
Published as a workshop paper at ICLR 2019

LEARNING TO DEFENSE BY LEARNING TO ATTACK

Haoming Jiang∗, Zhehui Chen∗, Yuyang Shi, Tuo Zhao
H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA, USA
{jianghm,zhchen,yyshi,tourzhao}@gatech.edu

Bo Dai
Google Brain
Mountain View, CA, USA
bodai@google.com

ABSTRACT

Adversarial training provides a principled approach for training robust neural net-
works. From an optimization perspective, the adversarial training is essentially
solving a minmax robust optimization problem. The outer minimization is trying
to learn a robust classifier, while the inner maximization is trying to generate ad-
versarial samples. Unfortunately, such a minmax problem is very difficult to solve
due to the lack of convex-concave structure. This work proposes a new adversarial
training method based on a general learning-to-learn framework. Specifically,
instead of applying the existing hand-designed algorithms for the inner problem,
we learn an optimizer, which is parametrized as a convolutional neural network.
At the same time, a robust classifier is learned to defense the adversarial attack
generated by the learned optimizer. From the perspective of generative learning, our
proposed method can be viewed as learning a deep generative model for generating
adversarial samples, which is adaptive to the robust classification. Our experi-
ments demonstrate that our proposed method significantly outperforms existing
adversarial training methods on CIFAR-10 and CIFAR-100 datasets.

1 INTRODUCTION

This decade has witnessed great breakthroughs in deep learning in a variety of applications, such as
computer vision (Taigman et al., 2014; Girshick et al., 2014; He et al., 2016; Liu et al., 2017). Recent
studies (Szegedy et al., 2013), however, show that most of these deep learning models are very vulner-
able to adversarial attacks. Specifically, by injecting a small perturbation to a normal sample, one can
obtain an adversarial example. Although the adversarial example is semantically indistinguishable
from the normal one, it can severely fool deep learning models and undermine the security of deep
learning, causing reliability problems in autonomous driving, biometric authentication, etc.

Researchers have devoted many efforts to studying efficient adversarial attack and defense (Szegedy
et al., 2013; Goodfellow et al., 2014b; Nguyen et al., 2015; Zheng et al., 2016; Madry et al., 2017;
Carlini & Wagner, 2017). There is a growing body of work on generating successful adversarial
examples, e.g., fast gradient sign method (FGSM, Goodfellow et al. (2014b)), projected gradient
method (PGM, Kurakin et al. (2016)), Carlini-Wagner (CW, Paszke et al. (2017)) etc. As for defense,
Goodfellow et al. (2014b) first propose to robustify the network by adversarial training, which
augments the training data with adversarial examples and still requires the network to output the
correct label. Further, Madry et al. (2017) formalize the adversarial training as the following minmax
optimization problem:

minθ
1
n

∑n
i=1

[
maxδi∈B `(f(xi + δi; θ), yi)

]
, (1)

where {(xi, yi)}ni=1 ⊂ Rd×Y are n pairs of input feature and the corresponding label, ` denotes a loss
function, f(·; θ) denotes the neural network with parameter θ, and δi ∈ B denotes the perturbation
for xi in B. The existing literature on optimization also refers to θ as the primal variable and δi’s as
the dual variables. Different from the well-studied convex-concave problem1, problem equation 1
is very challenging. Since ` is nonconvex in θ and nonconcave in δ, there exist many equilibria.
The majority of them are unstable. In the existing optimization literature, there is no algorithm to
converge to a stable equilibrium with theoretical guarantees. Empirically, the existing primal-dual
algorithms perform poorly for solving equation 1.

1Loss function `(θ; δ) is convex in primal variable θ and concave in dual variable δ.

1



Published as a workshop paper at ICLR 2019

The minmax formulation in equation 1 naturally provides us with a unified perspective on prior works
of adversarial training. Such a minmax problem consists of two optimization problems, an inner
maximization problem and an outer minimization problem: The inner problem targets on finding
an optimal attack for a given data point (x, y) that maximizes the loss, which essentially is the
adversarial attack; The outer problem aims to find a θ so that the loss given by the inner problem
is minimized. For solving equation 1, Goodfellow et al. (2014b) propose to use FGSM to solve the
inner problem. Madry et al. (2017) further suggest to solve the inner problem by PGM and obtain a
result better than FGSM, since FGSM essentially is one iteration PGM. PGM, however, still does
not guarantee to find the optimal solution of the inner problem, due to the nonconcavity of the inner
problem. Furthermore, PGM training does not obtain a stable equilibrium of problem equation 1.
Moreover, adversarial training needs to find a δi for each (xi, yi), thus the dimension of the overall
search space for all data is substantial, which makes the computation unaffordable. Besides, existing
methods, e.g., FGSM and PGM, suffer from the gradient vanishing in backpropagation, which makes
the gradient uninformative and slows down the training procedure.

Without much prior knowledge (well-studied structure) of the loss function, the hand-designed
methods are not guaranteed to generate good perturbations and achieve a good performance. Instead,
for solving equation 1, we propose a new learning-to-learn (L2L) framework that provides a more
efficient and flexible way to generate strong perturbations for adversarial training. Specifically, we
parameterize the optimizer of the inner maximization problem by a convolutional neural network
(CNN) denoted by g(A(x, y, θ);φ), where A(x, y, θ) denotes an operator yielding the input of the
optimizer. We also call the optimizer as the attacker network. Since the neural network is very
powerful in function approximation, such a parameterization ensures that our attacker network g is
able to yield strong adversarial perturbations. Under our framework, instead of directly solving δi, we
update the parameter φ of the attacker network g. Our training procedure then becomes updating the
parameters of two neural networks, which is very similar to Generative Adversarial Network (GAN,
Goodfellow et al. (2014a)).

