
Published as a conference paper at ICLR 2020

UNDERSTANDING AND ROBUSTIFYING
DIFFERENTIABLE ARCHITECTURE SEARCH

Arber Zela1, Thomas Elsken2,1, Tonmoy Saikia1, Yassine Marrakchi1,
Thomas Brox1 & Frank Hutter1,2
1Department of Computer Science, University of Freiburg
{zelaa, saikiat, marrakch, brox, fh}@cs.uni-freiburg.de
2Bosch Center for Artificial Intelligence
Thomas.Elsken@de.bosch.com

ABSTRACT

Differentiable Architecture Search (DARTS) has attracted a lot of attention due to
its simplicity and small search costs achieved by a continuous relaxation and an
approximation of the resulting bi-level optimization problem. However, DARTS
does not work robustly for new problems: we identify a wide range of search
spaces for which DARTS yields degenerate architectures with very poor test per-
formance. We study this failure mode and show that, while DARTS successfully
minimizes validation loss, the found solutions generalize poorly when they coin-
cide with high validation loss curvature in the architecture space. We show that
by adding one of various types of regularization we can robustify DARTS to find
solutions with less curvature and better generalization properties. Based on these
observations, we propose several simple variations of DARTS that perform sub-
stantially more robustly in practice. Our observations are robust across five search
spaces on three image classification tasks and also hold for the very different do-
mains of disparity estimation (a dense regression task) and language modelling.

1 INTRODUCTION

Neural Architecture Search (NAS), the process of automatically designing neural network archi-
tectures, has recently attracted attention by achieving state-of-the-art performance on a variety of
tasks (Zoph & Le, 2017; Real et al., 2019). Differentiable architecture search (DARTS) (Liu et al.,
2019) significantly improved the efficiency of NAS over prior work, reducing its costs to the same or-
der of magnitude as training a single neural network. This expanded the scope of NAS substantially,
allowing it to also be applied on more expensive problems, such as semantic segmentation (Chenxi
et al., 2019) or disparity estimation (Saikia et al., 2019).

However, several researchers have also reported DARTS to not work well, in some cases even no
better than random search (Li & Talwalkar, 2019; Sciuto et al., 2019). Why is this? How can these
seemingly contradicting results be explained? The overall goal of this paper is to understand and
overcome such failure modes of DARTS. To this end, we make the following contributions:

1. We identify 12 NAS benchmarks based on four search spaces in which standard DARTS yields
degenerate architectures with poor test performance across several datasets (Section 3).

2. By computing the eigenspectrum of the Hessian of the validation loss with respect to the archi-
tectural parameters, we show that there is a strong correlation between its dominant eigenvalue
and the architecture’s generalization error. Based on this finding, we propose a simple variation
of DARTS with early stopping that performs substantially more robustly (Section 4).

3. We show that, related to previous work on sharp/flat local minima, regularizing the inner objective
of DARTS more strongly allows it to find solutions with smaller Hessian spectrum and better
generalization properties. Based on these insights, we propose two practical robustifications of
DARTS that overcome its failure modes in all our 12 NAS benchmarks (Section 5).

Our findings are robust across a wide range of NAS benchmarks based on image recognition and
also hold for the very different domains of language modelling (PTB) and disparity estimation. They

1

Published as a conference paper at ICLR 2020

consolidate the �ndings of the various results in the literature and lead to a substantially more robust
version of DARTS. We provide our implementation and scripts to facilitate reproducibility1.

2 BACKGROUND AND RELATED WORK

2.1 RELATION BETWEEN FLAT/SHARP MINIMA AND GENERALIZATION PERFORMANCE

Already Hochreiter & Schmidhuber (1997) observed that �at minima of the training loss yield better
generalization performance than sharp minima. Recent work (Keskar et al., 2016; Yao et al., 2018)
focuses more on the settings of large/small batch size training, where observations show that small
batch training tends to get attracted to �atter minima and generalizes better. Similarly, Nguyen et al.
(2018) observed that this phenomenon manifests also in the hyperparameter space. They showed
that whenever the hyperparameters over�t the validation data, the minima lie in a sharper region of
the space. This motivated us to conduct a similar analysis in the context of differentiable architecture
search later in Section 4.1, where we see the same effect in the space of neural network architectures.

2.2 BI-LEVEL OPTIMIZATION

We start by a short introduction of the bi-level optimization problem (Colson et al., 2007). These
are problems which contain two optimization tasks, nested within each other.

De�nition 2.1. Given the outer objective functionF : RP � RN ! R and the inner objective
functionf : RP � RN ! R, the bi-level optimization problem is given by

min
y2 RP

F (y; � � (y)) (1)

s:t: � � (y) 2 arg min
� 2 RN

f (y; �); (2)

wherey 2 RP and� 2 RN are the outer and inner variables, respectively. One may also see the
bi-level problem as a constrained optimization problem, with the inner problem as a constraint.

In general, even in the case when the inner objective (2) is strongly convex and has an unique
minimizer � � (y) = arg min � 2 RN f (y; �), it is not possible to directly optimize the outer objective
(1). A possible method around this issue is to use the implicit function theorem to retrieve the
derivative of the solution map (or response map)� � (y) 2 F � RN w.r.t. y (Bengio, 2000; Pedregosa,
2016; Beirami et al., 2017). Another strategy is to approximate the inner problem with a dynamical
system (Domke, 2012; Maclaurin et al., 2015; Franceschi et al., 2017; 2018), where the optimization
dynamics could, e.g., describe gradient descent. In the case that the minimizer of the inner problem
is unique, under some conditions the set of minimizers of this approximate problem will indeed
converge to the minimizers of the bilevel problem (1) (see Franceschi et al. (2018)).

2.3 NEURAL ARCHITECTURESEARCH

Neural Architecture Search (NAS) denotes the process of automatically designing neural network
architectures in order to overcome the cumbersome trial-and-error process when designing archi-
tectures manually. We brie�y review NAS here and refer to the recent survey by Elsken et al.
(2019b) for a more thorough overview. Prior work mostly employs either reinforcement learning
techniques (Baker et al., 2017a; Zoph & Le, 2017; Zhong et al., 2018; Zoph et al., 2018) or evo-
lutionary algorithms (Stanley & Miikkulainen, 2002; Liu et al., 2018b; Miikkulainen et al., 2017;
Real et al., 2017; 2019) to optimize the discrete architecture space. As these methods are often
very expensive, various works focus on reducing the search costs by, e.g., employing network mor-
phisms (Cai et al., 2018a;b; Elsken et al., 2017; 2019a), weight sharing within search models (Sax-
ena & Verbeek, 2016; Bender et al., 2018; Pham et al., 2018) or multi-�delity optimization (Baker
et al., 2017b; Falkner et al., 2018; Li et al., 2017; Zela et al., 2018), but their applicability still often
remains restricted to rather simple tasks and small datasets.

