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ABSTRACT

We propose a novel training approach for improving the learning of generalizing
features in neural networks. We augment the network with a reverse pass which
aims for reconstructing the full sequence of internal states of the network. Despite
being a surprisingly simple change, we demonstrate that this forward-backward
training approach, i.e. racecar training, leads to significantly more general fea-
tures to be extracted from a given data set. We demonstrate in our paper that a
network obtained in this way is continually trained for the original task, it outper-
forms baseline models trained in a regular fashion. This improved performance
is visible for a wide range of learning tasks from classification, to regression and
stylization. In addition, networks trained with our approach exhibit improved per-
formance for task transfers. We additionally analyze the mutual information of
our networks to explain the improved generalizing capabilities.

1 INTRODUCTION

Humans spend surprising amounts of time assembling and disassembling objects. These decon-
struction tasks serve a wide range of purposes from a hobby for motorists, to an important source
of learning and exploration for children (Gopnik et al., 1999). Motivated by this behavioral trait of
humans, we propose a surprisingly simple, yet powerful modification of neural network training:
in addition to a regular forward pass, we add a reverse pass that is constrained to reconstruct all
in-between results of the forward pass as well as the input. As we will demonstrate below, this
palindromic structure yields substantial improvements for generalization of the learned features in
a wide range of architectures, and in many cases even improves the baseline achieved with regular
training. Our results indicate that the reversible nature of the proposed training setup, which we
will subsequently refer to via the palindrome ”racecar”, encourages the formation of general and
reusable features that benefit a wide range of learning tasks.

With our approach we specifically target transfer learning applications. For a regular, i.e., a non-
transfer task, the goal usually is to train a network that gives the optimal performance for one spe-
cific goal, as has been demonstrated in many success stories over the years (LeCun et al., 1998;
Krizhevsky et al., 2012; Goodfellow et al., 2014; He et al., 2016). In such a case, the network nat-
urally exploits any observed correlations between input and output distribution. E.g., if the color
of an object in any way correlates with its type, the training of a classifier should find and use this
information. In recent years, even networks trained only for a very specific task were shown to be
powerful starting points for training models with different tasks (Zamir et al., 2018; Gopalakrishnan
et al., 2017; Ding et al., 2017). In many cases, the original network contained features that were
applicable to different data domains and beneficial for new inference tasks. An inherent difficulty
in this setting is that typically no knowledge about the specifics of the new data and task domains is
available at training time of the source model. While it is common practice to target broad and dif-
ficult tasks with the hope that this will yield learned features that are applicable in new domains, we
instead specifically target improving the generalizing capabilities of learned features while training
the source model.

The core idea of our approach is to add a reverse path during training that is constrained to be as
reversible as possible every step of the way. This makes the training task more difficult at first,
but at the same time encourages the network to learn reversible and general features. Motivated by
the disassembly and assembly processes of humans, and in contrast to previous work on invertible
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networks (Gomez et al., 2017; Jacobsen et al., 2018; Zhang et al., 2018), we constrain the network
to represent a as-reversible-as-possible process for all intermediate layer activations, instead of only
perfectly reproducing the input. Thus, even for cases where a classifier can, e.g., rely on color for
inference of an object type, the model is encouraged to learn a representation that can recover the
input in order to not only reconstruct the color of an object but also its shape. Hence the internal rep-
resentation the network builds naturally has to encode as many aspects of the input data distribution
as its representational capabilities permit, in order to recover the input. We demonstrate the benefits
of our approach for a variety of architectures, from pure convolutional neural networks (CNNs) with
and without batch normalization, to networks that include fully connected layers, as well as GAN
architectures.

2 RELATED WORK

Transfer learning with deep neural networks has been very successful for a variety of tasks, such
as image classification (Duan et al., 2012; Kulis et al., 2011; Zhu et al., 2011), multi-language text
classification (Zhou et al., 2014b; Prettenhofer & Stein, 2010; Zhou et al., 2014a), and medical
imaging problems (Ravishankar et al., 2016). A central question in transfer learning is whether
base and target tasks are related or not. Zamir et al. (2018) proposed an approach to obtain task
relationship graphs for different tasks. Another critical point is that we need the neural networks
to learn general features from the data set, which are useful for both base and related tasks, rather
than some specific features. But how to improve generalization of trained neural networks and reuse
them for different related tasks is still a challenge.

In this paper we propose a modified training approach for improving generalization via explicitly
building a reverse pass network in addition to a regular forward pass. While Zhang et al. (2018) pro-
posed reverse connected modules, they are primarily used to transfer information from deep layers
to shallow layers for a given task. Recovering all input information from hidden representations of a
network is generally very difficult (Dinh et al., 2016; Mahendran & Vedaldi, 2016), due to the loss of
information over the course of the layer transformations. In this context, Tishby & Zaslavsky (2015)
proposed the information bottleneck principle, which states that for an optimal representation, infor-
mation unrelated to the current task is reduced. This highlights the common specialization of regular
training approaches. Ardizzone et al. (2018), Jacobsen et al. (2018) and Gomez et al. (2017) also
build reversed networks, but mainly focus on how to make a network fully invertible via introducing
special structures. As a consequence, the path from input to output is actually different from the
reverse path that translates output to input. In addition, the proposed structures of previous work can
not be easily attached to other network architectures. In contrast, we show that it is not necessary
to strive for perfect reversibility to obtain an improved performance. Our racecar training also fully
preserves an architecture for the backward path, and does not require operations that are not part of
the source network. As such it can easily be applied in new settings, such as for adversarial training
(Goodfellow et al., 2014).

Aiming for related goals, Bansal et al. (2018) introduced orthogonality regularizations to the loss
function. However, the proposed constraints are relatively weak, and make it difficult to arrive at in-
vertible networks. Besides, the orthogonality regularization still focuses on improving performance
of a known, given task. This means the training process only extracts features which the network
considers useful for improving the performance of the current task. Hence, unlike our method, or-
thogonality does not necessarily improve generalization or improved transfer performance (Torrey
& Shavlik, 2010).

3 METHOD

The goal of transfer learning is to reuse a basic model trained for task A for a related new task
B. The performance for B naturally depends crucially on whether the content of the basic model
yields benefits for the new task. In line with previous work (Yosinski et al., 2014), we consider
the generality of features learned on task A as the extent to which the features can be used for
task B. This can be measured in terms of the difference between the transfer performance pAB and
training a model for task B from scratch yielding performance pB . Our central goal is improving the
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transferability of the basic model w.r.t. the performance metric pAB − pB , which at the same time
can be seen as a measure of the generalizing capabilities of the basic model.

