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ABSTRACT

We introduce a deep recurrent neural network architecture that approximates known
visual cortical circuits (Mély et al., 2018). We show that this architecture, which
we refer to as the γ-Net, learns to solve contour detection tasks with better sample
efficiency than state-of-the-art feedforward networks, while also exhibiting a classic
perceptual illusion, known as the orientation-tilt illusion. Correcting this illusion
significantly reduces γ-Net contour detection accuracy by driving it to prefer low-
level edges over high-level object boundary contours. Overall, our study suggests
that the orientation-tilt illusion is a byproduct of neural circuits that help biological
visual systems achieve robust and efficient contour detection, and that incorporating
such circuits in artificial neural networks can improve computer vision.

1 INTRODUCTION

An open debate since the inception of vision science concerns why we experience visual illusions.
Consider the class of “contextual” illusions, where the perceived qualities of an image region, such
as its orientation or color, are biased by the qualities of surrounding image regions. A well-studied
contextual illusion is the orientation-tilt illusion depicted in Fig. 1a, where perception of the central
grating’s orientation is influenced by the orientation of the surrounding grating (O’Toole & Wenderoth,
1977). When the two orientations are similar, the central grating appears tilted slightly away from the
surround (Fig. 1a, top). When the two orientations are dissimilar, the central grating appears tilted
slightly towards the surround (Fig. 1a, bottom). Is the contextual bias of the orientation-tilt illusion a
bug of biology or a byproduct of optimized neural computations?

Over the past 50 years, there has been a number of neural circuit mechanisms proposed to explain
individual contextual illusions (reviewed in Mély et al., 2018). Recently, Mély et al. (2018) proposed
a cortical circuit, constrained by physiology of primate visual cortex (V1), that offers a unified
explanation for contextual illusions across visual domains – from the orientation-tilt illusion to color
induction. These illusions arise in the circuit from recurrent interactions between neural populations
with receptive fields that tile visual space, leading to contextual (center/surround) effects. For the
orientation-tilt illusion, neural populations encoding the surrounding grating can either suppress
or facilitate the activity of neural populations encoding the central grating, leading to repulsion
vs. attraction, respectively. These surround neural populations compete to influence encodings of
the central grating: suppression predominates when center/surround are similar, and facilitation
predominates when center/surround are dissimilar.

The neural circuit of Mély et al. (2018) explains how contextual illusions might emerge, but it does
not explain why. One possibility is that contextual illusions like the orientation-tilt illusion are “bugs”:
vestiges of evolution or biological constraints on the neural hardware. Another possibility is that
contextual illusions are the by-product of efficient neural routines for scene segmentation (Keemink
& van Rossum, 2016; Mély et al., 2018). Here, we provide computational evidence for the latter
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possibility and demonstrate that the orientation-tilt illusion re�ects neural strategies optimized for
object contour detection.

Contributions We introduce the -Net, a trainable and hierarchical extension of the neural circuit
of Mély et al. (2018), which explains contextual illusions. (i) The -Net is more sample ef�cient
than state-of-the-art convolutional architectures on two separate contour detection tasks. (ii) Similar
to humans but not state-of-the-art contour detection models, the -Net exhibits an orientation-tilt
illusion after being optimized for contour detection. This illusion emerges from its preference for
high-level object-boundary contours over low-level edges, indicating that neural circuits involved in
contextual illusions also support sample-ef�cient solutions to contour detection tasks.

2 RELATED WORK

Modeling the visual system Convolutional neural networks (CNNs) are often considered thede
facto“standard model” of vision. CNNs and their extensions represent the state of the art for most
computer vision applications with performance approaching – and sometimes exceeding – human
observers on certain visual recognition tasks (He et al., 2016; Lee et al., 2017; Phillips et al., 2018).
CNNs also provide the best �t to rapid neural responses in the visual cortex (see Kriegeskorte 2015;
Yamins & DiCarlo 2016 for reviews). Nevertheless, multiple lines of evidence suggest that biological
vision is still far more robust and versatile than CNNs (see Serre, 2019, for a recent review). CNNs
suffer from occlusions and clutter (Fyall et al., 2017; Rosenfeld et al., 2018; Tang et al., 2018). They
are also sample inef�cient at learning visual relations (Kim et al., 2018) and solving simple grouping
tasks (Linsley et al., 2018c). State-of-the-art CNNs require massive datasets to reach their impressive
accuracy (Lake et al., 2015) and their ability to generalize beyond training data is limited (Geirhos
et al., 2018; Recht et al., 2018).