1 https://github.com/automl/RobustDARTS

2

Published as a conference paper at ICLR 2020

2.4 DIFFERENTIABLE ARCHITECTURESEARCH (DARTS)

A recent line of work focuses on relaxing the discrete neural architecture search problem to a con-
tinuous one that can be solved by gradient descent (Liu et al., 2019; Xie et al., 2019; Casale et al.,
2019; Cai et al., 2019). In DARTS (Liu et al., 2019), this is achieved by simply using a weighted
sum of possible candidate operations for each layer, whereas the real-valued weights then effec-
tively parametrize the network's architecture. We will now review DARTS in more detail, as our
work builds directly upon it.

Continuous relaxation of the search space. In agreement with prior work (Zoph et al., 2018;
Real et al., 2019), DARTS optimizes only substructures called cells that are stacked to de�ne the
full network architecture. Each cell containsN nodes organized in a directed acyclic graph. The
graph contains two inputs nodes (given by the outputs of the previous two cells), a set of intermediate
nodes, and one output node (given by concatenating all intermediate nodes). Each intermediate node
x (j) represents a feature map. See Figure 1 for an illustration of such a cell. Instead of applying
a single operation to a speci�c node during architecture search, Liu et al. (2019) relax the decision
which operation to choose by computing the intermediate node as a mixture of candidate operations,

applied to predecessor nodesx (i) ; i < j , x (j) =
P

i<j

P
o2O

exp(� i;j
o)

P
o 02O exp(� i;j

o 0)
o

�
x (i)

�
, whereO

denotes the set of all candidate operations (e.g.,3 � 3 convolution, skip connection,3 � 3 max
pooling, etc.) and� = (� i;j

o) i;j;o serves as a real-valued parameterization of the architecture.

Gradient-based optimization of the search space. DARTS then optimizes both the weights of
the search network (often called theweight-sharingor one-shotmodel, since the weights of all
individual subgraphs/architectures are shared) and architectural parameters by alternating gradient
descent. The network weights and the architecture parameters are optimized on the training and
validation set, respectively. This can be interpreted as solving the bi-level optimization problem (1),
(2), whereF andf are the validation and training loss,L valid andL train , respectively, whiley and
� denote the architectural parameters� and network weightsw, respectively. Note that DARTS only
approximates the lower-level solution by a single gradient step (see Appendix A for more details).

At the end of the search phase, a discrete cell is obtained by choosing thek most important incoming
operations for each intermediate node while all others are pruned. Importance is measured by the

operation weighting factor exp(� i;j
o)

P
o 02O exp(� i;j

o 0)
.

3 WHEN DARTS FAILS

We now describe various search spaces and demonstrate that standard DARTS fails on them. We
start with four search spaces similar to the original CIFAR-10 search space but simpler, and evaluate
across three different datasets (CIFAR-10, CIFAR-100 and SVHN). They are quite standard in that
they use the same macro architecture as the original DARTS paper (Liu et al., 2018a), consisting of
normal and reduction cells; however, they only allow a subset of operators for the cell search space:

S1: This search space uses a different set of only two operators per edge, which we identi�ed
using an of�ine process that iteratively dropped the operations from the original DARTS
search space with the least importance. This pre-optimized space has the advantage of
being quite small while still including many strong architectures. We refer to Appendix B
for details on its construction and an illustration (Figure 9).

S2: In this space, the set of candidate operations per edge isf 3 � 3 SepConv, SkipConnectg.
We choose these operations since they are the most frequent ones in the discovered cells
reported by Liu et al. (2019).

S3: In this space, the set of candidate operations per edge isf 3 � 3 SepConv, SkipConnect,
Zerog, where theZero operation simply replaces every value in the input feature map by
zeros.

S4: In this space, the set of candidate operations per edge isf 3 � 3 SepConv, Noiseg, where
the Noise operation simply replaces every value from the input feature map by noise
� � N (0; 1). This is the only space out of S1-S4 that is not a strict subspace of the

3

Published as a conference paper at ICLR 2020

(a) Space 1 (b) Space 2 (c) Space 3 (d) Space 4

Figure 1: The poor cells standard DARTS �nds on spaces S1-S4. For all spaces, DARTS chooses
mostly parameter-less operations (skip connection) or even the harmfulNoise operation. Shown
are the normal cells on CIFAR-10; see Appendix G for reduction cells and other datasets.

original DARTS space; we intentionally added theNoiseoperation, which actively harms
performance and should therefore not be selected by DARTS.

We ran DARTS on each of these spaces, using exactly the same setup as Liu et al. (2019). Figure
1 shows the poor cells DARTS selected on these search spaces for CIFAR-10 (see Appendix G for
analogous results on the other datasets). Already visually, one might suspect that the found cells are
suboptimal: the parameter-less skip connections dominate in almost all the edges for spaces S1-S3,
and for S4 even the harmfulNoiseoperation was selected for �ve out of eight operations. Table
1 (�rst column) con�rms the very poor performance standard DARTS yields on all of these search
spaces and on different datasets. We note that Liu et al. (2019) and Xie et al. (2019) argue that the
Zerooperation can help to search for the architecture topology and choice of operators jointly, but
in our experiments it did not help to reduce the importance weight of the skip connection (compare
Figure 1b vs. Figure 1c).

We emphasize that search spaces S1-S3 are very natural, and, as strict subspaces of the original
space, should merely be easier to search than that. They are in no way special or constructed in an
adversarial manner. Only S4 was constructed speci�cally to show-case the failure mode of DARTS
selecting the obviously suboptimalNoiseoperator.

S5: Very small search space with known global optimum. Knowing the global minimum has
the advantage that one can benchmark the performance of algorithms by measuring the regret of
chosen points with respect to the known global minimum. Therefore, we created another search
space with only one intermediate node for both normal and reduction cells, and 3 operation choices
in each edge, namely3 � 3 SepConv, SkipConnection, and3 � 3 MaxPooling. The total number of
possible architectures in this space is 81, all of which we evaluated a-priori. We dub this spaceS5.