Different from the hand-designed methods computing the adversarial perturbation for each individual
sample using gradients from backpropagation, our methods generate the adversarial perturbations
for all samples through the shared attacker network g. This enables the attacker network to learn
potential common structures of the adversarial perturbations for all samples. Therefore, our method
is capable of yielding strong perturbations and accelerating the training process. Furthermore,
the L2L framework is very flexible. We can either choose different A(x, y, θ) as the input of the
attacker, or use different attacker network architectures. For example, we can include gradient
information in A(x, y, θ) and use a recurrent neural network (RNN) to mimic multi-step gradient-
type algorithms. In this paper, we mainly consider three attacker networks: (1) Naive Attacker
Network with A(x, y, θ) = x; (2) Gradient Attacker Network with with A(x, y, θ) = [x,∇x`]; (3)
Multi-Step Gradient Attacker Network with A(x, y, θ) = [x,∇x`]. The last two attacker networks
may potentially capture the high order information to help the adversarial training. Instead of simply
computing the high order information with finite difference approximation or multiple gradients, by
parameterizing the algorithm by a neural network, our proposed methods can capture this information
in a much smarter way (Finn et al., 2017). Our experiments demonstrate that our proposed methods
significantly outperform existing adversarial training methods, e.g., FGSM training, over SVHN,
CIFAR-10, and CIFAR-100 datasets (Netzer et al., 2011; Krizhevsky & Hinton, 2009).

The research on learning-to-learn has a long history (Schmidhuber, 1987; 1992; 1993; Younger et al.,
2001; Hochreiter et al., 2001; Andrychowicz et al., 2016). The basic idea is that one first models the
updating formula of complicated optimization algorithms in a parametric form, and then uses some
simple algorithms, e.g., stochastic gradient algorithm to learn the parameter of the optimizer. Among
existing works, Hochreiter et al. (2001) propose a system allowing the output of backpropagation
from one network to feed into an additional learning network, with both networks trained jointly;
Based on this, Andrychowicz et al. (2016) further show that the design of an optimization algorithm
can be cast as a learning problem. Specifically, they use long short-term memory RNNs to model the
algorithm and allow the RNNs to exploit structure in the problems of interest in an automatic way,
which is undoubtedly one of the most popular methods for learning-to-learn.

However, there are two major drawbacks of the existing learning-to-learn methods: (1) It requires a
large amount of datasets (or a large number of tasks in multi-task learning) to guarantee the learned
optimizer to generalize, which significantly limits their applicability (most of the related works only
consider the image encoding as the motivating application); (2) The number of layers/iterations in the

2



Published as a workshop paper at ICLR 2019

RNN for modeling algorithms cannot be very large so as to avoid significant computational burden in
backpropagation.

Our contribution is that we fill the blank of the learning-to-learn framework in solving minmax
problem, and our proposed methods do not suffer from the aforementioned drawbacks: (1) The
attacker network g with a different φ essentially generates a different task/dataset. Therefore, for
adversarial training, we have sufficient enough tasks for learning-to-learn; (2) The inner problem
does not need a large scale RNN, and we use a CNN or a length-two RNN (sequence of length 2) as
our attacker network, which eases the computational issue.

Our work is closely related to GAN and dual-embedding (Goodfellow et al., 2014a; Dai et al.,
2016), since from the perspective of generative learning, our proposed method can be viewed as
learning a deep generative model for generating adversarial samples, which is adaptive to the robust
classification. All these works focus on solving minmax problems and share some common ground.
We will discuss these works in detail later.

Notations. Given a ∈ R, we denote (a)+ as max(a, 0). Given two vectors x, y ∈ Rd, we denote xi
as the i-th element of x, ||x||∞ = maxi |xi| as the `∞-norm of x, and x ◦ y = [x1y1, · · · , xdyd]> as
the element-wise product.

2 METHOD

This paper focuses on the `∞-norm attack. We define the `∞-ball with radius ε by B(ε) = {δ ∈ Rd :
||δ||∞ ≤ ε} and the corresponding projection as follows:

ΠB(ε)(δ) = sign(δ) ◦max(|δ|, ε),

where sign(·) and max(·, ·) are element-wise operators.

2.1 ADVERSARIAL TRAINING AS ROBUST OPTIMIZATION

The goal of adversarial training is to robustify neural networks. Recall that from a robust optimiza-
tion perspective, given n samples {(xi, yi)}ni=1, where xi is the i-th feature vector and yi is the
corresponding label, the adversarial training is reformulated as minmax problem equation 1:

minθ
1
n

∑n
i=1

[
maxδi∈B(ε) `(f(xi + δi; θ), yi)

]
,

where f denotes the network with parameter θ, ` denotes a loss function, and ε is the maximum
perturbation magnitude. The inner problem aims to find a perturbation δi of xi such that xi + δi
increases the value of loss function as much as possible; While the outer problem targets on decreasing
the loss value with the perturbed data xi + δi. In the existing literature, the standard pipeline of
adversarial training is shown in Algorithm 1.
Note that the loss function `(f(xi + δi; θ), yi) is highly nonconcave in δi. Therefore the step of
generating adversarial perturbation δi in Algorithm 1 is intractable. In practice, this step in most
adversarial training methods adopts hand-designed algorithms. For example, Kurakin et al. (2016)
propose to solve the inner problem approximately by first order methods such as PGM. Specifically,
PGM iteratively updates the adversarial perturbation by projected sign gradient ascent method for
each sample: Given one sample (xi, yi), at the t-th iteration, PGM takes

