
Extending RML to further embrace data source
heterogeneity

Pano Maria1,a

1Skemu, Rotterdam, The Netherlands
apano@skemu.com

Abstract. The RDF Mapping Language (RML) has provided a language for
specifying transformation of heterogeneous structured data sources to
RDF. RML was extended from R2RML, a W3C recommendation for trans-
forming relational data to RDF, but in applying RML in practice we've
identified several aspects where RML is still more table oriented, than ori-
ented towards data format heterogeneity, limiting its potential.

In this position paper, these aspects are presented and discussed, and
possible extensions to RML are proposed. In doing so, we hope to in-
crease the usability of RML for transforming heterogeneous data sources
to RDF.

Keywords: RML · RML mapper · RDF · RDF generation · R2RML · ETL

1 Introduction

During the past two years of having employed RML in ETL processes in a pro-
duction setting, transforming CSV, XML, and JSON sources to RDF, and having
developed an RML engine1, some aspects of the current RML specification2

that limit its potential application have come to light. The existence of these
aspects can be attributed to the fact that RML was extended from R2RML [1],
which was designed for mapping relational data to RDF, in which, due to the
tabular nature of relational data, these aspects dit not form an issue. It seems
that when RML was created, these issues were not identified. Hopefully, our
experience of using RML on a variety of data sources in a production setting
can be used to improve these aspects of RML.

In this position paper, we present and discuss the aforementioned issues
and propose solutions to overcome them. The aim of this paper is to raise
awareness for these issues in the current RML specification and to start a pro-
cess of improving these parts of the RML specification.

1 https://github.com/carml/carml
2 http://rml.io/spec.html

2 Support for, or clarification of, multiplicity of term maps

R2RML provided the possibility of transforming data from relational databases
to RDF using a declarative mapping language. RML has expanded R2RML,
providing the capability to transform any queryable structured data source to
RDF [2]. Naturally, this newfound flexibility brings with it some new challenges.

Some of these challenges stem from the fact that the current way of pro-
cessing sources with RML is still optimized for tabular data, whereas XML and
JSON data sources are hierarchically structured. One of the issues that arises
with hierarchically structured data sources, when applying RML, is that of the
multiplicity of term maps.

In R2RML, it was not necessary to specify multiplicity of term maps, since
multiplicity in tabular data is expressed by repeating values over different
rows (Table 1). With R2RML, triples are mapped in iterations over the source
and the table row is the unit of iteration. Hence, multiplicity is captured auto-
matically.

Table 1. Multiplicity expressed in tabular data.

NAME CAR

John Doe BMW

John Doe Seat

John Doe Porsche

Richard Roe Toyota

Richard Roe Tesla

In hierarchically structured data sources, this is usually not the case. In these
data sources, multiplicity is expressed within nodes, e.g. using repeating sub-
nodes in XML, or an array in JSON.

Say we want to express which cars a person has, based on Listing 1, using an
RML mapping. For this we would need a way to get all the values from the
cars arrays nested in the cardata objects.

So how does this work with RML? The RML specification is, in fact, unclear
on whether it supports generating multiple terms from term maps or not. It is
not mentioned in the specification, and the R2RML definition (Listing 2) of a
term map is not extended in RML, nor are any new constructs introduced that
handle the generation of multiple terms. However, some examples seem to
imply multiplicity is, or should be, supported.3

Since RML is used on hierarchically structured data sources, and term generat-
ing functions will inevitably lead to multiple results, it is necessary to either
clarify this aspect in the RML specification, or introduce new constructs which
will support the generation of multiple RDF terms.

To this end, we propose introducing new RDFS super classes and RDFS su-
per properties for R2RML mapping constructs, to explicitly define support for
multiple values. Defining these constructs using RDFS allows for maintaining
backwards compatibility for RML mappings that use the R2RML constructs, ei-
ther through RDFS inferencing [3], or support by RML engines.