Figure 2: Test regret of found architectures and
validation error of the search model when running
DARTS on S5 and CIFAR-10. DARTS �nds the
global minimum but starts over�tting the architec-
tural parameters to the validation set in the end.

We ran DARTS on this search space three times
for each dataset and compared its result to the
baseline of Random Search with weight shar-
ing (RS-ws) by Li & Talwalkar (2019). Fig-
ure 2 shows the test regret of the architectures
selected by DARTS (blue) and RS-ws (green)
throughout the search. DARTS manages to �nd
an architecture close to the global minimum,
but around epoch 40 the test performance de-
teriorated. Note that the search model valida-
tion error (dashed red line) did not deteriorate
but rather converged, indicating that the archi-
tectural parameters are over�tting to the vali-
dation set. In contrast, RS-ws stays relatively
constant throughout the search; when evaluat-
ing only the �nal architecture found, RS-ws in-
deed outperformed DARTS.

S6: encoder-decoder architecture for disparity estimation. To study whether our �ndings gen-
eralize beyond image recognition, we also analyzed a search space for a very different problem:
�nding encoder-decoder architectures for the dense regression task of disparity estimation; please

4

Published as a conference paper at ICLR 2020

Figure 3:(left) validation error of search model;(middle)test error of the architectures deemed by
DARTS optimal(right) dominant eigenvalue ofr 2

� L valid throughout DARTS search. Solid line and
shaded areas show mean and standard deviation of 3 independent runs. All experiments conducted
on CIFAR-10.

refer to Appendix E for details. We base this search space on AutoDispNet (Saikia et al., 2019),
which used DARTS for a space containingnormal, downsamplingandupsamplingcells. We again
constructed a reduced space. Similarly to the image classi�cation search spaces, we found the nor-
mal cell to be mainly composed of parameter-less operations (see Figure 25 in Appendix G). As
expected, this causes a large generalization error (see �rst row in Table 2 of our later experiments).

4 THE ROLE OF DOMINANT EIGENVALUES OF r 2
� L valid

We now analyzewhy DARTS fails in all these cases. Motivated by Section 2.1, we will have a
closer look at the largest eigenvalue� �

max of the Hessian matrix of validation lossr 2
� L valid w.r.t.

the architectural parameters� .

4.1 LARGE ARCHITECTURAL EIGENVALUES AND GENERALIZATION PERFORMANCE

One may hypothesize that DARTS performs poorly because its approximate solution of the bi-level
optimization problem by iterative optimization fails, but we actually observe validation errors to
progress nicely: Figure 3 (left) shows that the search model validation error converges in all cases,
even though the cell structures selected here are the ones in Figure 1.

Figure 4: Correlation between dominant
eigenvalue ofr 2

� L valid and test error of cor-
responding architectures.

Rather, the architectures DARTS �nds do not gen-
eralize well. This can be seen in Figure 3 (middle).
There, every 5 epochs, we evaluated the architecture
deemed by DARTS to be optimal according to the�
values. Note that whenever evaluating on the test set,
we retrain from scratch the architecture obtained af-
ter applying theargmaxto the architectural weights
� . As one can notice, the architectures start to de-
generate after a certain number of search epochs,
similarly to the results shown in Figure 2. We hy-
pothesized that this might be related to sharp local
minima as discussed in Section 2.1. To test this hy-
pothesis, we computed the full Hessianr 2

� L valid of
the validation loss w.r.t. the architectural parameters
on a randomly sampled mini-batch. Figure 3 (right)
shows that the dominant eigenvalue� �

max (which
serves as a proxy for the sharpness) indeed increases
in standard DARTS, along with the test error (middle) of the �nal architectures, while the validation
error still decreases (left). We also studied the correlation between� �

max and test error more directly,
by measuring these two quantities for 24 different architectures (obtained via standard DARTS and
the regularized versions we discuss in Section 5). For the example of space S1 on CIFAR-10, Figure
4 shows that� �

max indeed strongly correlates with test error (with a Pearson correlation coef�cient
of 0.867).

5

Published as a conference paper at ICLR 2020

Figure 6: Local average (LA) of the dominant eigenvalue� �
max throughout DARTS search. Markers

denote the early stopping point based on the criterion in Section 4.3. Each line also corresponds to
one of the runs in Table 1.

4.2 LARGE ARCHITECTURAL EIGENVALUES AND PERFORMANCE DROP AFTER PRUNING

(a)

(b)

Figure 5: (a) Hypothetical illustration of the
loss function change in the case of �at vs.
sharp minima. (b) Drop in accuracy after dis-
cretizing the search model vs. the sharpness
of minima (by means of� �

max).

One reason why DARTS performs poorly when the
architectural eigenvalues are large (and thus the min-
imum is sharp) might be the pruning step at the
end of DARTS: the optimal, continuous� � from the
search is pruned to obtain a discrete� disc , some-
where in the neighbourhood of� � . In the case of
a sharp minimum� � , � disc might have a loss func-
tion value signi�cantly higher than the minimum� � ,
while in the case of a �at minimum,� disc is ex-
pected to have a similar loss function value. This
is hypothetically illustrated in Figure 5a, where the
y-axisindicates the search model validation loss and
thex-axisthe� values.

To investigate this hypothesis, we measured the per-
formance drop:L valid (� disc ; w�) � L valid (� � ; w�)
w.r.t. to the search model weights incurred by this
discretization step and correlated it with� �

max . The
results in Figure 5b show that, indeed, low curva-
ture never led to large performance drops (here we
actually compute the accuracy drop rather than the
loss function difference, but we observed a similar
relationship). Having identi�ed this relationship, we
now move on to avoid high curvature.

4.3 EARLY STOPPING
BASED ON LARGE EIGENVALUES OFr 2

� L valid

We propose a simple early stopping methods to
avoid large curvature and thus poor generalization.
We emphasize that simply stopping the search based
on validation performance (as one would do in the case of training a network) doesnot apply here
as NAS directly optimizes validation performance, which – as we have seen in Figure 2 – keeps on
improving.

Instead, we propose to track� �
max over the course of architecture search and stop whenever it in-

creases too much. To implement this idea, we use a simple heuristic that worked off-the-shelf
without any tuning. Let�

�
max (i) denote the value of� �

max smoothed overk = 5 epochs around
i ; then, we stop if�

�
max (i � k)=�

�
max (i) < 0:75 and return the architecture from epochi � k.

6

Published as a conference paper at ICLR 2020

Figure 7: Effect of regularization strength via ScheduledDropPath (during the search phase) on the
test performance of DARTS (solid lines) and DARTS-ES (dashed-lines). Results for each of the
search spaces and datasets.