δti ← ΠB(ε)
(
δt−1i + η · sign

(
∇x`(f(x̃i; θ), y)

))
, (2)

where x̃i = xi + δt−1i , η is the step size, T is a pre-defined total number of iterations, δ0i = 0,
t = 1, · · · , T , and sign(·) is an element-wise operator. Finally PGM takes δi = δTi . Note that FGSM
essentially is an one-iteration version of PGM. Besides, some works adopt other optimization methods,
such as momentum gradient method (Dong et al., 2018), and L-BFGS (Tabacof & Valle, 2016).
However, except for FGSM, they all require numerous queries for gradients through backpropagation,
which is computationally expensive.

2.2 LEARNING TO DEFENSE BY LEARNING TO ATTACK (L2L)

Since hand-designed methods do not perform well, we propose to learn an optimizer for the inner
problem. Specifically, we parameterize the attacker by a CNN g(A(x, y, θ);φ), where the input of
the network g, A(x, y, θ), summaries the information of the data and the neural network f(·; θ). We
then convert problem equation 1 to a two stage optimization problem as follows:

minθ
1
n

∑n
i=1

[
`(f(xi + g(A(xi, yi, θ);φ

∗); θ), yi)
]
, (3)

3



Published as a workshop paper at ICLR 2019

Algorithm 1 Standard pipeline of adversarial training
Input: {(xi, yi)}ni=1: clean data, α: step size, N : number of epochs, ε: maximum perturbation
magnitude.
Return: θ: parameter of classifier network f .
for t← 1 to N do

Sample a minibatchMt

for i inMt do
δi ← arg maxδi∈B(ε) `(f(xi + δi; θ), yi)

Generate adversarial perturbation for (xi, yi)

θ ← θ − α 1
|Mt|

∑
i∈Mt

∇θ`(f(xi + δi; θ), yi)

Update θ over adversarial data {(xi + δi, yi)}i∈Mt

where φ∗ is defined as the solution to the following optimization problem:

φ∗ ∈ arg maxφ
1
n

∑n
i=1 `(f(xi + g(A(xi, yi, θ);φ); θ), yi)

subject to g(A(x, y, θ);φ) ∈ B(ε).

Solving problem equation 3 naturally consists of two stages. In the first stage, the classifier f aims
to fit over all perturbed data; While in the second stage, given a certain classifier f obtained in
the first stage, the attacker network g targets on generating optimal perturbations under constraints
δi’s ∈ B(ε). Since δi = g(A(xi, yi; θ);φ), the constraints can be simply handled by a tanh activation
function in the last layer of the attacker network g. Specifically, because the magnitude of tanh
output is bounded by 1, after we rescale the output by ε, the output of the network g automatically
satisfies the constraints.

Algorithm 2 Learning-to-learn-based adversarial training with gradient attacker network
Input: {(xi, yi)}ni=1: clean data, α1, α2: step sizes,N : number of epochs, ε: maximum perturbation
magnitude.
Return: θ: parameter of classifier network f ; φ: parameter of attacker network g.
for t← 1 to N do

Sample a minibatchMt

for i inMt do
ui ← ∇xi

`(f(xi; θ), yi)
δi ← g(xi, ui;φ)
Generate perturbation by g

θ ← θ − α1
1
|Mt|

∑
i∈Mt

∇θ`(f(xi + δi; θ), yi)

Update θ over adversarial data {(xi + δi, yi)}i∈Mt

φ← φ+ α2
1
|Mt|

∑
i∈Mt

∇φ`(f(xi + δi; θ), yi)

Update φ over adversarial data {(xi + δi, yi)}i∈Mt

Under this framework, the architecture of the attacker network g can be very flexible. We can choose
different A(x, y, θ) as the input and also mimic multi-step gradient algorithms. For example, we can
simply choose

A(x, y, θ) = x or A(x, y, θ) = [x,∇x`(f(x; θ), y)],
where∇x`(f(xi; θ), yi) is the gradient w.r.t. xi obtained by backpropagation. Here we provide the
following three examples:
Naive Attacker Network. This is the simplest example of our attacker network we can imagine,
which takes the original image xi as the input, i.e.,

A(xi, yi, θ) = xi and δi = g(xi;φ).

Under this setting, L2L training is similar to GAN training. The major difference is that the generator
in GAN yields the synthetic data by transforming the random noises, while the naive attacker network
generates the adversarial perturbations by transforming the training samples.
Gradient Attacker Network. Motivated by hand-designed methods, e.g., FGSM and PGM, we
design an attacker which takes the gradient information into computation. Specifically, we concatenate
image xi and gradient ∇x`(f(xi; θ), yi) from backpropagation as the input of the attacker g, i.e.,

A(xi, yi, θ) =
[
xi,∇x`(f(xi; θ), yi)

]
and δi = g

(
xi,∇x`(f(xi; θ), yi);φ

)
.

4



Published as a workshop paper at ICLR 2019

Since more information is provided, we expect the attacker network to be more efficient to learn and
meanwhile yield more powerful adversarial perturbations.