We further propose that the concrete term map types :SubjectMap,
:PredicateMap, :ObjectMap, :RefObjectMap, and :GraphMap could all have
multiple terms as a result. Thus the execution of a triples map could lead to
triples for:
• multiple subjects, one for each item in the set of subject map function re-
sults
• with, for each subject,

◦ for each predicate object map

{
"cardata" : [{

"name":"John Doe",
"cars":["BMW", "Seat", "Porsche"]

}, {
"name":"Richard Roe",
"cars":["Toyota", "Tesla"]

}]
}

Listing 1. Multiplicity in JSON

1
2
3
4
5
6
7
8
9

:TermMap rdf:type owl:Class ;
rdfs:label "Term Map"@en ;
rdfs:comment "A function that generates an RDF term from a logical

 table row."@en .

Listing 2. The R2RML definition of term map [1]

1
2
3

◾ predicates for each item in the set of predicate map function results,
and
◾ objects for each item in the set of (referencing) object map function
results,

◦ and a graph assignment for each item in the set of graph map results.

For referencing object maps, the multiplicity would be dependent on the
specified join. If a join condition's child expression results in multiple values,
and one of these values matches with a result from its parent expression, this
would constitute a valid join, meaning that a referencing object map may gen-
erate as many terms as can be validly joined with it.

As an example, applying this proposal and using the data from Listing 1 as
the source we can create a mapping (Listing 3) which references the cars
property in the car data objects.

Applying this mapping to the data would result in the RDF data in Listing 4.

Adding to this example a predicate object map with a referencing object map
containing a join with multiple values (Listing 5)

:CarDataMapping a rr:TriplesMap ;
rml:logicalSource [

rml:source "cardata.json" ;
rml:referenceFormulation ql:JSONPath ;
rml:iterator "$.cardata" ;

] ;

rr:subjectMap [
rr:template "http://www.example.com/{name}" ;

] ;

rr:predicateObjectMap [
rr:predicate ex:ownsCar ;
rr:objectMap [

rml:reference "cars" ;
] ;

] ;
.

Listing 3. Example mapping with reference to multiple values

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

ex:John%20Doe
ex:ownsCar

"BMW" ,
"Seat" ,
"Porsche" .

ex:Richard%20Roe
ex:ownsCar

"Toyota" ,
"Tesla" .

Listing 4. RDF car data resulting from the RML mapping of Listing 3

1
2
3
4
5
6
7
8
9

we get the result in Listing 6.

Although this example is overly simplified, it shows the necessity of support
for generating multiple terms with RML mapping constructs.

3 http://rml.io/RMLmappingLanguage.html

rr:predicateObjectMap [
rr:predicate ex:ownsCar2 ;
rr:objectMap [

rr:parentTriplesMap :CarMapping ;
rml:joinCondition [

rr:child "cars" ;
rr:parent "$" ;

] ;
] ;

] ;
.

:CarMapping a rr:TriplesMap ;
rml:logicalSource [

rml:source "cardata.json" ;
rml:referenceFormulation ql:JSONPath ;
rml:iterator "$.cardata[*].cars" ;

] ;

rr:subjectMap [
rr:template "http://www.example.com/{$}" ;

] ;

rr:predicateObjectMap [
rr:predicate rdfs:label ;
rr:objectMap [

rml:reference "$" ;
rr:datatype xsd:string ;

] ;
] ;
.

Listing 5. Example mapping joining multiple values

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

ex:John%20Doe
ex:ownsCar2

ex:BMW ,
ex:Seat ,
ex:Porsche .

ex:BMW rdfs:label "BMW" .

ex:Seat rdfs:label "Seat" .

ex:Porsche rdfs:label "Porsche" .

ex:Richard%20Roe
ex:ownsCar2

ex:Toyota ,
ex:Tesla .

ex:Toyota rdfs:label "Toyota" .

ex:Tesla rdfs:label "Tesla" .

Listing 6. RDF car data resulting from the RML mapping of listing 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

3 Specifying data sources

RML has enabled us to transform various data sources to RDF. However, in
working with RML, one can only conclude that the possibilities of describing
the data sources to be transformed are limited. To describe a data source, the
specification only provides a property rml:referenceFormulation with
which to express the data format of the source, and the rml:source property,
with which to point out a source's location.

It is often useful to be able to specify more information about a certain
source in order to facilitate the mapping process. Since the range for
rml:source is undefined (Listing 7), it can easily be used to point to more de-
scriptive source representations.