Table 1: Performance of
DARTS and DARTS-ES.
(mean� std for 3 runs each).
Benchmark DARTS DARTS-ES

C10

S1 4:66� 0:71 3.05� 0.07
S2 4:42� 0:40 3.41� 0.14
S3 4:12� 0:85 3.71� 1.14
S4 6:95� 0:18 4.17� 0.21

C100

S1 29:93� 0:41 28.90� 0.81
S2 28:75� 0:92 24.68� 1.43
S3 29:01� 0:24 26.99� 1.79
S4 24.77� 1.51 23.90� 2.01

SVHN

S1 9:88� 5:50 2.80� 0.09
S2 3:69� 0:12 2.68� 0.18
S3 4:00� 1:01 2.78� 0.29
S4 2:90� 0:02 2.55� 0.15

By this early stopping heuristic, we do not only avoid exploding
eigenvalues, which are correlated with poor generalization (see Fig-
ure 4), but also shorten the time of the search.

Table 1 shows the results for running DARTS with this early stop-
ping criterion (DARTS-ES) across S1-S4 and all three image classi-
�cation datasets. Figure 6 shows the local average of the eigenvalue
trajectory throughout the search and the point where the DARTS
search early stops for each of the settings in Table 1. Note that we
never use the test data when applying the early stopping mecha-
nism. Early stopping signi�cantly improved DARTS for all settings
without ever harming it.

5 REGULARIZATION OF INNER OBJECTIVE

IMPROVES GENERALIZATION OF ARCHITECTURES

As we saw in Section 4.1, sharper minima (by means of large eigenvalues) of the validation loss
lead to poor generalization performance. In our bi-level optimization setting, the outer variables'
trajectory depends on the inner optimization procedure. Therefore, we hypothesized that modifying
the landscape of the inner objectiveL train could redirect the outer variables� to �atter areas of the
architectural space. We study two ways of regularization (data augmentation in Section 5.1 andL 2
regularization in Section 5.2) and �nd that both, along with the early stopping criterion from Section
4.3, make DARTS more robust in practice. We emphasize that wedo notalter the regularization of
the �nal training and evaluation phase, but solely that of the search phase. The setting we use for all
experiments in this paper to obtain the �nal test performance is described in Appendix C.

5.1 REGULARIZATION VIA DATA AUGMENTATION

We �rst investigate the effect of regularizing via data augmentation, namely masking out parts of
the input and intermediate feature maps via Cutout (CO, DeVries & Taylor (2017)) and Scheduled-
DropPath (DP, Zoph et al. (2018)) (ScheduledDropPath is a regularization technique, but we list
it here since we apply it together with Cutout), respectively, during architecture search. We ran
DARTS with CO and DP (with and without our early stopping criterion, DARTS-ES) with different
maximum DP probabilities on all three image classi�cation datasets and search spaces S1-S4.

Figure 7 summarizes the results: regularization improves the test performance of DARTS and
DARTS-ES in all cases, sometimes very substantially, and at the same time kept the dominant eigen-
value relatively low (Figure 13). This also directly results in smaller drops in accuracy after pruning,
as discussed in Section 4.2; indeed, the search runs plotted in Figure 5b are the same as in this sec-
tion. Figure 17 in the appendix explicitly shows how regularization relates to the accuracy drops.
We also refer to further results in the appendix: Figure 11 (showing test vs. validation error) and
Table 5 (showing that over�tting of the architectural parameters is reduced).

7

Published as a conference paper at ICLR 2020

Figure 8: Effect ofL 2 regularization of the inner objective during architecture search for DARTS
(solid lines) and DARTS-ES (dashed).

Similar observations hold for disparity estimation on S6, where we vary the strength of standard data
augmentation methods, such as shearing or brightness change, rather then masking parts of features,
which is unreasonable for this task. The augmentation strength is described by an “augmentation
scaling factor” (Appendix E). Table 2 summarizes the results. We report the average end point error
(EPE), which is the Euclidean distance between the predicted and ground truth disparity maps. Data
augmentation avoided the degenerate architectures and substantially improved results.

5.2 INCREASEDL 2 REGULARIZATION Table 2: Effect of regularization for dispar-
ity estimation. Search was conducted on
FlyingThings3D (FT) and then evaluated on
both FT and Sintel. Lower is better.

Aug. Search model valid FT test Sintel test Params
Scale EPE EPE EPE (M)
0.0 4.49 3.83 5.69 9.65
0.1 3.53 3.75 5.97 9.65
0.5 3.28 3.37 5.22 9.43
1.0 4.61 3.12 5.47 12.46
1.5 5.23 2.60 4.15 12.57
2.0 7.45 2.33 3.76 12.25
L 2 reg. Search model valid FT test Sintel test Params
factor EPE EPE EPE (M)
3 � 10� 4 3.95 3.25 6.13 11.00
9 � 10� 4 5.97 2.30 4.12 13.92
27� 10� 4 4.25 2.72 4.83 10.29
81� 10� 4 4.61 2.34 3.85 12.16

As a second type of regularization, we also tested
differentL 2 regularization factors3i � 10� 4 for i 2
f 1; 3; 9; 27; 81g. Standard DARTS in fact does al-
ready include a small amount ofL 2 regularization;
i = 1 yields its default. Figure 8 shows that DARTS'
test performance (solid lines) can be signi�cantly
improved by higherL 2 factors across all datasets and
spaces, while keeping the dominant eigenvalue low
(Figure 14). DARTS with early stopping (dashed
lines) also bene�ts from additional regularization.
Again, we observe the implicit regularization effect
on the outer objective which reduces the over�tting
of the architectural parameters. We again refer to
Table 2 for disparity estimation; Appendix F shows similar results for language modelling (Penn
TreeBank).

5.3 PRACTICAL ROBUSTIFICATION OFDARTS BY REGULARIZING THE INNER OBJECTIVE

Based on the insights from the aforementioned analysis and empirical results, we now propose two
alternative simple modi�cations to make DARTS more robust in practice without having to manually
tune its regularization hyperparameters.