Multi-Step Gradient Attacker Network. We adapt the RNN to mimic a multi-step gradient update.
Specifically, we use the gradient attacker network g as the cell of RNN. These networks share the
same parameter φ. Figure 1 illustrates one step in the multi-step gradient attacker network. As we
mentioned earlier, the number of layers/iterations in the RNN for modeling algorithms cannot be large
so as to avoid significant computational burden in backpropagation. Here we focus on a length-two
RNN to mimic a two-step gradient update. Therefore, the corresponding perturbation becomes:

δi = ΠB(ε)
(
δ
(0)
i + g

(
xi + δ

(0)
i ,∇x`(f(xi + δ

(0)
i , yi; θ);φ

))
,

where δ(0)i = g
(
xi,∇x`(f(xi, yi; θ);φ

)
.

Figure 2 illustrates how to solve problem equation 3 by the gradient attacker network. As can be seen,
we jointly train two networks: one classifier and one attacker. The first forward pass is used to obtain
gradient w.r.t. the classification loss over the clean data. The second forward pass is used to generate
perturbation δi using attacker g. The third forward pass is used to calculate the adversarial loss ` in
equation 3.

Since our gradient attacker network only needs one backpropagation to query gradient, it amortizes
the adversarial training cost, which leads to better computational efficiency. The corresponding
procedure of L2L is shown in Algorithm 2.

3 EXPERIMENTS

To demonstrate the effectiveness and efficiency of our methods, we conduct numerical experiments
on CIFAR-10, CIFAR-100, and SVHN datasets. We compare our methods with FGSM training and
PGM training, and evaluate the robustness of deep neural networks models under both black-box and
white-box settings. All experiments are done in PyTorch with one NVIDIA 1080 Ti GPU. We choose
all hyperparameters by grid search.

Attacker g

Noise

Classifier Adversary

Add 
Original
Input

Gradient

Backpropagation

Concatenate 
Original
Input

Figure 1: The illustration of one step in
the multi-step gradient attacker network.

Original 
Input

Classifier f

Gradient
w.r.t. Clean Loss

Perturbation

Perturbed
Input

Clean Loss

Adv. Loss

+

Backprop

Concatenate

Attacker g

1st pass
2nd pass
3rd pass

Figure 2: The architecture of L2L ad-
versarial training with gradient attacker
network.

For simplicity, we denote Plain Net as the classifier net-
work trained over clean data only, FGSM Net and PGM
Net as the classifiers with FGSM training and PGM train-
ing respectively, and Naive L2L, Grad L2L, and 2-Step
L2L as the classifiers using L2L training with a naive
attacker network, a gradient attacker network and a length-
two RNN attacker respectively.
3.1 GENERAL SETTING

Classifier Network. All experiments adopt a 32-layer
Wide Residual Network (WRN-4-32, Zagoruyko & Ko-
modakis (2016)) as the classifier network. A pre-trained
Plain Net is used as the initial classifier in the adversarial
training. For training a Plain Net over SVHN dataset, we
use the stochastic gradient descent (SGD) algorithm with
Polyak’s momentum (the momentum parameter is 0.9) and
choose the step size as 0.1 for 160 epochs. The Plain Nets
for CIFAR-10 and CIFAR-100 datasets are obtained by
the same training procedure as Zagoruyko & Komodakis
(2016). We use softmax entropy as the loss function ` for
all experiments.

Attacker Network. We investigate two different attacker
architectures: a slim network and a wide network shown
in Tables 1. In the slim network, the second convolutional
layer downsamples tensors in height and width, while
the second last deconvolutional layer upsamples tensors.
On the opposite, the wide network keeps the height and
width of the intermediate tensors as the original input is.
Although the slim network is computationally cheap, due
to the downsampling, such an architecture loses some
information of input. Thus, inspired by residual learning

5



Published as a workshop paper at ICLR 2019

in He et al. (2016), we use a skip layer connection to ease the training of the slim network. Specifically,
the last layer takes the concatenation of A(x, y, θ) and the output of the second last layer as input.

Table 1: Attacker Network Architectures. k, c, s, p denote the kernel size, output channels, stride and
padding of the convolutional layers. Batch Normalization (BN) and ReLU activation are applied
when specified. ResBlocks use the same structure as the generator in Miyato et al. (2018).

Slim Attacker Network Architecture
Conv: [k = 3× 3, c = 128, s = 1, p = 1], BN+ReLU
ResBlocks: [channel = 256]
ResBlocks: [channel = 128] BN
DeConv: [k = 4× 4, c = 16, s = 2, p = 1], BN+ReLU
Conv: [k = 3× 3, c = 3, s = 1, p = 1], tanh

Wide Attacker Network Architecture
Conv: [k = 3× 3, c = 64, s = 1, p = 1], BN+ReLU
ResBlocks: [channel = 128]
ResBlocks: [channel = 256]
ResBlocks: [channel = 128]
ResBlocks: [channel = 64], BN
Conv: [k = 3× 3, c = 3, s = 1, p = 1], tanh

White-box and Black-box. Under the white-box setting, attackers are able to access all parameters
of target models and generate adversarial examples based on the target models; While under the
black-box setting, accessing parameters is prohibited. Therefore, we adopt the standard transfer
attack method from Liu et al. (2016). Specifically, we first train a surrogate model with the same
architecture of the target model but a different random seed, and then attackers generate adversarial
examples to attack the target model by querying gradients from the surrogate model.
Remark 1. Under our black-box setting, the attack highly relies on the transferability, which is the
property that the adversarial examples of one model are likely to fool other models. The transferred
attack is very unstable, and often has a large variation in its effectiveness. Therefore, the results
of the black-box setting might not be reliable, and we mainly focus on the results of the white-box
setting. Due to the space limit, we only present the results of the black-box setting over CIFAR-10,
and leave the results over SVHN and CIFAR-100 in Appendix A.

