.218 0.208

single
0.416 0.302 0.274 0.26 0.286 0.292 0.238 0.276 0.214 0.238
0.29 0.216 0.308 0.214 0.23 0.19 0.212 0.222 0.214

independent
0.482 0.482 0.482 0.482 0.482 0.482 0.482 0.482 0.482 0.482
0.482 0.482 0.482 0.482 0.482 0.482 0.482 0.482 0.482

Table 7: Results of all tasks’ average accuracy in MNIST Permutations

Ours
0.1364 0.1733 0.2165 0.2419 0.2754 0.3197 0.3612 0.3971 0.4302 0.468
0.5052 0.5396 0.5848 0.6189 0.6557 0.6948 0.7226 0.7645 0.7856 0.8331

GEM
0.1364 0.1741 0.2147 0.2315 0.2772 0.3187 0.3579 0.3956 0.4157 0.4625

0.5 0.5323 0.5783 0.6082 0.6498 0.6837 0.7243 0.7567 0.7844 0.8276

multimodal
0.1256 0.1648 0.21 0.2394 0.2667 0.3081 0.3471 0.3765 0.3958 0.4242
0.4382 0.4831 0.5239 0.5373 0.5491 0.6017 0.6358 0.6605 0.6974 0.7158

EWC
0.1364 0.1704 0.205 0.2271 0.2689 0.2954 0.3355 0.3495 0.3576 0.3646
0.4177 0.4234 0.4646 0.4633 0.4843 0.5057 0.526 0.5874 0.5932 0.6213

single
0.1364 0.171 0.1959 0.2164 0.2599 0.2861 0.3235 0.3518 0.3732 0.3878
0.4238 0.4399 0.4767 0.4838 0.493 0.52 0.5089 0.5283 0.534 0.5742

independent
0.1094 0.1176 0.1267 0.1374 0.1502 0.1618 0.1735 0.1873 0.2037 0.2178
0.2317 0.2478 0.2631 0.276 0.2912 0.3083 0.3236 0.341 0.3547 0.37

11



Under review as a conference paper at ICLR 2020

Table 8: Results of the first task’s accuracy in MNIST Permutations

Ours
0.691 0.8559 0.8527 0.8109 0.8167 0.8331 0.8321 0.8314 0.8159 0.82
0.812 0.8036 0.8154 0.8183 0.8179 0.825 0.8161 0.8194 0.8178

GEM
0.691 0.831 0.8246 0.7178 0.7946 0.8164 0.8035 0.8226 0.8016 0.8188

0.8194 0.7867 0.8159 0.7991 0.8116 0.8176 0.8176 0.8086 0.797

multimodal
0.6274 0.7109 0.7138 0.7227 0.6278 0.6846 0.6899 0.6795 0.688 0.7
0.6155 0.6612 0.6409 0.6361 0.6192 0.6525 0.6228 0.5679 0.5712

EWC
0.691 0.7576 0.6677 0.6616 6544 0.673 0.7021 0.6164 0.5332 0.4895

0.5609 0.5634 0.5655 0.5151 0.5049 0.5332 0.5381 0.5394 0.5001

single
0.7677 0.7699 0.6753 0.5782 0.6531 0.6459 0.6201 0.5827 0.5457 0.4566
0.4455 0.4732 0.5009 0.4416 0.4323 0.4465 0.4085 0.3767 0.3865

independent
0.1889 0.1889 0.1889 0.1889 0.1889 0.1889 0.1889 0.1889 0.1889 0.1889
0.1889 0.1889 0.1889 0.1889 0.1889 0.1889 0.1889 0.1889 0.1889

Table 9: Results of all tasks’ average accuracy in MNIST Mix

Ours
0.691 0.8502 0.8584 0.8348 0.8368 0.8532 0.8401 0.8321 0.8403 0.8339

0.8172 0.8214 0.8134 0.8145 0.8169 0.8184 0.8107 0.8147 0.8172

GEM
0.691 0.8019 0.8256 0.828 0.7953 0.8045 0.8019 0.7881 0.8212 0.8073

0.7886 0.7949 0.8086 0.783 0.8027 0.7938 0.8001 0.801 0.7991

multimodal
0.6274 0.6871 0.6865 0.6638 0.6638 0.7225 0.7349 0.7214 0.7379 0.6676
0.6347 0.6224 0.5992 0.6664 0.6933 0.7262 0.736 0.7064 0.6864

EWC
0.691 0.7205 0.7356 0.6811 0.6823 0.6718 0.6831 0.4955 0.6263 0.6342

0.6134 0.5594 0.5966 0.6658 0.5849 0.5676 0.5547 0.541 0.5528

single
0.7062 0.7431 0.749 0.6757 0.7315 0.6863 0.6796 0.4702 0.6201 0.5759
0.4812 0.5436 0.4643 0.4981 0.4607 0.4785 0.4318 0.4134 0.4387

independent
0.3213 0.3213 0.3213 0.3213 0.3213 0.3213 0.3213 0.3213 0.3213 0.3213
0.3213 0.3213 0.3213 0.3213 0.3213 0.3213 0.3213 0.3213 0.3213

Table 10: Results of the first task’s accuracy in MNIST Mix

Ours
0.1116 0.342 0.3809 0.4658 0.5388 0.5392 0.589 0.5948 0.6523 0.6481
0.6897 0.6811 0.7415 0.7238 0.781 0.7725 0.8185 0.8082 0.8593 0.8537

GEM
0.1116 0.3403 0.3789 0.4749 0.5228 0.4995 0.5695 0.5829 0.6407 0.6513
0.6765 0.6873 0.738 0.7303 0.7771 0.7771 0.8145 0.8126 0.8493 0.8446

multimodal
0.1272 0.1673 0.2084 0.2371 0.2672 0.3094 0.3419 0.3802 0.4011 0.4351
0.4688 0.4966 0.5328 0.5598 0.5992 0.6338 0.6651 0.7043 0.7336 0.7656

EWC
0.1116 0.3362 0.3688 0.4116 0.4221 0.4449 0.4966 0.4494 0.4835 0.5506
0.5877 0.5494 0.6503 0.5714 0.6278 0.663 0.685 0.6992 0.7335 0.7285

single
0.1124 0.3329 0.3649 0.4168 0.4317 0.4572 0.5002 0.4642 0.4651 0.5531
0.5736 0.5868 0.6336 0.5857 0.6136 0.6509 0.6388 0.6912 0.7098 0.7206

independent
0.1166 0.1302 0.1465 0.1631 0.1829 0.2068 0.2322 0.2534 0.2752 0.3011
0.3246 0.3498 0.3757 0.3967 0.4191 0.4443 0.465 0.4904 0.5041 0.5275

12



Under review as a conference paper at ICLR 2020

B B ACCURACY IN ABLATION

Table 11: Average accuracy on MNIST Permutations

Metrics GEM-cvx transfer soft support transfer & soft
Accuracy 0.6703 0.6718 0.6536 0.6535 0.6747

support & soft support & transfer all
0.6564 0.6849 0.6876

13


	Introduction
	Related Work
	A Brief Review of GEM
	Our Improvements
	Support Examples
	Soft Gradient Constraints
	Positive Backward Transfer


	Experiments
	Datasets and Settings
	Competing Methods
	Evaluation Metrics
	Basic Comparison
	Performance on Different Memories
	Ablation Study

	Conclusion
	A Results in all tasks' average accuracy and the accuracy of the first task
	B Accuracy in ablation