DARTS with adaptive regularization One option is to adapt DARTS' regularization hyperpa-
rameters in an automated way, in order to keep the architectural weights in areas of the validation
loss objective with smaller curvature. The simplest off-the-shelf procedure towards this desiderata
would be to increase the regularization strength whenever the dominant eigenvalue starts increasing
rapidly. Algorithm 1 (DARTS-ADA, Appendix D.1) shows such a procedure. We use the same
stopping criterion as in DARTS-ES (Section 4.3), roll back DARTS to the epoch when this criterion
is met, and continue the search with a larger regularization valueR for the remaining epochs (larger
by a factor of�). This procedure is repeated whenever the criterion is met, unless the regularization
value exceeds some maximum prede�ned valueRmax .

Multiple DARTS runs with different regularization strength Liu et al. (2019) already sug-
gested to run the search phase of DARTS four times, resulting in four architectures, and to return

8

Published as a conference paper at ICLR 2020

the best of these four architectures w.r.t. validation performance when retrained from scratch for a
limited number of epochs. We propose to use the same procedure, with the only difference that
the four runs use different amounts of regularization. The resulting RobustDARTS (R-DARTS)
method is conceptually very simple, trivial to implement and likely to work well if any of the tried
regularization strengths works well.

Table 3: Empirical evaluation of practical robusti�ed ver-
sions of DARTS. Each entry is the test error after retraining
the selected architecture as usual. The best method for each
setting is boldface and underlined, the second best boldface.

Benchmark RS-ws DARTS R-DARTS(DP) R-DARTS(L2) DARTS-ES DARTS-ADA

C10

S1 3.23 3.84 3.11 2.78 3.01 3.10
S2 3.66 4.85 3.48 3.31 3.26 3.35
S3 2.95 3.34 2.93 2.51 2.74 2.59
S4 8.07 7.20 3.58 3.56 3.71 4.84

C100

S1 23.30 29.46 25.93 24.25 28.37 24.03
S2 21.21 26.05 22.30 22.24 23.25 23.52
S3 23.75 28.90 22.36 23.99 23.73 23.37
S4 28.19 22.85 22.18 21.94 21.26 23.20

SVHN

S1 2.59 4.58 2.55 4.79 2.72 2.53
S2 2.72 3.53 2.52 2.51 2.60 2.54
S3 2.87 3.41 2.49 2.48 2.50 2.50
S4 3.46 3.05 2.61 2.50 2.51 2.46

Table 3 evaluates the performance
of our practical robusti�cations
of DARTS, DARTS-ADA and
R-DARTS (based on either L2 or
ScheduledDropPath regularization),
by comparing them to the original
DARTS, DARTS-ES and Random
Search with weight sharing (RS-ws).
For each of these methods, as pro-
posed in the DARTS paper (Liu et al.,
2019), we ran the search four inde-
pendent times with different random
seeds and selected the architecture
used for the �nal evaluation based on
a validation run as described above.
As the table shows, in accordance with Li & Talwalkar (2019), RS-ws often outperformed the
original DARTS; however, with our robusti�cations, DARTS typically performs substantially
better than RS-ws. DARTS-ADA consistently improved over standard DARTS for all benchmarks,
indicating that a gradual increase of regularization during search prevents ending up in the bad
regions of the architectural space. Finally, RobustDARTS yielded the best performance and since it
is also easier to implement than DARTS-ES and DARTS-ADA, it is the method that we recommend
to be used in practice.

Table 4: DARTS vs. RobustDARTS on
the original DARTS search spaces. We
show mean� stddev for 5 repetitions
(based on 4 fresh subruns each as in Ta-
ble 3); for the more expensive PTB we
could only afford 1 such repetition.

Benchmark DARTS R-DARTS(L2)
C10 2.91� 0.25 2.95� 0.21
C100 20.58� 0.44 18.01� 0.26
SVHN 2.46� 0.09 2.17� 0.09
PTB 58.64 57.59

Finally, since the evaluations in this paper have so far
focussed on smaller subspaces of the original DARTS
search space, the reader may wonder how well Robust-
DARTS works on the full search spaces. As Table 4
shows, RobustDARTS performed similarly to DARTS
for the two original benchmarks from the DARTS paper
(PTB and CIFAR-10), on which DARTS was developed
and is well tuned; however, even when only changing the
dataset to CIFAR-100 or SVHN, RobustDARTS already
performed signi�cantly better than DARTS, underlining
its robustness.

6 CONCLUSIONS

We showed that the generalization performance of architectures found by DARTS is related to the
eigenvalues of the Hessian matrix of the validation loss w.r.t. the architectural parameters. Stan-
dard DARTS often results in degenerate architectures with large eigenvalues and poor generaliza-
tion. Based on this observation, we proposed a simple early stopping criterion for DARTS based
on tracking the largest eigenvalue. Our empirical results also show that properly regularizing the
inner objective helps controlling the eigenvalue and therefore improves generalization. Our �ndings
substantially improve our understanding of DARTS' failure modes and lead to much more robust
versions. They are consistent across many different search spaces on image recognition tasks and
also for the very different domains of language modelling and disparity estimation. Our code is
available for reproducibility.

ACKNOWLEDGMENTS

The authors acknowledge funding by the Robert Bosch GmbH, support by the European Research
Council (ERC) under the European Unions Horizon 2020 research and innovation programme
through grant no. 716721, and by BMBF grant DeToL.

9

Published as a conference paper at ICLR 2020

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi-
tectures using reinforcement learning. InInternational Conference on Learning Representations,
2017a.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating Neural Architecture
Search using Performance Prediction. InNIPS Workshop on Meta-Learning, 2017b.

Ahmad Beirami, Meisam Razaviyayn, Shahin Shahrampour, and Vahid Tarokh. On optimal gener-
alizability in parametric learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.),Advances in Neural Information Processing Systems 30,
pp. 3455–3465. Curran Associates, Inc., 2017.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understand-
ing and simplifying one-shot architecture search. InInternational Conference on Machine Learn-
ing, 2018.

Y. Bengio. Gradient-based optimization of hyperparameters.Neural Computation, 12(8):1889–
1900, Aug 2000. ISSN 0899-7667. doi: 10.1162/089976600300015187.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical
�ow evaluation. In A. Fitzgibbon et al. (Eds.) (ed.),European Conf. on Computer Vision (ECCV),
Part IV, LNCS 7577, pp. 611–625. Springer-Verlag, October 2012.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Ef�cient architecture search by
network transformation. InAAAI, 2018a.

Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-Level Network Transforma-
tion for Ef�cient Architecture Search. InInternational Conference on Machine Learning, June
2018b.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. InInternational Conference on Learning Representations, 2019.

Francesco Casale, Jonathan Gordon, and Nicolo Fusi. Probabilistic neural architecture search.arXiv
preprint, 2019.