To describe our data sources, we can define a class rml:Source. This class
represents an abstract data source. In addition, we define a sub-class
rml:FileSource, which represents those data sources that are physical files,
and can have a property rml:url to specify their respective location (Listing
8).

These constructs do not yet add any new functionality to RML, but they pro-
vide an extension point for several useful descriptors of a data source. In the
following sub-sections, we will explore some of these descriptors.

3.1 Support for input streams

The absence of source descriptors, other than a location, makes it difficult to
provide useful information about the data source to RML engines. A promi-
nent use case for RML is to be used as part of an ETL process, where an RML
engine is fed a stream of source data to be transformed according to an RML
mapping. In this case, there is no specific file, nor file location the engine
should be concerned with. In fact, the engine will most likely expect one or
more input streams to be provided, upon which it can act. Yet, there is no way
of describing an input stream using RML.

rml:source rdf:type rdf:Property ;
rdfs:label "source" ;
rdfs:comment "qualified name of the source data."@en ;
rdfs:domain rml:LogicalSource

.

Listing 7. Definition of rml:source in the RML ontology.

1
2
3
4
5

rml:Source a owl:Class ;
rdfs:label "Source"@en ;
rdfs:comment "A source that can be mapped to RDF."@en ;

.

rml:FileSource a owl:Class ;
rdfs:label "FileSource"@en ;
rdfs:subClassOf rml:Source ;
rdfs:comment "A file based source."@en ;

.

rml:url a rdf:Property ;
rdfs:label "url"@en ;
rdfs:domain rml:FileSource ;
rdfs:comment "A value referencing the location of the FileSource"@en ;

.

Listing 8. Definition of an abstract source and a file source contruct.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

To solve this, we propose extending the rml:Source defined earlier with a
sub-class rml:Stream to represent those sources that are streams of data
(Listing 9).

In order to distinguish between multiple streams, a rml:streamName property
is defined as well. An RML engine can use these source descriptors to identify
the correct streams of data corresponding with each triples map.

3.2 Specifying source encoding

As RML opens up support of transforming any structured source to RDF, so
comes with it the challenges of interpreting strings in different encodings.
Currently missing from RML is a way to specify the encoding of data sources.
As a result, data source encoding must either be specified out of band, or an
engine must employ its own strategies to handle encoding.

A proposed solution to this is the addition of rml:encoding as property of
rml:Source (Listing 10).

Using this newly defined property, we can describe the encoding of a specific
data source using a controlled list of known encodings4 (Listing 11).

The introduction of this property affords an RML engine to use the specified
encoding to correctly read and transform the source document to RDF.

4 https://encoding.spec.whatwg.org/

rml:Stream a owl:Class ;
rdfs:label "Stream"@en ;
rdfs:subClassOf rml:Source ;
rdfs:comment "A stream is a sequence of data."@en ;

.

rml:streamName a owl:DatatypeProperty ;
rdfs:label "stream name"@en ;
rdfs:domain rml:Stream ;
rdfs:range xsd:string ;
rdfs:comment "A name to identify a stream."@en ;

.

Listing 9. Definition of stream data source.

1
2
3
4
5
6
7
8
9
10
11
12

rml:encoding a rdf:Property ;
rdfs:label "encoding"@en ;
rdfs:domain rml:Source ;
rdfs:comment "A property that specifies the encoding source."@en ;

.

Listing 10. Definition of encoding property.

1
2
3
4
5

ex:LS a rml:LogicalSource ;
rml:source [

a rml:FileSource ;
rml:url "/location/of/file.csv" ;
rml:encoding "utf-16le" ;

] ;
rml:referenceFormulation ql:CSV ;

.

Listing 11. Example of a file source with specified encoding.

1
2
3
4
5
6
7
8

3.3 Support for namespaces declarations for XML sources

When working with XML data sources and RML, the query language of choice
is XPath [2]. It is common practice to use namespaces in XML documents as
well as prefixes to shorten the namespaced node names. Unfortunately, XPath
has no standard way of specifying namespaces to be used in queries. Thus a
query that one would like to write as
//top10nl:FeatureMember/top10nl:Wegdeel, must instead be written
//[local-name()='FeatureMember'
and namespace-uri()='http://example.org/xmlns/top10nl/']/
[local-name()='Wegdeel' and namespace-uri()=
'http://example.org/xmlns/top10nl/'] .