PGM Attack. We use a 10-iteration PGM with a step size η = 0.01. Moreover, we adopt the same
setting for training PGM net for all experiments.

CW Attack. Here, we briefly describe the CW attack under our setting. CW attack aims to find
the-least norm perturbation that is able to fool the classifier f . Specifically, given one sample x and
its corresponding label y, CW attack solves the following optimization problem:

δ∗ = arg minδ∈B(ε) ||δ||∞ + c · R(f(x+ δ), y), (4)
where c is a tuning parameter and R(·, ·) = maxt6=y

(
(f(x + δ)t − f(x + δ)y)+

)
penalizes those

correctly classified perturbed data x+ δ. For solving equation 4, we adopt the update rule in Paszke
et al. (2017), and set the maximum number of iterations as 100. The parameter c is automatically
tuned by the update rule. For each sample, our algorithm starts at 0 and stops once the perturbation
successfully fools the classifier, or the maximum number of iterations is reached. Note that CW
attack is only designed for white-box setting.
Remark 2. CW and PGM attacks are sufficient to evaluate the robustness of neural networks, since
CW attack has been shown to be close to the optimal attack Carlini et al. (2017). Moreover, we
empirically find out that the results of CW attack are similar to those of PGM attack. We only evaluate
the robustness against CW attack once due to its high computational cost.

Robustness Evaluation. We evaluate the robustness of neural networks under both white-box and
black-box settings with FGSM, PGM, and CW attacks. All reported results under the white-box
setting, except CW attack, are averaged over 5 runs with different random seeds. Since the transferred
attack is often not effective, we only present one result under the black-box setting to demonstrate the
robustness of our models. For the maximum perturbation magnitude, we set ε = 0.03 over CIFAR-10
and CIFAR-100, and ε = 0.05 over SVHN. Moreover, for CIFAR-10, we also evaluate the robustness
by taking different number of iterations for PGM attack with ε = 0.03 shown in Figure 3 and different
perturbation magnitudes shown in Figure 4.

6



Published as a workshop paper at ICLR 2019

3.2 CIFAR-10 AND CIFAR-100 DATASETS

L2L. To update the classifier’s parameter θ, we use the SGD algorithm with Polyak’s momentum
(the momentum parameter is 0.9) and weight decay (the parameter is 0.0001). We set the step
size as 0.1 for the first 30 epochs and 0.01 for the next 10 epochs. Since the training starts from a
pre-trained Plain Net, 40 epochs are sufficient for the adversarial training to converge. We use the
same configuration to update the attacker’s parameter φ.

FGSM Net and PGM Net. We use the SGD algorithm to update θ for FGSM and PGM training.
Different from the L2L using the step size annealing, here we use a fixed step size 0.01, since we
find that the step size annealing procedure hurts both FGSM and PGM training. Besides updating
the classifier’s parameter θ over adversarial samples for robustifying the classifier f , we also update
θ over clean for keeping the accuracy on clean data as Kurakin et al. (2016) suggests. Without this
trick, the accuracy over clean drops significantly for PGM Net and FGSM Net. Moreover, for PGM
training, we adopt PGM10 with a step size η = 0.01 in equation 2, which yields sufficiently strong
perturbations in practice.

Table 2: Results of the white-box setting over CIFAR. (W) denotes the wide attacker network; (S)
denotes the slim attacker network. Standard deviations are presented in brackets.

CIFAR-10 CIFAR-100
Clean FGSM PGM10 CW Clean FGSM PGM10 CW

Plain Net 94.49 23.51 0.00 0.00 76.10 9.49 0.13 0.00
(0.49) (5.15) – – (0.58) (0.44) (0.06) –

FGSM Net 92.44 76.25 2.90 0.18 69.39 52.98 0.68 0.00
(0.83) (7.87) (1.26) (0.14) (1.97) (4.46) (0.13) –

PGM Net 85.92 52.25 40.69 50.62 61.65 24.64 19.46 22.43
(0.62) (1.20) (0.64) (0.56) (1.71) (0.44) (0.31) (0.31)

Naive L2L (S) 94.41 28.44 0.01 0.00 75.27 8.47 0.05 0.00
(0.45) (9.64) – – (0.50) (0.27) (0.01) –

Grad L2L (S) 83.25 50.99 39.33 – 61.13 25.08 18.73 –
(1.02) (0.65) (1.04) – (0.34) (0.27) (0.48) –

2-Step L2L (S) 75.36 60.19 46.42 40.82 60.23 25.92 20.63 22.70
(0.08) (0.89) (1.36) (2.89) (0.21) (0.27) (0.49) (0.92)

Naive L2L (W) 88.26 13.80 0.00 0.02 63.52 5.86 0.26 0.03
(0.85) (1.64) – – (0.26) (0.25) (0.08) –

Grad L2L (W) 86.92 60.42 47.90 53.15 62.43 34.23 25.92 28.38
(0.35) (1.13) (0.46) (0.58) (0.20) (0.32) (0.31) 0.20

2-Step L2L (W) 71.65 56.14 51.47 49.92 61.44 32.30 29.63 30.29
(0.70) (0.59) (0.14) (0.15) (0.13) (0.52) (0.50) (0.54)

0 10 20 30 40
Number of Iterations T for PGM

0

20

40

60

80

A
cc

ur
ac

y 
%

GradL2L Net (W)
GradL2L Net (S)
PGM Net
FGSM Net
Plain Net
Random Guess

Figure 3: The accuracy over PGM adversar-
ial examples over CIFAR-10 with different
number of iterations and ε = 0.03.