Liu Chenxi, Chen Liang Chieh, Schroff Florian, Adam Hartwig, Hua Wei, Yuille Alan L., and
Fei Fei Li. Auto-deeplab: Hierarchical neural architecture search for semantic image segmenta-
tion. In Conference on Computer Vision and Pattern Recognition, 2019.

Benot Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization, 2007.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout.arXiv preprint arXiv:1708.04552, 2017.

Justin Domke. Generic methods for optimization-based modeling. In Neil D. Lawrence and Mark
Girolami (eds.),Proceedings of the Fifteenth International Conference on Arti�cial Intelligence
and Statistics, volume 22 ofProceedings of Machine Learning Research, pp. 318–326, La Palma,
Canary Islands, 21–23 Apr 2012. PMLR.

A. Dosovitskiy, P. Fischer, E. Ilg, P. Ḧausser, C. Haz�rbaş, V. Golkov, P. v.d. Smagt, D. Cremers,
and T. Brox. Flownet: Learning optical �ow with convolutional networks. InIEEE International
Conference on Computer Vision (ICCV), 2015.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Simple And Ef�cient Architecture Search
for Convolutional Neural Networks. InNIPS Workshop on Meta-Learning, 2017.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Ef�cient multi-objective neural architec-
ture search via lamarckian evolution. InInternational Conference on Learning Representations,
2019a.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019b.

10

Published as a conference paper at ICLR 2020

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and ef�cient hyperparameter op-
timization at scale. In Jennifer Dy and Andreas Krause (eds.),Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80 ofProceedings of Machine Learning Re-
search, pp. 1437–1446, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/falkner18a.html .

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In Doina Precup and Yee Whye Teh (eds.),Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 ofProceedings
of Machine Learning Research, pp. 1165–1173, International Convention Centre, Sydney, Aus-
tralia, 06–11 Aug 2017. PMLR.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In Jennifer Dy and Andreas
Krause (eds.),Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1568–1577, Stockholmsmssan, Stockholm
Sweden, 10–15 Jul 2018. PMLR.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima.Neural Comput., 9(1):1–42, January 1997.
ISSN 0899-7667. doi: 10.1162/neco.1997.9.1.1.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.arXiv
preprint arXiv:1609.04836, 2016.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based
con�guration evaluation for hyperparameter optimization. InProceedings of the International
Conference on Learning Representations (ICLR'17), 2017. Published online:iclr.cc .

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
CoRR, abs/1902.07638, 2019.

H. Liu, K. Simonyan, O. Vinyals, C.Fernando, and K. Kavukcuoglu. Hierarchical representations
for ef�cient architecture search. InInternational Conference on Learning Representations (ICLR)
2018 Conference Track, April 2018a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical Representations for Ef�cient Architecture Search. InInternational Conference on Learn-
ing Representations, 2018b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In Francis Bach and David Blei (eds.),Proceedings of the 32nd
International Conference on Machine Learning, volume 37 ofProceedings of Machine Learning
Research, pp. 2113–2122, Lille, France, 07–09 Jul 2015. PMLR.

N. Mayer, E. Ilg, P. Ḧausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large
dataset to train convolutional networks for disparity, optical �ow, and scene �ow estimation.
In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
arXiv:1512.02134.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon, Bala
Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving Deep
Neural Networks. InarXiv:1703.00548, March 2017.

Thanh Dai Nguyen, Sunil Gupta, Santu Rana, and Svetha Venkatesh. Stable bayesian optimization.
International Journal of Data Science and Analytics, 6(4):327–339, Dec 2018. ISSN 2364-4168.
doi: 10.1007/s41060-018-0119-9.

11

Published as a conference paper at ICLR 2020

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In Maria Florina Bal-
can and Kilian Q. Weinberger (eds.),Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 ofProceedings of Machine Learning Research, pp. 737–746, New
York, New York, USA, 20–22 Jun 2016. PMLR.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Ef�cient neural architecture
search via parameter sharing. InInternational Conference on Machine Learning, 2018.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V. Le, and Alexey Kurakin. Large-scale evolution of image classi�ers. In Doina Precup and
Yee Whye Teh (eds.),Proceedings of the 34th International Conference on Machine Learning,
volume 70 ofProceedings of Machine Learning Research, pp. 2902–2911, International Conven-
tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Aging Evolution for Image Classi-
�er Architecture Search. InAAAI, 2019.

T. Saikia, Y. Marrakchi, A. Zela, F. Hutter, and T. Brox. Autodispnet: Improving disparity estimation
with automl. InIEEE International Conference on Computer Vision (ICCV), 2019. URLhttp:
//lmb.informatik.uni-freiburg.de/Publications/2019/SMB19 .

Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett (eds.),Advances in Neural Information Processing Systems
29, pp. 4053–4061. Curran Associates, Inc., 2016.

Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating
the search phase of neural architecture search.arXiv preprint, 2019.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies.Evolutionary Computation, 10:99–127, 2002.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
In International Conference on Learning Representations, 2019.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based analysis
of large batch training and robustness to adversaries. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),Advances in Neural Information Processing
Systems 31, pp. 4949–4959. Curran Associates, Inc., 2018.

Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards automated deep learning: Ef-
�cient joint neural architecture and hyperparameter search. InICML 2018 Workshop on AutoML
(AutoML 2018), July 2018.

Zhao Zhong, Jingchen Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural
network architecture generation. InCVPR. IEEE Computer Society, 2018.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. InInterna-
tional Conference on Learning Representations, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. InConference on Computer Vision and Pattern Recognition, 2018.

12

Published as a conference paper at ICLR 2020

A M ORE DETAIL ON DARTS

Here we present a detailed description of DARTS architectural update steps. We �rstly provide
the general formalism which computes the gradient of the outer level problem in (1) by means of
the implicit function theorem. Afterwards, we present how DARTS computes the gradient used to
update the architectural parameters� .