Cortical feedback contributes to the robustness of biological vision (Hochstein & Ahissar, 2002;
Wyatte et al., 2014; Kafaligonul et al., 2015). Feedforward projections in the visual system are almost
always matched by feedback projections (Felleman & Van Essen, 1991), and feedback has been
implicated in visual “routines” that cannot be implemented through purely feedforward vision, such
as incremental grouping or �lling-in (O'Reilly et al., 2013; Roelfsema, 2006). There is a also a
growing body of work demonstrating the potential of recurrent neural networks (RNNs) to account
for neural recordings (Fyall et al., 2017; Klink et al., 2017; Siegel et al., 2015; Tang et al., 2018;
Nayebi et al., 2018; Kar et al., 2019; Kietzmann et al., 2019).

Feedback for computer vision In contrast to CNNs, which build processing depth through a
cascade of �ltering and pooling stages with unique weights, RNNs process stimuli with �ltering
stages that reuse weights over “timesteps” of recurrence. On each discrete processing timestep, an
RNN updates its hidden state through a nonlinear combination of an input and its the hidden state from
its previous timestep. RNNs have been extended from their roots in sequence processing (e.g., Mozer
1992) to computer vision by computing the activity of RNN units through convolutional kernels. The
common interpretation of these convolutional-RNNs, is that the input to each layer functions as a
(�xed) feedforward drive, which is combined with layer-speci�c feedback from an evolving hidden
state to dynamically adjust layer activity (Linsley et al., 2018c; George et al., 2017; Lotter et al.,
2016; Wen et al., 2018; Liao & Poggio, 2016; Spoerer et al., 2017; Nayebi et al., 2018; Tang et al.,
2018). In the current work, we are motivated by a similar convolutional-RNN, the horizontal gated
recurrent unit (hGRU, Linsley et al. 2018a), which approximates the recurrent neural circuit model of
(Mély et al., 2018) for explaining contextual illusions.

3 RECURRENT NEURAL MODELS

We begin by reviewing the dynamical neural circuit of Mély et al. (2018). This model explains
contextual illusions by simulating interactions between cortical hypercolumns tiling the visual �eld
(where hypercolumns describe a set of neurons encoding features for multiple visual domains at a
single retinotopic position). In the model, hypercolumns are indexed by their 2D coordinate(x; y)
and feature channelsk. Units in hypercolumns encode idealized responses for a visual domain
(e.g., neural responses from the orientation domain were used to simulate an orientation-tilt illusion;
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Figure 1: The orientation tilt-illusion (O'Toole & Wenderoth, 1977) is a contextual illusion
where a central grating's perceived orientation is in�uenced by a surround grating's orienta-
tion. (a) When a central grating has a similar orientation as its surround, it is judged as tilting away
from the surround (repulsion). When the two gratings have dissimilar orientations, the central grating
is judged as tilting towards the surround (attraction).(b) We extend the recurrent circuit proposed
by Mély et al. (2018) to explain this and other contextual illusions into a hierarchical model that
learns horizontal (within a layer) and top-down (between layer) interactions between units. The
circuit simulates dynamical suppressive (H(S)

xyk ) and facilitative (H(F )
xyk ) interactions between units in

a layer`, which receives feedforward drive from a center pathway encoding feature k (e.g., edges
oriented at 0� or 22.5� ) at position (x, y) in an image. Blocks depict different layers, and arrowed
connections denote top-down feedback.(c) A deep network schematic of the circuit diagram in
(b), which forms the basis of the -Net introduced here. Horizontal and top-down connections are
implemented with feedback gated recurrent units (fGRUs). Image encodings pass through these
blocks on every timestep, from bottom-up (left path) to top-down (right path), and predictions are
read out from the fGRU closest to image resolution on the �nal timestep. This motif can be stacked
to create a hierarchical model.

Fig. 1b). Dynamics of a single unit atxyk obey the following equations (we bold activity tensors to
distinguish them from learned kernels and parameters):
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where

C(S)
xyk = ( W S � H(F ) )xyk # Compute suppression interactions

C(F )
xyk = ( W F � H(S) )xyk : # Compute facilitation interactions

Circuit activities consist of a feedforward drive, recurrent suppression, and recurrent facilitation,
respectively denoted asZ; H(S) ; H(F ) 2 RX� Y� K (X is width,Y is height of the tensor, andK is its
feature channels)� . The circuit takes its “feedforward” inputZ from hypercolumns (e.g., orientation
encodings from hypercolumn units), and introduces recurrent suppressive and facilitatory interactions
between units,C(S) ; C(F ) 2 RX� Y� K (Fig. 1b). These interactions are implemented with separate
kernels for suppression and facilitation,W S ; W F 2 RE� E� K� K, whereE is the spatial extent of
connections on a single timestep (connectivity in this model is constrained by primate physiology).

� Suppression refers to interactions that reduce unit activity, and facilitation refers to interactions that increase
activity. These computations can cause illusory repulsion or attraction at the level of neural populations.
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