Table 2 shows the results of all methods over CIFAR-
10 and CIFAR-100 under the white-box setting 2. As
can be seen, Grad L2L and 2-Step L2L with slim
attacker have comparable performance as PGM train-
ing, and Grad/2-step L2L with wide attacker signifi-
cantly outperforms the PGM training. However, with-
out taking gradient information when training the
attacker, the Naive L2L is vulnerable to all the ad-
versarial attacks. For FGSM attack, FGSM Net is
the most robust since FGSM has the label leaking
issue (Kurakin et al., 2016).

Besides, Figures 3 and 4 present the accuracy over
FGSM and PGM adversarial data with different per-
turbation magnitudes and different number of iter-
ations. As can be seen, Grad L2L is more robust than PGM Net; Both Grad L2L (S) and (W)
outperform the FGSM and PGM Net with different perturbation magnitudes; We also compare the
running time of all methods for one epoch over CIFAR-10 shown in Table 4. As can be seen, Grad
L2L is comparable with FGSM Net. 2-Step L2L is slower than Grad L2L, but faster than PGM Net.

2Our results of PGM Net over CIFAR-10 match the results in Madry et al. (2017). For low accuracy and CW
attack, we do not present the standard deviation.

7



Published as a workshop paper at ICLR 2019

Table 3: Results of the black-box setting over CIFAR-10. We evaluate L2L methods with slim attacker
networks.

Surrogate Plain Net FGSM Net PGM Net
FGSM PGM10 FGSM PGM10 FGSM PGM10

CIFAR-10
Plain Net 40.03 5.60 74.42 75.25 67.37 65.92
FGSM Net 79.20 85.02 89.90 80.40 64.28 63.89
PGM Net 83.80 84.73 84.33 85.29 67.05 65.54
Naive L2L 45.52 25.95 83.99 77.94 68.14 67.13
Grad L2L 86.10 86.87 87.93 88.01 71.15 69.95
2-Step L2L 85.83 87.10 86.51 87.60 70.58 69.38

Table 4: Running time for one epoch over CIFAR-10.
Plain Net FGSM Net PGM Net

36.68± 0.36 s 104.87± 0.51 s 421.56± 0.89 s
Naive L2L (S) Grad L2L (S) 2-Step L2L (S)
117.85± 0.54 s 120.48± 0.46 s 230.56± 0.72 s
Naive L2L (W) Grad L2L (W) 2-Step L2L (W)
147.63± 0.49 s 152.11± 0.61 s 290.61± 0.93 s

0.00 0.05 0.10 0.15 0.20

20

40

60

80

FG
SM

 A
tta

ck
A

cc
ur

ac
y 

(%
)

GradL2L Net (W)
GradL2L Net (S)
PGM Net
FGSM Net
Plain Net
Random Guess

0.00 0.05 0.10 0.15 0.20
0

5

10

15 GradL2L Net (W)
GradL2L Net (S)
PGM Net

0.00 0.05 0.10 0.15 0.20
Perturbation Magnitude 

0

25

50

75

PG
M

 A
tta

ck
A

cc
ur

ac
y 

(%
)

GradL2L Net (W)
GradL2L Net (S)
PGM Net
FGSM Net
Plain Net
Random Guess

0.00 0.05 0.10 0.15 0.20
Perturbation Magnitude 

0.0

2.5

5.0

7.5

10.0 GradL2L Net (W)
GradL2L Net (S)
PGM Net

Figure 4: Illustrative examples of performances with different maximum perturbation magnitudes
over CIFAR-10 under FGSM and PGM attacks. Left figures show the accuracy over perturbed
examples for all methods; Right figures show the difference between Grad L2L and PGM Net (treat
the results of PGM Net as the base).
3.3 SVHN DATASET

L2L. To update θ, we use the Adam algorithm (the hyperparameters are β1 = 0.9 and β2 = 0.99)
and weight decay (the parameter is 0.0001) (Kingma & Ba, 2014). We set the step size as 0.0002 for
the first 30 epochs and 0.00002 for the next 10 epochs. We train the models for 40 epochs, which is
the same as the training progress of CIFAR-10 and CIFAR-100. We also use the Adam algorithm to
update the attacker’s parameter φ with the same hyperparameters, but a fixed step size 0.001.

Table 5 presents the results under the white-box setting over SVHN. As can be seen, similar as in
CIFAR datasets, FGSM training achieves highest accuracy against FGSM attack. Our 2-step L2L
training achieves significantly higher accuracy against PGM attack, compared to PGM training. And
the 2-step L2L method with wide attacker architecture has comparable performance as PGM training
under CW attack. We conjecture the reason why the results of CW attack is not as good as in CIFAR
datasets is because that CW attack adopts a loss function different from softmax entropy. Such a loss
measures the margin of multi-class classification problem, which yields a different gradient (Crammer
& Singer, 2001).