A.1 DERIVATIVE WITH SMOOTHED NON-QUADRATIC LOWER LEVEL PROBLEM

Consider the general de�nition of the bi-level optimization problem as given by (1) and (2). Given
that f is twice continuously differentiable and that all stationary points are local minimas, one
can make use of the implicit function theorem to �nd the derivative of the solution map� � (y)
w.r.t. y (Bengio, 2000). Under the smoothness assumption, the optimality condition of the lower
level (2) is r � f (y; �) = 0, which de�nes an implicit function� � (y). With the assumption that
min � f (y; �) has a solution, there exists a(y; � �) such thatr � f (y; � �) = 0. Under the condition
that r � f (y; � �) = 0 is continuously differentiable and that� � (y) is continuously differentiable at
y, implicitly differentiating the last equality from both sides w.r.t. y and applying the chain rule,
yields:

@(r � f)
@�

(y; � �) �
@��

@y
(y) +

@(r � f)
@y

(y; � �) = 0: (3)

Assuming that the Hessianr 2
� f (y; � �) is invertible, we can rewrite (3) as follows:

@��

@y
(y) = �

�
r 2

� f (y; � �)
� � 1

�
@(r � f)

@y
(y; � �): (4)

Applying the chain rule to (1) for computing the total derivative ofF with respect toy yields:

dF
dy

=
@F
@�

�
@��

@y
+

@F
@y

; (5)

where we have omitted the evaluation at(y; � �). Substituting (4) into (5) and reordering yields:

dF
dy

=
@F
@y

�
@F
@�

�
�

r 2
� f

� � 1
�

@2f
@�@y

: (6)

equation 6 computes the gradient ofF, given the function� � (y), which maps outer variables to the
inner variables minimizing the inner problem. However, in most of the cases obtaining such a map-
ping is computationally expensive, therefore different heuristics have been proposed to approximate
dF=dy (Maclaurin et al., 2015; Pedregosa, 2016; Franceschi et al., 2017; 2018).

A.2 DARTS ARCHITECTURAL GRADIENT COMPUTATION

DARTS optimization procedure is de�ned as a bi-level optimization problem whereL valid is the
outer objective (1) andL train is the inner objective (2):

min
�

L valid (�; w � (�)) (7)

s:t: w � (�) = arg min
w

L train (�; w); (8)

where both losses are determined by both the architecture parameters� (outer variables) and the
network weightsw (inner variables). Based on Appendix A.1, under some conditions, the total
derivative ofL valid w.r.t. � evaluated on(�; w � (�)) would be:

dL valid

d�
= r � L valid � r w L valid

�
r 2

w L train
� � 1

r 2
�;w L train ; (9)

wherer � = @
@� , r w = @

@w andr 2
�;w = @2

@�@w. Computing the inverse of the Hessian is in general
not possible considering the high dimensionality of the model parametersw, therefore resolving to
gradient-based iterative algorithms for �ndingw� is necessary. However, this would also require to

13

Published as a conference paper at ICLR 2020

optimize the model parametersw till convergence each time� is updated. If our model is a deep
neural network it is clear that this computation is expensive, therefore Liu et al. (2019) propose
to approximatew� (�) by updating the current model parametersw using a single gradient descent
step:

w� (�) � w � � r w L train (�; w); (10)

where� is the learning rate for the virtual gradient step DARTS takes with respect to the model
weightsw. From equation 10 the gradient ofw� (�) with respect to� is

@w�

@�
(�) = � � r 2

�;w L train (�; w); (11)

By setting the evaluation pointw� = w � � r w L train (�; w) and following the same derivation as
in Appendix A.1, we obtain the DARTS architectural gradient approximation:

dL valid

d�
(�) = r � L valid (�; w �) � � r w L valid (�; w �)r 2

�;w L train (�; w �); (12)

where the inverse Hessianr 2
w L � 1

train in (9) is replaced by the learning rate� . This expression
however contains again an expensive vector-matrix product. Liu et al. (2019) reduce the complexity
by using the �nite difference approximation aroundw� = w � � r w L valid (�; w �) for some small
� = 0 :01=kr w L valid (�; w �)k2 to compute the gradient ofr � L train (�; w �) with respect tow as

r 2
�;w L train (�; w �) �

r � L train (�; w +) � r � L train (�; w �)
2� r w L valid (�; w �)

,

r w L valid (�; w �)r 2
�;w L train (�; w �) �

r � L train (�; w +) � r � L train (�; w �)
2�

: (13)

In the end, combining equation 12 and equation 13 gives the gradient to compute the architectural
updates in DARTS:

dL valid

d�
(�) = r � L valid (�; w �) �

�
2�

�
r � L train (�; w +) � r � L train (�; w �)

�
(14)

In all our experiments we always use� = � (also called second order approximation in Liu et al.
(2019)), where� is the learning rate used in SGD for updating the parametersw.

B CONSTRUCTION OFS1 FROM SECTION 3

We ran DARTS two times on the default search space to �nd the two most important operations per
mixed operation. Initially, every mixed operation consists of 8 operations. After the �rst DARTS
run, we drop the 4 (out of 8) least important ones. In the second DARTS run, we drop the 2 (out
of the remaining 4) least important ones. S1 is then de�ned to contain only the two remaining most
important operations per mixed op. Refer to Figure 9 for an illustration of this pre-optimized space.

C FINAL ARCHITECTUREEVALUATION

Similar to the original DARTS paper (Liu et al., 2019), the architecture found during the search are
scaled up by increasing the number of �lters and cells and retrained from scratch to obtain the �nal
test performance. For CIFAR-100 and SVHN we use 16 number of initial �lters and 8 cells when
training architectures from scratch for all the experiments we conduct. The rest of the settings is the
same as in Liu et al. (2019).

On CIFAR-10, when scaling the ScheduledDropPath drop probability, we use the same settings for
training from scratch the found architectures as in the original DARTS paper, i.e. 36 initial �lters
and 20 stacked cells. However, for search space S2 and S4 we reduce the number of initial �lters
to 16 in order to avoid memory issues, since the cells found with more regularization usually are
composed only with separable convolutions. When scaling theL 2 factor on CIFAR-10 experiments
we use 16 initial �lters and 8 stacked cells, except the experiments on S1, where the settings are the
same as in Liu et al. (2019), i.e. 36 initial �lters and 20 stacked cells.

14

Published as a conference paper at ICLR 2020

(a) Normal cell space

(b) Reduction cell space

Figure 9: Search spaceS1.

Note that although altering the regularization factors during DARTS search, when training the �nal
architectures from scratch we always use the same values for them as in Liu et al. (2019), i.e.
ScheduledDropPath maximum drop probability linearly increases from 0 towards 0.2 throughout
training, Cutout is always enabled with cutout probability 1.0, and theL 2 regularization factor is set
to 3 � 10� 4.