Regular training approaches typically construct a model with a certain network structure, and train
the model weights for a given task via a suitable loss function. Our approach does not modify this
initial structure, but adds a second pass that reverses the initial structure while reusing all weights
and biases. E.g., for a typical fully connected layer, the forward pass, the operation L2 = M×L1+b

is changed to L
′

1 = MT × (L2 − b) for the reverse pass, where L1 and L2 denote input and output,
respectively. Here, M and b denote weight matrix and bias, while L

′

1 denotes the input regenerated
via the reverse pass. We will show and discuss L

′
for several examples below.

Our goal with the reverse pass is to invert all operations of the forward pass to obtain identical
intermediate activations between the layers with matching dimensionality. We can then constrain
the intermediate results of each layer of the forward pass to match the results of the backward pass.
Due to the symmetric structure of the two passes, we can use a simple L2 difference to drive the
network towards aligning the results:

Lracecar =
∑n

m=1 λm

∥∥∥Lm − L
′

m

∥∥∥
2

(1)

Here Lm denotes the input of layer m in the forward pass and L
′

m the output of layer m for the
reverse pass. λm denotes a scaling factor for the loss of layer m, which, however, is typically
constant in our tests across all layers. An illustration of this process for a CNN structure is shown
in Fig. 1. While the construction of the reverse is straight-forward for all standard operations, i.e.,
fully connected layers, convolutions, pooling etc., batch normalization (BN) and activation function
require slight adjustments to map Lm and L

′

m to the same range of values such that they can be
compared in the loss. Hence, we use the BN parameters and the activation function of layer m − 1

from the forward pass for layer m in the reverse pass, Note that with our notation, L1 and L
′

1 refer
to the input I , and the regenerated input I

′
, respectively. In the following, we will refer to networks

trained with the added reverse structure and the loss terms of equation 1 as racecar training.

The constraints of equation 1 intentionally only minimize differences in an averaged manner with
an L2 norm, as we don’t strive for a perfectly bijective mapping between input and output domains.
Rather, our goal with the racecar training is to encourage the network to extract features that preserve
as much information from the input data set as possible with the given representative capabilities of
the chosen architecture. Hence, while a regular forward training allows a model to specialize its
extracted features to maximize performance for a given task, our approach encourages the network
to consider the full input data distribution, such that it ideally can be recovered from the latent-space
representation of all layers.

To differentiate variants, we will use the following naming scheme: StdA/B, RRs
A/B, OrtA/B for trained

base models. Here, Std denotes a regular training run (always shown in yellow color in graphs
below), while RRs denotes models trained with our racecar training (in green below). Here, the s
superscript denotes how many intermediate results of layers are used, e.g., RR3 means n = 3 in
equation 1, which constrains the input data as well as the next two layers of the original structure.
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Figure 1: Left: An overview of the regular forward pass (blue) and corresponding reverse pass (yellow). The
right side illustrates how parameters are reused for a convolutional layer. conv and deconv denote convolution
and deconvolutional operations, and fm and BNm denote activation function and batch normalization of layer
m, respectively. Shared kernel and bias are represented by km and bm, and we assume that the deconvolution
internally transposes the kernel tensor.
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Correspondingly, a network trained with RR1 means the network is trained to regenerate the input
without any constraints for the activations inside of the network. This represents a special, and
somewhat sub-optimal case of our method, as we will demonstrate below. Ort additionally denotes
models trained with orthogonal constraints (Bansal et al., 2018) (in blue). The subscripts A/B
denote the task A/B the model was trained for. We will call direct training for either task phase I in
the following.

In phase II, we reuse a model trained in phase I for new tasks (typically B), with a regular training
approach. I.e., in phase II, all models are only trained with the forward structure and original loss,
and do not use the racecar loss or other modifications. We will use the naming scheme StdAA/AB,
RRs

AA/AB, OrtAA/AB for trained models in phase II. Here AA/AB mean the model was trained for
task A during phase I, and is then trained for task A/B in phase II.

It is worth pointing out that the additional constraints of our racecar training lead to increased re-
quirements for memory and additional computations during phase I, e.g., it is 61.13% slower per
epoch for the MNIST tests. And while the constraints can also lead to a slight deterioration of
performance, e.g., a 0.17% lower accuracy for MNIST tests during phase I, we will demonstrate
that our models outperform baselines during phase II even for the original task, and thus in practice
justify introducing the racecar training.

4 EVALUATION IN TERMS OF MUTUAL INFORMATION

We now evaluate our approach in terms of the mutual information (MI) between input
and output data distributions. As our approach hinges on the introduction of the re-
verse pass, we will show that our approach succeeds in terms of establishing mutual in-
formation between the input and the constrained intermediates inside a network. More
formally, the mutual information I(X;Y ) of random variables X and Y measures how
different the joint distribution of X and Y is w.r.t. the product of their marginal
distributions, i.e., the Kullback-Leibler divergence: I(X;Y ) = DKL[P(X,Y )||PXPY ].

𝑅𝑅
ଵ 𝑅𝑅
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Figure 2: MI planes for the initial models RR1
A, RR6

A,
StdA and OrtA. End points of RR6

A are located in the
middle of the graphs. But for StdA and OrtA, I(L;Y )
values of every layer are very high, which means more
specific features about the given output data set are
learned by them.

Tishby & Zaslavsky (2015) proposed a mu-
tual information plane to analyze the train-
ing process, which shows I(X;L) and I(L;Y )
for each layer L over the course of the train-
ing epochs. Points in the resulting graphs are
colored w.r.t. the epoch, i.e., initially black,
and yellow once the training is finished. Each
graph shows the 5 middle and output layers.
The MI planes visualize how much informa-
tion about input and output distribution is re-
tained at each layer, and how these relation-
ships change within the network. For regular
training, the information bottleneck principle
(Tishby & Zaslavsky, 2015) states that early
layers contain more information about the in-
put (high I(X;L) and I(Y ;L)). Hence they
are often visible at the top-right. Later layers
have no relationship with the output I(Y ;L)
initially, which increases over the course of a
successful training. Thus, they typically move
to the top-left. The intuition behind MI planes is explained in more detail in Appendix A.1. We
use the same numerical studies as in Shwartz-Ziv & Tishby (2017) as task A, i.e. a regular feed-
forward neural network with 6 fully-connected layers. The inputs consist of 12 binary digits, and
outputs are 2 binary digits. Models are trained using cross entropy as base loss function. De-
tails of this architecture (and following ones) are given in the Sec. A.1. At first, we train a base
model RR6