8



Published as a workshop paper at ICLR 2019

Table 5: Experiments under the white-box setting on SVHN.
Clean FGSM PGM10 CW

Plain Net 96.11 19.62 0.05 0.07
(0.08) (2.07) (0.03) (0.05)

FGSM Net 93.60 93.03 0.16 0
(1.12) (3.00) – –

PGM Net 89.98 50.93 31.98 31.70
(1.14) (0.96) (0.79) (0.43)

Naive L2L (S) 93.87 61.33 0.00 0.00
(0.77) (4.13) – –

Grad L2L (S) 87.97 45.24 26.84 12.23
(0.20) (0.30) (0.32) (0.29)

2-Step L2L (S) 91.17 70.05 47.58 24.98
(0.27) (0.68) (0.52) (1.16)

Naive L2L (W) 96.53 49.31 0.05 0.00
(0.09) (2.53) (0.04) –

Grad L2L (W) 92.62 79.52 35.63 4.43
(0.36) (0.61) (2.28) (0.55)

2-Step L2L (W) 88.69 62.70 44.44 27.98
(0.94) (1.66) (0.98) (1.13)

3.4 VISUALIZING ADVERSARIAL EXAMPLES

Here we present some adversarial examples of different defense models over three datasets. Figure 5
shows the FGSM and PGM perturbations of FGSM Net, PGM Net, and Grad L2L for an airplane, an
apple, and a digit 5.

For the airplane and the apple, all FGSM Nets, PGM Nets, and Grad L2Ls defense FGSM attack
successfully; While only FGSM Nets are fooled by PGM attack. As can be seen, the FGSM
perturbations of three networks over the airplane are similar, and a similar phenomenon happens for
the perturbations of the apple. The corresponding PGM perturbations, however, are very different:
PGM perturbations of FGSM Net are so scattered that they look like random noises; While for PGM
Net and Grad L2L, the perturbations still have certain patterns and we are able to recognize their
shapes. As can be seen, PGM perturbation of the Grad L2L is similar with that of the PGM Net.
This further supports our conjecture that the attacker in Grad L2L is able to learn some high order
information with one step gradient information.

For the digit 5, all three networks defense FGSM attack successfully; While only Grad L2L defenses
PGM attack. FGSM Net and PGM Net recognize their corresponding PGM adversarial examples
as 6 and 1 respectively. As can be seen, a maximum perturbation magnitude of 0.05 for this simple
dataset is large enough to generate adversarial samples to fool human beings. For example, the
perturbed data of PGM attack on FGSM Net in Figure 5 is recognized as 6 by human. Moreover, the
PGM perturbation of Grad L2L, however, is less destructive such that both human and Grad L2L can
correctly classify the perturbed data. In this case, Grad L2L successfully learns to defense by making
the gradient less informative, i.e., making gradient obfuscated Athalye et al. (2018).

4 DISCUSSIONS

We first discuss a few benefits of our neural network approach:

• Our attacker network g(A(x, y, θ);φ) is capable of yielding strong adversarial perturbations, since
the neural network has been known to be powerful in function approximation.We generate the
adversarial perturbations for all samples using the same attacker network. Therefore, the attacker
network essentially learns some common structures across all samples, which help yield stronger
perturbations;

• The attacker networks in our experiments are actually overparametrized. Overparametrization has
been conjectured to ease the training of deep neural networks. We believe that similar phenomena
happen to our attacker network, and ease the adversarial training.
We then discuss a few closely related works:
• Dai et al. (2016) leverage the Fenchel duality and feature space embedding technique, and then
convert the learning conditional distribution problem to a minmax problem. This approach is quite
similar to our naive attacker network. These two approaches, however, lack the primal information.
In contrast, our gradient attacker network takes the gradient information of the primal variable into
consideration, and achieves good results.

9



Published as a workshop paper at ICLR 2019

Perturbed Data
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Perturbed Data
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Real Attack
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Real Attack
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Real Attack
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Rescaled Attack
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Rescaled Attack
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Rescaled Attack
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FG
SM

N
et

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FG
SM

N
et

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

PG
M

N
et

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

G
ra

d
L

2L
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

PG
M

N
et

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

G
ra

d
L

2L
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Perturbed Data
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Airplane in CIFAR-10
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Apple in CIFAR-100
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Digit 5 in SVHN
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 5: Illustrative examples of FGSM and PGM perturbations for FGSM Net, PGM Net, and Grad
L2L. Images in the top three layers are obtained from FGSM attack; Those in the bottom three layers
are obtained from PGM attack. For the airplane and the apple, all networks defense FGSM attack,
and FGSM Net fails against PGM attack; For the digit 5, all networks defense FGSM attack, but only
Grad L2L defenses PGM attack.
• Goodfellow et al. (2014a) propose the GAN, which is very similar to our L2L framework. Both
GAN and L2L contain one generator network and one classifier network, and jointly train these
two networks. There are two major difference between GAN and our framework: (1) GAN aims to
transform the random noises to the synthetic data which is similar to the training examples, while
ours targets on transforming the training examples to the adversarial examples for robustifying the
classifier; Our generator network does not only take the training examples (analogous to the random
noise in GAN) as the input, but also exploits the gradient information of the objective function, since
it essentially represents an optimization algorithm.

The training procedure of these two, however, are quite similar. We adopt some tricks from GAN
training to our framework to stabilize the training process. For example, in our Grad L2L training
over SVHN, we adopt the two-time scale trick (Heusel et al., 2017).