Luckily, most XPath implementations support the registration of namespac-
es in order to keep the queries legible and maintainable5, 6. However, current-
ly there is no way to specify the use of namespaces in XPath queries used in
an RML mapping in order to leverage this functionality.

An extension of rml:Source is, therefore, proposed to describe this aspect
of XML data sources (Listing 12).

We define a class rml:XmlSource which can have a property
rml:declaresNamespace, which has as its range the class rml:Namespace.
This class has properties rml:namespacePrefix and rml:namespaceName to
specify the prefix and the name of a namespace of the source XML respective-
ly.

Note that one can combine rml:XmlSource with either rml:FileSource
or rml:Stream to specify its input form (Listing 13).

rml:XmlSource a owl:Class ;
rdfs:label "XmlSource"@en ;
rdfs:subClassOf rml:Source ;
rdfs:comment "An XML source"@en ;

.

rml:declaresNamespace a owl:ObjectProperty ;
rdfs:label "declaresNamespace"@en ;
rdfs:domain rml:XmlSource ;
rdfs:range rml:Namespace ;
rdfs:comment "A namespace declaration that is used to support

 namespaces in XML document references."@en ;
.

rml:Namespace a owl:Class ;
rdfs:label "Namespace"@en ;
rdfs:comment "A document namespace."@en ;

.

rml:namespacePrefix a owl:DatatypeProperty ;
rdfs:label "namespacePrefix"@en ;
rdfs:domain rml:Namespace ;
rdfs:range xsd:string ;
rdfs:comment "The prefix value of a namespace."@en ;

.

rml:namespaceName a owl:DatatypeProperty ;
rdfs:label "namespaceName"@en ;
rdfs:domain rml:Namespace ;
rdfs:range xsd:string ;
rdfs:comment "The name value of a namespace."@en ;

.

Listing 12. Definition of XML source and namespace constructs.

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

This proposed addition makes it possible to leverage the namespace support
of XPath query libraries, enabling the use of prefixes in XPath expressions in
RML mapping constructs.

5 https://www.saxonica.com/html/documentation/javadoc/net/sf/saxon/s9a-
pi/XPathCompiler.html#declareNamespace-java.lang.String-java.lang.String-

6 https://www.npmjs.com/package/xpath#default-namespace-with-mapping

4 Conclusions

RML is a seminal development in the field of RDF generation, facilitating the
transformation of a variety of data sources. However, there are still some im-
provements that can be made to the RML specification to further embrace the
diverse nature of the data sources to be transformed.

Overall, we observe that multiplicity of term maps is currently not clearly
defined in the RML specification, making it difficult for RML engines to be cor-
rectly implemented. We propose extending the RML vocabulary and specify-
ing constructs that clearly support the generation of multiple RDF terms.

RML aims to provide support for heterogeneous data sources, yet is limited
in its vocabulary to describe these data sources. We propose extensions to
RML that allow for more descriptive data source specifications, thereby im-
proving the user experience of creating mappings, as well as allowing RML to
correctly handle the variety of data sources.

The aim of this position paper is to start a discussion around the aforemen-
tioned issues. Our hope is that this discussion will lead to extensions of RML
that mitigate these issues, further improving RML's usability and applicability
in practice.

References

1. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C
recommendation, 27 september 2012 (2012)

2. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle,
R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In:
Workshop on Linked Data on the Web (2014)

3. Hayes, P.J., Patel-Schneider, P.F.: rdf 1.1 Semantics. W3C Recommendation, February
2014 (2014)

ex:LS a rml:LogicalSource ;
rml:source [

a rml:Stream, rml:XMLSource ;
rml:streamName "ex-stream" ;
rml:declaresNamespace [

rml:namespacePrefix "top10nl" ;
rml:namespaceName "http://example.org/xmlns/top10nl/" ;

] ;
] ;

.

Listing 13. Example of an XML stream source with namespace declaration.

1
2
3
4
5
6
7
8
9
10