A with a full racecar loss. For comparison, we also show the MI planes for StdA (a
regularly trained model), and OrtA (trained with orthogonal constraints (Bansal et al., 2018)). We
additionally include a version RR1

A, i.e. trained with only one racecar loss term λ1|L1 − L
′

1|2),
which means that only the input is constrained to be recovered. Thus, RR1

A represents a sim-
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plified version of our approach which receives no constraints that the intermediate results of for-
ward and backward pass should match. The resulting information planes are shown in Fig. 2.
We can see that the end points of RR6

A, i.e., the yellow clusters of points for the final state of the
model, are located in the middle part of the graph. This means that all layers successfully encode
information about the inputs as well as the outputs. In contrast, for StdA and OrtA, I(X;L) values of
later layers are very low (points near the top left), while I(L;Y ) is high throughout. This indicates
that the outputs were successfully encoded, and that increasing amounts of information about the
inputs are discarded by StdA and OrtA. Hence, both models are highly specialized for the given task.
Comparing RR1

A with RR6
A, the yellow end points of the latter are located in a centralized region,

which indicates that every layer contains similar information about X and Y . It also indicates that
the path from input to output is similar to the path from output to input. The end points of RR1

A, on
the other hand, are located in a scattered region. I.e., this network has different amounts of mutual
information across its layers, and potentially a very different path in each direction. RR1

A is only
constrained to be able to regenerate its input, while the full racecar loss for RR6

A ensures that the
network learns features which are beneficial for both directions. This test highlights the importance
of the constraints throughout the depth of a network in our racecar loss.
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Figure 3: MI plane and accuracy comparisons for continued training (RR1
AA,

RR6
AA, StdAA and OrtAA). The RR6

AA model slightly outperforms the other
three models, indicating the positive effect of the full racecar training.

As the discussion above fo-
cused on phase I, we now
turn to analyzing phase II,
i.e., follow-up training runs
with models trained during
phase I. Based on RR1

A,
RR6

A, OrtA and StdA, we
continue training the mod-
els only for the original task,
i.e., RR1

AA, RR6
AA, OrtAA

and StdAA. The resulting MI
planes are shown in Fig. 3.
While all models now fo-
cus on the output (yellow
points at the top, maximiz-
ing I(L;Y ), there are differ-
ences in the distributions of
the yellow points along the
x axis, i.e., how much MI with the input is retained. We can see that for model RR6

AA, the final
I(X;L6) value at the end of the training is higher than for StdAA, OrtAA and RR1

AA (final I(L6;Y )
values are shown above each graph). While the final accuracy is high throughout due to the rela-
tively simple setup, RR6

AA slightly outperforms the other variants for the original task. We will more
clearly demonstrate this positive trait of our racecar training with more complex tasks below.
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Figure 4: MI plane and accuracy comparisons for a task transfer for models RR1
AB, RR6

AB, OrtAB and StdAB.
RR6

AB successfully reuses features from task A for task B, and outperforms StdB. The regular model StdAB
yields a very low performance.
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We now analyze a new task, to check whether the model learned specific or general features, and
reverse output labels as transfer learning task B. E.g., if the output is [0,1] in the original data set,
we invert it to [1,0]. Based on RR1

A, RR6
A, OrtA and StdA, we train RR1

AB, RR6
AB, OrtAB and StdAB for

the modified data set. For comparison, we also train a model trained StdB from scratch. MI planes
and accuracy comparisons are shown in Fig. 4. While the range in performance is relatively small
across most models, StdAB stands out with a very low accuracy. This model from a regular training
run has large difficulties to adapt to the new task. Model OrtAB also performs worse than StdB.
RR6

AB shows the best performance in this setting, confirming the previous MI plane visualizations,
and demonstrating that our loss formulation helped to learn more general features from the input
data, improving the performance for related tasks such as the inverted outputs.

5 EXPERIMENTAL RESULTS

We now turn to more complex network structures (CNNs, GANs, Auto-Encoders), with different
data sets (MNIST, Cifar, smoke, ImageNet) and different tasks (such as classification and synthesis)
to show that models trained with our approach succeed in learning very general features that transfer
to new tasks.

5.1 DIGIT CLASSIFICATION

Figure 5: Comparisons between
regenerated inputs. F.l.t.r.: OrtA,
StdA, RR3

A, and the reference.
Only RR3

A recovers most of the
input information successfully.

The MNIST data set is a commonly used data set for hand writ-
ten digit classification (LeCun et al., 1998). At first, we train three
models for regular MNIST data set classification as task A, one
with racecar loss RR3

A, a regular model StdA, and one with orthogo-
nal OrtA constraints (Bansal et al., 2018), as the latter also aims for
improving CNN performance. Usually, convolutional layers take
up most of the model parameters, so we correspondingly compute
the racecar loss for the convolutional layers, omitting the fully con-
nected layers that would be required for class label inference. To
highlight the properties of our algorithm, we show comparisons between I and the regenerated I ′
in Fig. 5. We can see that for racecar training, most of the features from the input are recovered.
Trying to invert the network in the same way for a regular training run or training with orthogonal
constraints largely fails, as the extracted features are extracted according to the digit classification
and discard information unrelated to this task.


ଷ

  
ଷ

  

Test Accuracy
0.981 0.984 0.986

0.913
0.952 0.961

0.929

Figure 6: Accuracy comparisons for
base task A and transfer learning task
B. RR3

AA and RR3
AB achieve the best

performance for the base task and
transfer learning task, respectively.

Based on OrtA, StdA, RR3
A, we continue training to obtain

models OrtAA, StdAA, and RR3
AA. Results are shown in Fig. 6.

We repeated these runs 5 times, in order to draw reliable con-
clusions. We can see that RR3

AA outperforms OrtAA and StdAA
at the end of training, which indicates that racecar training
yields general features that can also improve performance for
original task. Council (2000) illustrated that balanced learn-
ing of both general and specific features is more effective for
human learning, and our results here are consistent with this
intuition.

As general features are more robust than specific features (No-
vak et al., 2018), we investigate a perturbed data set for the
transfer task B. We apply OrtA, StdA and RR3

A to n-MNIST, a
data set for classification with motion blur (Basu et al., 2017).
Performance results are likewise given in Fig. 6. Based on the
same CNN structure and parameters, RR3

A achieves the best
performance. This indicates that RR3

A learned more general features via racecar training than OrtA
and StdA.

5.2 NATURAL IMAGE CLASSIFICATION
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Test Accuracy
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Figure 7: Accuracy compar-
isons of taskA and taskB. RR13

AA
and RR13

AB got bestperformance
for tast A and B.