• There are some other works simply combining the GAN framework and adversarial training
together. For example, Baluja & Fischer (2017) and Xiao et al. (2018) propose some ad hoc GAN-
based methods to robustify neural networks. Specifically, for generating adversarial examples, they
only take training examples as the input of the generator, which lacks the information of the outer
mimnimization problem. Instead, our proposed L2L methods (e.g., Grad L2L, 2-step L2L) connect
outer and inner problems by delivering the gradient information of the objective function to the
generator. This is a very important reason for our performance gain on the benchmark datasets.

As a result, the aforementioned GAN-based methods are only robust to simple attacks, e.g., FGSM,
on simple data sets, e.g., MNIST, but fail for strong attacks, e.g., PGM and CW, on complicated data
sets, e.g. CIFAR, where our L2L methods achieve significantly better performance.

5 CONCLUSION
This paper proposes a learning-to-learn framework to solve the adversarial training, which is a minmax
optimization problem. Instead of applying hand-designed algorithms for the inner problem, we learn
an attacker parametrized as a neural network. Our numerical results show that our proposed methods
improve the robustness of neural networks by a margin and enjoy the computational efficiency.

We remark that the nonconvex-nonconcave minmax problems are notorious for their difficulty, and
most of existing algorithms are heuristic and ad hoc. Our proposed learning-to-learn framework is
well structured and can be generalized to solve more complicated minmax problems. Taking our
results as a start, we expect more principled and stronger follow-up work that applies learning-to-learn
to solve the minmax problem.

10



Published as a workshop paper at ICLR 2019

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In Advances in Neural Information Processing Systems, pp. 3981–3989, 2016.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

Shumeet Baluja and Ian Fischer. Adversarial transformation networks: Learning to generate adver-
sarial examples. arXiv preprint arXiv:1703.09387, 2017.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill. Ground-truth adversarial examples.
arXiv preprint arXiv:1709.10207, 2017.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. Journal of machine learning research, 2(Dec):265–292, 2001.

Bo Dai, Niao He, Yunpeng Pan, Byron Boots, and Le Song. Learning from conditional distributions
via dual embeddings. arXiv preprint arXiv:1607.04579, 2016.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. arXiv preprint arXiv:1703.03400, 2017.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 580–587, 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014a.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, pp. 6626–6637, 2017.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In International Conference on Artificial Neural Networks, pp. 87–94. Springer, 2001.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, and Le Song. Deep
hyperspherical learning. In Advances in Neural Information Processing Systems, pp. 3950–3960,
2017.

11



Published as a workshop paper at ICLR 2019

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial examples
and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=B1QRgziT-.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning
and unsupervised feature learning, volume 2011, pp. 5, 2011.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 427–436, 2015.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Jürgen Schmidhuber. A neural network that embeds its own meta-levels. In Neural Networks, 1993.,
IEEE International Conference on, pp. 407–412. IEEE, 1993.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Pedro Tabacof and Eduardo Valle. Exploring the space of adversarial images. In 2016 International
Joint Conference on Neural Networks (IJCNN), pp. 426–433. IEEE, 2016.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to
human-level performance in face verification. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1701–1708, 2014.

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating adversarial
examples with adversarial networks. arXiv preprint arXiv:1801.02610, 2018.

A Steven Younger, Sepp Hochreiter, and Peter R Conwell. Meta-learning with backpropagation. In
Neural Networks, 2001. Proceedings. IJCNN’01. International Joint Conference on, volume 3.
IEEE, 2001.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness of deep
neural networks via stability training. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4480–4488, 2016.

12

https://openreview.net/forum?id=B1QRgziT-


Published as a workshop paper at ICLR 2019

Appendix

A BLACK-BOX ATTACK

As we mentioned before, evaluation under black-box setting highly relies on the transferability of the
adversarial samples between models. However, such transferability is not always effective. Thus we
only present one result here to demonstrate the robustness of different models.

Table 6: Experiments under the black-box setting over CIFAR-100. Note that here we only evaluate
L2L methods using the slim attacker network.

Surrogate Plain Net FGSM Net PGM Net
FGSM PGM10 FGSM PGM10 FGSM PGM10

Plain Net 21.04 9.04 50.57 54.06 40.06 41.30
FGSM Net 42.87 50.73 61.68 44.70 39.34 40.08
PGM Net 56.63 58.34 56.99 57.97 40.19 39.87
Naive L2L 20.97 10.47 50.36 54.07 38.63 39.91
Grad L2L 57.63 59.62 59.18 61.26 41.71 41.15
2-Step L2L 58.66 59.31 58.92 59.46 45.80 45.31

Table 7: Experiments under the black-box setting on SVHN. Note that here we only evaluate L2L
methods using the wide attacker network.

Surrogate Plain Net FGSM Net PGM Net
FGSM PGM10 FGSM PGM10 FGSM PGM10

Plain Net 21.72 6.94 41.81 33.13 56.77 49.41
FGSM Net 57.36 51.54 56.25 38.11 55.99 48.96
PGM Net 81.04 81.52 78.66 80.42 54.85 49.21
Naive L2L 73.02 42.14 78.11 59.79 85.31 61.08
Grad L2L 71.74 74.31 77.19 80.70 71.99 58.71
2-Step L2L 65.78 74.07 76.13 82.80 61.69 54.13

13


	Introduction
	Method
	Adversarial Training as Robust Optimization
	Learning to Defense by Learning to Attack (L2L)

	Experiments
	General Setting
	CIFAR-10 and CIFAR-100 Datasets
	SVHN Dataset
	Visualizing Adversarial Examples

	Discussions
	Conclusion
	Black-box Attack