15

Published as a conference paper at ICLR 2020

D ADDITIONAL EMPIRICAL RESULTS

Figure 10: Test regret and validation error of the search (one-shot) model when running DARTS
on S5 and CIFAR-10 with differentL 2 regularization values. The architectural parameters' over�t
reduces as we increase theL 2 factor and successfully �nds the global minimum. However, we notice
that the architectural parameters start under�tting as we increase to much theL 2 factor, i.e. both
validation and test error increase.

Table 5: Validation (train) and test accuracy on CIFAR-10 of the search and �nal evaluation models,
respectively. The values in the last column show the maximum eigenvalue� �

max (computed on a
random sampled mini-batch) of the Hessian, at the end of search for different maximum drop path
probability). The four blocks in the table state results for the search spaces S1-S4, respectively.

Drop Valid acc. Test acc. Params � �
max

Prob. seed 1 seed 2 seed 3seed 1 seed 2 seed 3seed 1 seed 2 seed 3seed 1 seed 2 seed 3

S1

0.0 87.22 87.01 86.98 96.16 94.43 95.43 2.24 1.93 2.03 1.023 0.835 0.698
0.2 84.24 84.32 84.22 96.39 96.66 96.20 2.63 2.84 2.48 0.148 0.264 0.228
0.4 82.28 82.18 82.79 96.44 96.94 96.76 2.63 2.99 3.17 0.192 0.199 0.149
0.6 79.17 79.18 78.84 96.89 96.93 96.96 3.38 3.02 3.17 0.300 0.255 0.256

S2

0.0 88.49 88.40 88.35 95.15 95.48 96.11 0.93 0.86 0.97 0.684 0.409 0.268
0.2 85.29 84.81 85.36 95.15 95.40 96.14 1.28 1.44 1.36 0.270 0.217 0.145
0.4 82.03 82.66 83.20 96.34 96.50 96.44 1.28 1.28 1.36 0.304 0.411 0.282
0.6 79.86 80.19 79.70 96.52 96.35 96.29 1.21 1.28 1.36 0.292 0.295 0.281

S3

0.0 88.78 89.15 88.67 94.70 96.27 96.66 2.21 2.43 2.85 0.496 0.535 0.446
0.2 85.61 85.60 85.50 96.78 96.84 96.74 3.62 4.04 2.99 0.179 0.185 0.202
0.4 83.03 83.24 83.43 97.07 96.85 96.48 4.10 3.74 3.38 0.156 0.370 0.184
0.6 79.86 80.03 79.68 96.91 94.56 96.44 4.46 2.30 2.66 0.239 0.275 0.280

S4

0.0 86.33 86.72 86.46 92.80 93.22 93.14 1.05 1.13 1.05 0.400 0.442 0.314
0.2 81.01 82.43 82.03 95.84 96.08 96.15 1.44 1.44 1.44 0.070 0.054 0.079
0.4 79.49 79.67 78.96 96.11 96.30 96.28 1.44 1.44 1.44 0.064 0.057 0.049
0.6 74.54 74.74 74.37 96.42 96.36 96.64 1.44 1.44 1.44 0.057 0.060 0.066

D.1 ADAPTIVE DARTS DETAILS

We evaluated DARTS-ADA (Section 5.3) withR = 3 � 10� 4 (DARTS default),Rmax = 3 � 10� 2

and� = 10 on all the search spaces and datasets we use for image classi�cation. The results are
shown in Table 3 (DARTS-ADA). The functiontrain and eval conducts the normal DARTS
search for one epoch and returns the architecture at the end of that epoch's updates and thestop
value if a decision was made to stop the search and rollback tostop epoch .

16

Published as a conference paper at ICLR 2020

Algorithm 1: DARTSADA

/ * E: epochs to search; R: initial regularization value; Rmax : maximal
regularization value; stop criter: stopping criterion; � :
regularization increase factor * /

Input : E, R, Rmax , stop criter, �

/ * start search for E epochs * /
for epoch in E do

/ * run DARTS for one epoch and return stop=True together with the
stop epoch * /

/ * and the architecture at stop epoch if the criterion is met * /
stop, stop epoch, arch train and eval(stop criter) ;
if stop & R � Rmax then

/ * start DARTS from stop epoch with a larger R * /
arch DARTSADA(E - stop epoch, � � R, Rmax , stop criter, �) ;
break

end
end

Output: arch

Figure 11: Test errors of architectures along with the validation error of the search (one-shot) model
for each dataset and space when scaling the ScheduledDropPath drop probability. Note that these
results (blue lines) are the same as the ones in Figure 8.

17

Published as a conference paper at ICLR 2020

Figure 12: Test errors of architectures along with the validation error of the search (one-shot) model
for each dataset and space when scaling theL 2 factor. Note that these results (blue lines) are the
same as the ones in Figure 7.

18

Published as a conference paper at ICLR 2020

Figure 13: Local average of the dominant EV� �
max throughout DARTS search (for different drop

path prob. values). Markers denote the early stopping point based on the criterion in Section 4.3.

Figure 14: Effect ofL 2 regularization no the EV trajectory. The �gure is analogous to Figure 13.

19

Published as a conference paper at ICLR 2020

Figure 15: Effect of ScheduledDropPath and Cutout on the full eigenspectrum of the Hessian at the
end of architecture search for each of the search spaces. Since most of the eigenvalues after the 30-th
largest one are almost zero, we plot only the largest (based on magnitude) 30 eigenvalues here. We
also provide the eigenvalue distribution for these 30 eigenvalues. Notice that not only the dominant
eigenvalue is larger whendp = 0 but in general also the others.

20

	Introduction
	Background and Related Work
	Relation between flat/sharp minima and generalization performance
	Bi-level Optimization
	Neural Architecture Search
	Differentiable Architecture Search (DARTS)

	When DARTS fails
	The Role of Dominant Eigenvalues of 2Lvalid
	Large architectural eigenvalues and generalization performance
	Large architectural eigenvalues and performance drop after pruning
	Early stopping based on large eigenvalues of 2Lvalid

	Regularization of inner objective improves generalization of architectures
	Regularization via data augmentation
	Increased L2 regularization
	Practical Robustification of DARTS by Regularizing the Inner Objective

	Conclusions
	More detail on DARTS
	Derivative with smoothed non-quadratic lower level problem
	DARTS architectural gradient computation

	Construction of S1 from Section 3
	Final Architecture Evaluation
	Additional empirical results
	Adaptive DARTS details
	A closer look at the eigenvalues

	Disparity Estimation
	Datasets
	Training
	Effect of regularization on the inner objective

	Results on Penn Treebank
	Discovered cells on search spaces S1-S4 from Section 3 on other datasets