Natural images arise in many important application scenar-
ios. Hence, we evaluate our approach with the Cifar data set
(Krizhevsky et al., 2009). At first, we train two models as Cifar-
10 data set classification taskA, RR13

A and StdA. We again continue
training to obtain RR13

AA and StdAA, results for which are shown
in Fig. 7. The racecar training also improves performance for this
natural image classification task. For transfer learning task B, we
reuse RR13

A and StdA for Cifar-100 data set classification (RR13
AB

and StdAB). Results are also shown in Fig. 7. Training with the
same CNN structure and parameters, StdAB has difficulties adjust-
ing to the new task, while our model from the initial racecar training
slightly outperforms the model trained for scratch for B.

5.3 GENERATIVE ADVERSARIAL MODELS

In the previous sections, we employed commonly used data sets and transfers to related tasks. Next,
we test our approach for a transfer situation with a more challenging transfer from a synthetic single
channel data set of synthetic smoke simulations, to RBG videos of real smoke clouds. We use GAN
and auto-encoder structures for the following models.
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Figure 8: Regenerated low resolution results and high resolution
outputs comparison between StdA, RR6

A and reference. Only RR6
A

successfully recovers the input.

At first, we use a GAN structure (one
generator and one discriminator net-
work) for super resolution of the sim-
ulation data as task A. StdA is trained
via regular training, and RR6

A uses
racecar training for the generator net-
work of the GAN. Regenerated low
resolution results and high resolu-
tion outputs comparisons are shown
in Fig. 8. Both RR6

A and StdA can
up scale low resolution data 4 times
larger to high resolution data very
well. But RR6

A can also recover low
resolution versions from high reso-
lution data. StdA fails in regenerat-
ing the low resolution images. This
shows that RR6

A not only focused on
generating good features for the super-resolution task, but also preserves information about the in-
put.

We reuse the generator models RR6
A and StdA to train two sets of auto-encoder networks: once

for the synthetic smoke data as transfer task B1, and as a second task B2 for RBG videos
of real-world smoke clouds (example frames are given in the appendix). This yields mod-
els RR6

AB1,2
and StdAB1,2 , respectively. The resulting accuracies, summarized in Fig. 9, show

that racecar training performs best for both auto-encoding tasks. This is especially encourag-
ing for task B2, as it represents a transfer from fully synthetic training to real-world images.

L2 loss

8401.43

187.03

28704.33

7.56E8

2.36E7 4.07E7

𝑅𝑅భ
𝑆𝑡𝑑భ 𝑆𝑡𝑑భ 𝑆𝑡𝑑మ 𝑅𝑅మ

 𝑆𝑡𝑑మ

Figure 9: Accuracy comparisons of trans-
fer learning tasks. RR6

AA and RR6
AB got best

performance for task B1 and B2.

Synthetic data and real-world images have significant dif-
ferences in terms of their features. In the worst case, most
of the features learned by the regular learning process
StdA can not be transferred to the new task. Besides, an
inappropriate starting point of the transfer learning task
can guide the whole training process towards a wrong di-
rection. Instead, a model with more general features such
as RR6

A can more easily be reused in new tasks, and can
provide a better starting point for learning. This indicates
the potential of racecar training to obtain generalizable
features from synthetic data sets that can be used for tasks
working with real-world data.
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5.4 VGG19 STYLIZATION

𝑅𝑅
ଵ

𝑆t𝑑

𝑠𝑜𝑢𝑟𝑐𝑒

𝑠𝑡𝑦𝑙𝑒

𝑠𝑜𝑢𝑟𝑐𝑒

𝑠𝑡𝑦𝑙𝑒

𝑅𝑅
ଵ

𝑆t𝑑

Figure 10: Left: stylization test from a natural image to the starry night painting style. Right: stylization test
from horse to zebra.

𝑅𝑅
ଵ 𝑆t𝑑𝑠𝑜𝑢𝑟𝑐𝑒 𝑠𝑡𝑦𝑙𝑒

Figure 11: First primary stylization test,
RR16

A did not change specific features in the
results.

In order to provide a qualitative evaluation in a complex,
visual scenario, we turn to the popular task of image styl-
ization. We use V GG19 networks (Simonyan & Zisser-
man, 2014) in the following, and we train two V GG19
networks RR16

A and StdA with ImageNet data set (Deng
et al., 2009). Based on these, we train RR16

AA and StdAA,
top5 accuracy of which are 77.59% and 75.28%, respec-
tively. Consistent with previous test, RR16

AA outperforms
the StdAA baseline even in this complex case for a net-
work with ca. 143 million weights. Gatys et al. (2016) achieve excellent stylization results, but
the results strongly depend on the pre-trained VGG network, i.e., it stylizes and changes structures
that are represented by the features in the VGG network. Hence, we employ stylization to visualize
which features, general or specialized, the two VGG versions focus on.

Gatys et al. (2016) generate stylized results via optimizing two losses, Lstyle

and Lcontent, which measure style difference and content difference, respec-
tively (details are given in the appendix. To compare the feature extract-
ing capabilities between the RR16

A and StdA runs, we only optimize Lstyle.

𝑅𝑅
ଵ𝑠𝑜𝑢𝑟𝑐𝑒 (𝑙𝑜𝑤 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

𝑠𝑡𝑦𝑙𝑒 (ℎ𝑖𝑔ℎ 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 𝑆t𝑑

𝐸ோோಲ
భల

𝐸ௌ௧ௗಲ

Figure 12: Stylization comparison from
low resolution to high resolution. RR16

A ’s re-
sults are closer to the high resolution.

As a first test, we use two simple shapes as source and
style images, as shown in Fig. 11. They have the same
background and object color. The only difference is the
large-scale shape of the object. Thus, as we aim for ap-
plying an style that is identical to the source, we can test
whether the features can cleanly separate and preserve the
large scale shape features from the ones for the localized
style. Comparing the results of RR16

A and StdA, the output
of RR16

A is almost identical to the input, while stylization
with StdA changes the shape of the object introducing un-
desirable streaks around the outline. This result indicates
that RR16

A is able to cleanly encode the shape of the object
and preserve it during the stylization.

We show more stylization tests in Fig. 10, which optimize both Lcontent and Lstyle. For the left
example of Fig. 10 with a Van Gogh style image, both models can generate good stylized results.
However, from the results obtained with StdA (orange square area), we can see a star within the
building, which indicates that this model mixed style and context information in its features. Across
our tests we found that models like this one, trained for more specific features, more often performed
simple patch-based matches rather than generating meaningful transfers of styles. However, if the
model focuses on more general and abstract features, it can perform a better semantic matching and
generate improved stylization results. For the right part of Fig. 10, we show a test transferring a
horse image to a zebra style. RR16

A focuses more on general features, such as grass, zebra, and
their positional relationships. As a result the model successfully distinguishes foreground from
background, and changes the style for both foreground and background objects with only smaller

8
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mistakes. StdA’s performance is significantly worse, leading to large grass-like areas within the body
of the horse.

source

style

𝑅𝑅ଵ_𝐴

𝑆𝑡𝑑_𝐴

Figure 13: RR16
A generates a zebra pat-

tern in the horse’s shadow, but yields gen-
erally improved results compared to the reg-
ular transfer in StdA.

We confirm the capabilities of the VGG model from race-
car training with a low- to high-resolution transfer where
the goal is purely to add detail. I.e., we can compute in
place errors w.r.t. high-resolution reference. The result
is shown in Fig. 12. The VGG model obtained with a
regular training run yields significantly higher errors, as
visible on the right side of the figure.

RR16
A can extract more general information from the in-

put, which is helpful with generating semantically mean-
ingful results. However, we found that this property can
also confuse the model in some specific situations. For in-
stance, as shown in Fig. 13, at first, RR16

A can distinguish
foreground and background and generate better styliza-
tion results than StdA. However, RR16

A also stylizes the
shadow of the horse. This also indicates that RR16

A fo-
cuses more on general features. As a consequence, all horse shape objects are extracted and then
stylized with zebra textures, such as the shadow in Fig. 13. However, we generally think that this
can provide potentially helpful information in other situations, e.g., for classification tasks. Overall,
the quality of the racecar transfer also still surpasses the regular version.

6 CONCLUSION

We have proposed a novel training approach for improving neural network generalization by adding
a constrained reverse pass. We have shown for a range of tasks that this yields networks with
more general features that more easily transfer to new tasks, and even outperform baselines for the
original task. Our training approach is very general, and imposes no requirements regarding network
structure or training method. As future work, we believe it will be very interesting to evaluate
our approach for other architectures from the vast zoo of existing work, e.g., we are particularly
interested in analyzing recurrent structures such as LSTMs and GRUs (Hochreiter & Schmidhuber,
1997; Cho et al., 2014).
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A APPENDIX

Here we will present more details, such as data set information, network structures and training
parameters, for all of our mentioned tests above: Mutual Information Sec. A.1, MNIST classification
Sec. A.2, Cifar Sec. A.3, smoke Sec. A.4 and VGG Sec. A.5. We will use C(k, l, s), D(k, l, s) to
represent convolutional and deconvolutional operations, respectively, and fully connected layers are
noted with F (l), where k, l, s denote kernel size, output channels and stride size, respectively. Bias
of CNN layer is denoted with b. I/O(z) denote input/output and their dimensionality is given by
z. Ir denotes the input of reverse pass network. tanh, relu, lrelu denote corresponding activation
functions, where we typically use a leaky tangent of 0.2 for the negative half space. UP , MP and
BN denote 2× nearest-neighbor up sampling, max pooling with 2× 2 filters and stride 2, and batch
normalization, respectively. All performance numbers were measured on a Nvidia GeForce GTX
1080 Ti GPUs and Intel Core i7-6850K CPUs.

11



Under review as a conference paper at ICLR 2020

A.1 MUTUAL INFORMATION TEST

Below we will introduce more details about tests in Sec. 4.For the numerical task (Shwartz-Ziv &
Tishby, 2017), input variableX are 12 binary digits that represent 12 uniformly distributed points on
a 2D sphere, and this task is about binary decision rules which are invariant under O(3) rotations of
the sphere. X has 4096 different patterns, and they are divided into 64 disjoint orbits of the rotation
group, which form a minimal sufficient partition/statistics for spherically symmetric rules (Kazhdan
et al., 2003). To generate input-output distribution P (X,Y ), Shwartz-Ziv & Tishby (2017) applied
a stochastic rule p(y = 1|x) = Ψ(f(x) − θ), (x ∈ X, y ∈ Y ), where Ψ is a standard sigmoidal
functionΨ(u) = 1/(1 + exp(−γu)). Shwartz-Ziv & Tishby (2017) use a spherically symmetric
real valued function of the pattern f(x) (evaluated through its spherical harmonics power spectrum
(Kazhdan et al., 2003) and compared it to a threshold θ, which was selected to make p(y = 1) =∑

x p(y = 1|x)p(x) ≈ 0.5, with uniform p(x). γ is high enough to keep the mutual information
I(X;Y ) ≈ 0.99 bits. 80% of the data (3277 data pairs) are used for training and rests (819 data
pairs) are used for testing. The forward and reverse pass structures of the fully connected neural
networks are in Table 7. Hyper parameters used for training are listed in Table 8.

All layer are used in racecar loss. All layers in the RR6
A and StdA are reused for training RR6

AA/AB
and StdAA/AB. For OrtA, we used the Spectral Restricted Isometry Property (SRIP) regularization
(Bansal et al., 2018),

LSRIP = βσ(WTW − I) , (2)

where W is the kernel; I denotes an identity matrix; β represents the regularization coefficient;
σ(W ) = supz∈Rn,z 6=0

‖Wz‖
‖z‖ denotes the spectral norm of W . Details about all models’ accuracy are

shown in Table 1 and Table 2.

𝐼(
𝐿

;𝑌
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Figure 14: MI plane of StdA as an example.

Mutual information (MI) plane is a powerful
tool for neural networks analysis but admittedly
not very intuitive. Here we will use MI plane
of StdA in Fig. 2 as an example to illustrate
MI plane in details. From Table 7, we can see
that neural network in this numerical task has
5 middle layers (L1∼5) and one output layer
(L6). TheX axis of the MI plane represents the
quantity I(X;L), i..e the mutual information
between input variable X and output of each
layer L. The Y axis of the MI plane represents
I(L;Y ), the mutual information between out-
put of each layer L and output variable Y . Be-
sides, every point in the graphs is colored w.r.t.
the training epochs, i.e., initially black, and yellow once the training is finished. Hence, we can
see six lines changing from black to yellow in figure 14 of the updated version. According to the
information bottleneck principle [5], the outputs of the early layers contain more information from
the input, which means a high value for I(X;L) and I(L;Y ). We can see that early layers L1 3 are
located in the top right part of the graph. For later layers, such as L6, parameters of L6 are randomly
initialized before training, so there are almost no direct relationships between the output of L6 and
X or Y , which means low values of I(X;L) and I(L;Y ). Once the model is well trained, L6 of
StdA is able to generate data which has the same distribution with Y , so I(L;Y ) has increased and
moved to the top left corner of the graph. The line of L6 starts from the bottom left part of the graph,
and moves to the top left part during training. For RR6

A in figure 2, the L2 constraint is explicitly
applied to decrease difference between L and L

′
, and the output is pushed to recover lost informa-

tion of the input, so I(X;L) of later layers is increased, and I(X;L) of early layers is decreased to
make the task easier.

A.2 MNIST CLASSIFICATION

This section gives details for Sec. 5.1. The regular MNIST data set(LeCun et al., 1998) contains
55k images for training and 10k images for testing. For the n-MNIST motion blur data set(Basu
et al., 2017), there are 60k images for training and 10k images for testing. Image size of them are all
28× 28. Example data from MNIST and n-MNIST with motion blur are shown in Fig. 15. Details
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about the forward and reverse pass network structures are shown in Table 9. Hyper parameters are
listed in Table 10.

Figure 15: Left: data from MNIST; Right: data from n-MNIST with motion blur.

All 3 convolutional layers are used for racecar loss and all layers in RR3
A, StdA and OrtA are reused

for training RR3
AA/AB, StdAA/AB and OrtAA/AB. Example training processes of the MNIST tests are

shown in Fig. 16. We can see that racecar loss increases the task difficulty, so RR3
A yields a lower

performance and longer training time than StdA in the first phase. In the second phase RR3
A out-

performs StdA and OrtA in both task A an B, which indicates that racecar training is helpful with
general feature extraction. For OrtA, we also use equation 2 as orthogonal regularization. All
models’ accuracy results are listed in Table 3 and Table 4.

Figure 16: Left: training processes of RR3
A (blue, accuracy: 0.9810, cost: 5.675 seconds/epoch), StdA (orange,

accuracy: 0.9827, cost: 3.522 seconds/epoch) and OrtA (red, accuracy: 0.9792, cost: 4.969 seconds/epoch).
Middle: training processes of RR3

AA (blue), StdAA (orange) and OrtAA (red). Right: training processes os RR3
AB

(green), StdAB (pink), OrtAB (blue), and StdB (grey).

A.3 CIFAR TEST

Figure 17: Left: training processes of RR13
A (blue, accuracy: 0.5784, cost: 64 seconds/epoch) and StdA

(orange, accuracy: 0.8272, cost: 63 seconds/epoch). Middle: training processes of RR13
AA (green) and StdAA

(blue). Right: training processes of RR13
AB (blue), StdAB (pink) and StdB (green).

All 13 convolutional layers are used for racecar loss and all layers except the last fully connected
layer (because of different output size) in RR13

A and StdA are reused for training RR13
AA/AB and

StdAA/AB. Example training processes of the Cifar tests are shown in Fig. 17. In phase II, the
model RR13

A outperform StdA in both task A and B. We show details about all models in Table 5.

A.4 SMOKE DATA SETS TEST

In this section, we will introduce details for Sec. 5.3. The smoke simulation data was generated
with a standard fluid solver (Stam, 1999) with MacCormack advection and MiC-preconditioned CG
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solver via the mantaflow library. We generated 20 simulations with 120 frames for every simu-
lation. 10% of the data was used for training. Smoke inflow region, inflow velocity and buoyancy
force were randomized to produce varied data. The low resolution data was down-sampled from
the high-resolution data by a factor of 4. Data augmentation, such as flipping and rotation was used
in addition. The smoke capture data set contains 2500 smoke images (Eckert et al., 2018), and we
again used 10% as training data set. The forward and reverse pass structures of the network are in
Table 13. Hyper parameters are listed in Table 14. Note that inputs of discriminator contain high
resolution data (64, 64, 1) and low resolution (16, 16, 1), which is up-sampled to (64, 64, 1) and
concatenated with high resolution data.

All generator layers are involved in racecar loss. All 6 layers of RR6
A and StdA are reused for

training RR6
AB1

and StdAB1 , but only 5 layers are reused for training RR6
AB2

and StdAB2 because of
different data size. The following results give further details for the auto-encoder transfer learning
task AB1 which uses synthetic, i.e., simulated fluid data. Example training processes of RR6

AB1

(orange), StdAB1
(blue) and model trained from scratch StdB1

(red) are shown in Fig. 18. RR6
AB1

achieved the lowest L2 loss after training. Example outputs of RR6
AB1

, StdAB1
and StdB1

are shown
in Fig. 19. It becomes clear that model RR6

AB1
gives the best performance across these models.

L2_loss

Figure 18: Training processes of RR6
AB1

(orange), StdAB1 (blue) and StdB1 (red). The green inset shows the
final loss values.

𝑆𝑡𝑑భ 𝑆𝑡𝑑భ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑅𝑅భ


Figure 19: Example outputs comparisons between RR6
AB1

, StdAB1 , StdB1 and reference. We can see that
RR6

AB1
works better than StdAB1 , while StdB1 failed for this task producing a mostly black image.

We similarly illustrate the behavior of the transfer learning task AB2 for images of real-world flu-
ids. This example likewise uses an auto-encoder structure. Example training processes of RR6

AB2
,

StdAB2
and model trained from scratch StdB2

are shown in Fig. 20. RR6
AB2

yields the best perfor-
mance at the end of training. Example output comparisons of RR6

AB2
, StdAB2

and StdB2
are shown

in Fig. 21. We can see that error of RR6
AB2

is lower than StdAB2
and StdB2

. Detail comparisons
between different models are shown in Table 6.
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L2_loss

Figure 20: Training processes of RR6
AB2

(orange), StdAB2 (blue) and StdB2 (red). The green inset shows the
final loss values.

𝑆𝑡𝑑మ𝑅𝑅మ
 𝑆𝑡𝑑మ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐸ோோಲಳమ
ల 𝐸ௌ௧ௗಲಳమ 𝐸ௌ௧ௗಳమ: 45.26 : 57.08 : 75.81

Figure 21: Example outputs and mean absolute error comparisons between RR6
AB2

, StdAB2 , StdB2 and
reference. We can see that error of RR6

AB2
is lower than StdAB2 and StdB2 .

A.5 VGG TEST

We now give details of the tests in Sec. 5.4. For the ImageNet data set (Deng et al., 2009), 1281167
images of 1000 classes are used for training, and 50k images are used for testing. Image size is
224× 224. The forward and reverse pass of VGG19 are in Table 16. Hyper parameters are listed in
Table 15.

All 16 convolutional layers are used for racecar loss. To speed up training process of RR16
A , we

firstly train a model without racecar loss for 6 epochs with batch size 64, as regular training. And
then we reuse this model for training RR16

A and StdA with batch size 24. Example training processes
of RR16

A and StdA are shown in Fig. 22, while those of RR16
AA and StdAA are shown in Fig. 23.

Next, we will give additional details for the stylization tests. Gatys et al. (2016) use Ltotal =
ηLcontent + δLstyle for stylization optimizations, where η and δ are coefficient factors. Lcontent

is used to calculate content difference between source image p and generated image g, as shown in
equation 3.

Lcontent(p, g, t) = 1
2

∑
m,n(Fm,n,t

p − Fm,n,t
g )2, (3)
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Figure 22: Top5 accuracy of RR16
A (red, accuracy: 0.6673, cost: 0.636 second/batch) and StdA (blue, accuracy:

0.7324, cost: 0.308 second/batch).

Figure 23: Top5 accuracy of RR16
AA (grey) and StdAA (blue).

where Fm,n,t
p is p′s feature representation of the mth filter at position n in layer t. Lstyle is used

to calculate style difference between style image a and generated image g, as shown in equation 4.
The style loss can be written as:

Gm,n,t
a =

∑
f F

m,f,t
a Fn,f,t

a ,

Et = 1
4N2

t M
2
t

∑
m,n(Gm,n,t

g −Gm,n,t
a )2,

Lstyle(a, g) =
∑T

t=0 ωtEt,

(4)

where ωt is are the weighting factors for layer t; G is the Gram matrix; Nt denotes filter numbers of
layer t, and Mt is the dimension of layer t’s filter; T denotes the number of layers included in the
style loss.
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Table 1: Model accuracy of MI base task tests

training
runs OrtA RR1

A RR6
A StdA OrtAA RR1

AA RR6
AA StdAA

1 0.976 0.682 0.767 0.973 0.973 0.855 0.997 0.956
2 0.944 0.75 0.779 0.986 0.954 0.909 0.99 0.973
3 0.975 0.731 0.855 0.964 0.979 0.875 0.99 0.986
4 0.993 0.923 0.855 0.981 0.994 0.984 0.995 0.965
5 0.965 0.405 0.852 0.94 0.967 0.965 0.999 0.986

Avg. 0.971 0.707 0.822 0.967 0.973 0.938 0.994 0.973
Std. Dev. 0.018 0.187 0.045 0.018 0.015 0.056 0.004 0.013

Table 2: Model accuracy of MI transfer task tests

training
runs OrtAB RR1

AB RR6
AB StdAB StdB

1 0.978 0.914 0.996 0.136 0.966
2 0.948 0.956 1 0.136 0.958
3 0.976 0.961 0.993 0.136 0.984
4 0.994 0.97 0.996 0.136 0.974
5 0.968 0.959 0.998 0.136 0.989

Avg. 0.973 0.956 0.997 0.136 0.974
Std. Dev. 0.017 0.022 0.003 0 0.013

Table 3: Model accuracy of MNIST base task tests

training
runs OrtA StdA RR3

A OrtAA StdAA RR3
AA

1 0.9792 0.9827 0.981 0.9819 0.9854 0.9856
2 0.8322 0.9815 0.9824 0.982 0.9837 0.9851
3 0.9511 0.9815 0.9828 0.9792 0.983 0.9862
4 0.8841 0.9817 0.9816 0.9814 0.9842 0.9867
5 0.8266 0.9829 0.9816 0.9816 0.9846 0.9861

Avg. 0.895 0.982 0.982 0.981 0.984 0.986
Std. Dev. 0.0689 0.0007 0.0007 0.0011 0.0009 0.0006

Table 4: Model accuracy of MNIST transfer task tests

training
times OrtAB StdAB RR3

AB StdB

1 0.949 0.956 0.9612 0.8714
2 0.8629 0.9458 0.954 0.9657
3 0.9458 0.9543 0.9648 0.9659
4 0.9495 0.9559 0.9604 0.8789
5 0.8564 0.9466 0.9649 0.9638

Avg. 0.913 0.952 0.961 0.929
Std. Dev. 0.0485 0.0051 0.0044 0.0494

Table 5: Model accuracy of Cifar tests

training
runs StdA RR13

A StdAA RR13
AA StdAB RR13

AB StdB

1 0.8263 0.5784 0.8351 0.869 0.2063 0.2602 0.2581
2 0.7868 0.5553 0.7936 0.8538 0.1838 0.2687 0.2659
3 0.7729 0.7686 0.7718 0.8449 0.1795 0.2803 0.2386
4 0.865 0.7382 0.8472 0.8692 0.1738 0.2969 0.2418
5 0.781 0.6775 0.7787 0.8418 0.1704 0.2733 0.2621

Avg. 0.806 0.664 0.805 0.856 0.183 0.276 0.253
Std. Dev. 0.0387 0.0945 0.0340 0.0130 0.0141 0.0138 0.0123

Table 6: Model L2 loss of smoke tests. Results for B2: ×107.

training
runs StdAB1 RR6

AB1
StdB1 StdAB2 RR6

AB2
StdB2

1 22883 211.9 31911 213 2.95 6.13
2 493.3 139 22291 2.37 1.79 2.66
3 1828 210.2 31911 11.4 2.32 3.43

Avg. 8401.43 187.03 28704.33 75.6 2.36 4.07
Std. Dev. 12559.15 41.61 5554.11 119 0.578 1.82
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Table 7: Forward and reverse pass of the neural network in MI tests

Forward pass (294 weights):
I(12)→ tanh(FC(10) + b1)→ tanh(FC(7) + b2)→ tanh(FC(5) + b3)→ tanh(FC(4) + b4)→
tanh(FC(3) + b5)→ tanh(FC(2) + b6)→ O(2).
Reverse pass:
O(2)− b6 → tanh(FC(3))− b5 → tanh(FC(4))− b4 → tanh(FC(5))− b3 → tanh(FC(7))− b2
→ tanh(FC(10))− b1 → tanh(FC(12))→ I

′
(12).

Table 8: Hyper parameters of MI tests
Batch size 512 Learning rate 0.0004 λ1∼6 1E − 2

Training Epochs 20000 for RR6
A/AA/AB and StdA/AA/AB; 40000 for StdB

Table 9: Forward and reverse pass network of MNIST Classification tests

Forward pass (38645 weights):
I(28, 28, 1)→ relu(C(3, 64, 1) + b1)→MP → relu(C(3, 64, 1) + b2)→MP → relu(C(3, 1, 1) + b3) = Ir
→ FC(10)→ O(10)
Reverse pass:
Ir − b3 → relu(D(3, 64, 1))→ UP − b2 → relu(D(3, 64, 1))→ UP − b1 → relu(D(3, 1, 1))→ I

′
(28, 28, 1)

Table 10: Hyper parameters of MNIST Classification tests
Batch size 64 λ1∼3 1E − 5

Learning rate 0.001 for RR3
A, StdA and OrtA;

0.0001 for RR3
AA/AB, StdAA/AB/B and OrtAA/AB

Training Epochs
100 for RR3

A, StdA and OrtA;
400 for RR3

AA, StdAA and OrtAA;
700 for RR3

AB, StdAB and OrtAB

Table 11: Forward and reverse pass of the neural network in Cifar tests

Forward pass:
I(32, 32, 3)→ relu(BN(C(3, 64, 1) + b1))→ relu(BN(C(3, 64, 1) + b2))→MP
→ relu(BN(C(3, 128, 1) + b3))→ relu(BN(C(3, 128, 1) + b4))→MP → relu(BN(C(3, 256, 1) + b5))
→ relu(BN(C(3, 256, 1) + b6))→ relu(BN(C(3, 256, 1) + b7))→MP → relu(BN(C(3, 512, 1) + b8))
→ relu(BN(C(3, 512, 1) + b9))→ relu(BN(C(3, 512, 1) + b10))→MP → relu(BN(C(3, 512, 1) + b11))
→ relu(BN(C(3, 512, 1) + b12))→ relu(BN(C(3, 512, 1) + b13)) = Ir → relu(BN(FC(4096) + b14))
→ relu(BN(FC(4096) + b15)) → relu(BN(FC(10) + b16)) → O(10).
Reverse pass:
Ir − b13 → relu(BN(D(3, 512, 1)))− b12 → relu(BN(D(3, 512, 1)))− b11 → relu(BN(D(3, 512, 1)))
→ UP − b10 → relu(BN(D(3, 512, 1)))− b9 → relu(BN(D(3, 512, 1)))− b8 → relu(BN(D(3, 256, 1)))
→ UP − b7 → relu(BN(D(3, 256, 1)))− b6 → relu(BN(D(3, 256, 1)))− b5 → relu(BN(D(3, 128, 1)))
→ UP − b4 → relu(BN(D(3, 128, 1)))− b3 → relu(BN(D(3, 64, 1)))→ UP − b2
→ relu(BN(D(3, 64, 1)))− b1 → relu(BN(D(3, 3, 1)))→ I

′
(32, 32, 3).

Table 12: Hyper parameters of Cifar tests
Batch size 200 λ1∼13 1E − 7

Learning rate
0.1 (0 to 80 epochs);
0.01 (81 to epochs);
0.001 (after 120 epochs)

Training Epochs 180 for RR13
A/AA and StdA/AA;

50 for RR13
AB and StdAB/B
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Table 13: Forward and reverse pass of network in smoke tests

Generator forward pass:
I(16, 16, 1)→ relu(C(5, 64, 1) + b1)→ UP → relu(C(5, 128, 1) + b2)→ UP → relu(C(5, 128, 1) + b3)
→ relu(C(5, 64, 1) + b4)→ relu(C(5, 32, 1) + b5)→ relu(C(5, 1, 1) + b6)→ O(64, 64, 1) = Ir.
Generator reverse pass:
Ir − b6 → relu(D(5, 32, 1))− b5 → relu(D(5, 64, 1))− b4 → relu(D(5, 128, 1))− b3 → relu(D(5, 128, 1))

→MP − b2 → relu(D(5, 64, 1))→MP − b1 → relu(D(5, 1, 1))→ I
′
(16, 16, 1).

Discriminator:
I(64, 64, 2)→ lrelu(BN(C(5, 32, 1) + b1))→ lrelu(BN(C(5, 64, 1) + b2))
→ lrelu(BN(C(5, 128, 1) + b3))→ lrelu(BN(C(5, 256, 1) + b4))→ FC(1) + b5 → O(1).

Table 14: Hyper parameters of smoke tests
Batch size 64 Learning rate 0.0002 λ1∼6 0.1
Training
Epochs

40000 for RR6
A and StdA;

1000 for RR6
AB1

, RR6
AB2

, StdAB1 and StdAB2

Table 15: Hyper parameters of VGG19 training
λ1∼16 1E − 10

Learning rate 0.01 (0 to 7 epochs); 0.001 (7 to 10 epochs);
0.0001(10 to 15 epochs); 0.00001 (after 15 epochs)

Training Epochs 36 epochs for RR16
A and StdA;

22 epochs for RR16
AA and StdAA

Table 16: Forward and reverse pass of VGG19 network

Forward pass:
I(224, 224, 3)→ relu(C(3, 64, 1) + b1)→ relu(C(3, 64, 1) + b2)→MP → relu(C(3, 128, 1) + b3)
→ relu(C(3, 128, 1) + b4)→MP → relu(C(3, 256, 1) + b5)→ relu(C(3, 256, 1) + b6)
→ relu(C(3, 256, 1) + b7)→ relu(C(3, 256, 1) + b8)→MP → relu(C(3, 512, 1) + b9)
→ relu(C(3, 512, 1) + b10)→ relu(C(3, 512, 1) + b11)→ relu(C(3, 512, 1) + b12)→MP
→ relu(C(3, 512, 1) + b13)→ relu(C(3, 512, 1) + b14)→ relu(C(3, 512, 1) + b15)
→ relu(C(3, 512, 1) + b16) = Ir →MP → relu(FC(4096) + b17)→ relu(FC(4096) + b18)
→ relu(FC(1000) + b19) → O(1000).
Reverse pass:
Ir − b16 → relu(D(3, 512, 1))− b15 → relu(D(3, 512, 1))− b14 → relu(D(3, 512, 1))− b13
→ relu(D(3, 512, 1))→ UP − b12 → relu(D(3, 512, 1))− b11 → relu(D(3, 512, 1))− b10
→ relu(D(3, 512, 1))− b9 → relu(D(3, 256, 1))→ UP − b8 → relu(D(3, 256, 1))− b7
→ relu(D(3, 256, 1))− b6 → relu(D(3, 256, 1))− b5 → relu(D(3, 128, 1))→ UP − b4
→ relu(D(3, 128, 1))− b3 → relu(D(3, 64, 1))→ UP − b2 → relu(D(3, 64, 1))− b1 → relu(D(3, 3, 1))

→ I
′
(224, 224, 3).
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