
Published as a conference paper at ICLR 2019

SLIMMABLE NEURAL NETWORKS

Jiahui Yu1 Linjie Yang2 Ning Xu2 Jianchao Yang3 Thomas Huang1

1University of Illinois at Urbana-Champaign 2Snap Inc. 3ByteDance Inc.

ABSTRACT

We present a simple and general method to train a single neural network exe-
cutable at different widths1, permitting instant and adaptive accuracy-efficiency
trade-offs at runtime. Instead of training individual networks with different width
configurations, we train a shared network with switchable batch normalization. At
runtime, the network can adjust its width on the fly according to on-device bench-
marks and resource constraints, rather than downloading and offloading different
models. Our trained networks, named slimmable neural networks, achieve simi-
lar (and in many cases better) ImageNet classification accuracy than individually
trained models of MobileNet v1, MobileNet v2, ShuffleNet and ResNet-50 at dif-
ferent widths respectively. We also demonstrate better performance of slimmable
models compared with individual ones across a wide range of applications in-
cluding COCO bounding-box object detection, instance segmentation and person
keypoint detection without tuning hyper-parameters. Lastly we visualize and dis-
cuss the learned features of slimmable networks. Code and models are available
at: https://github.com/JiahuiYu/slimmable_networks.

1 INTRODUCTION

Recently deep neural networks are prevailing in applications on mobile phones, augmented reality
devices and autonomous cars. Many of these applications require a short response time. Towards
this goal, manually designed lightweight networks (Howard et al., 2017; Zhang et al., 2017; Sandler
et al., 2018) are proposed with low computational complexities and small memory footprints. Au-
tomated neural architecture search methods (Tan et al., 2018) also integrate on-device latency into
search objectives by running models on a specific phone. However, at runtime these networks are not
re-configurable to adapt across different devices given a same response time budget. For example,
there were over 24,000 unique Android devices in 20152. These devices have drastically different
runtimes for the same neural network (Ignatov et al., 2018), as shown in Table 1. In practice, given
the same response time constraint, high-end phones can achieve higher accuracy by running larger
models, while low-end phones have to sacrifice accuracy to reduce latency.

Table 1: Runtime of MobileNet v1 for image classification on different devices.

OnePlus 6 Google Pixel LG Nexus 5 Samsung Galaxy S3 ASUS ZenFone 2

Runtime 24 ms 116 ms 332 ms 553 ms 1507 ms

Although a global hyper-parameter, width multiplier, is provided in lightweight networks (Howard
et al., 2017; Zhang et al., 2017; Sandler et al., 2018) to trade off between latency and accuracy,
it is inflexible and has many constraints. First, models with different width multipliers need to
be trained, benchmarked and deployed individually. A big offline table needs to be maintained
to document the allocation of different models to different devices, according to time and energy
budget. Second, even on a same device, the computational budget varies (for example, excessive
consumption of background apps reduces the available computing capacity), and the energy budget
varies (for example, a mobile phone may be in low-power or power-saving mode). Third, when
switching to a larger or smaller model, the cost of time and data for downloading and offloading
models is not negligible.

1Width refers to number of channels in a layer.
2https://opensignal.com/reports/2015/08/android-fragmentation/

1

https://github.com/JiahuiYu/slimmable_networks
https://opensignal.com/reports/2015/08/android-fragmentation/


Published as a conference paper at ICLR 2019

DogCat DogCat DogCat DogCat

1.0× 0.75× 0.5× 0.25×

Figure 1: Illustration of slimmable neural networks. The same model can run at different widths
(number of active channels), permitting instant and adaptive accuracy-efficiency trade-offs.

Recently dynamic neural networks are introduced to allow selective inference paths. Liu & Deng
(2017) introduce controller modules whose outputs control whether to execute other modules. It
has low theoretical computational complexity but is nontrivial to optimize and deploy on mobiles
since dynamic conditions prohibit layer fusing and memory optimization. Huang et al. (2017) adapt
early-exits into networks and connect them with dense connectivity. Wu et al. (2017) and Wang
et al. (2017) propose to selectively choose the blocks in a deep residual network to execute during
inference. Nevertheless, in contrast to width (number of channels), reducing depth cannot reduce
memory footprint in inference, which is commonly constrained on mobiles.

The question remains: Given budgets of resources, how to instantly, adaptively and efficiently trade
off between accuracy and latency for neural networks at runtime? In this work we introduce
slimmable neural networks, a new class of networks executable at different widths, as a general
solution to trade off between accuracy and latency on the fly. Figure 1 shows an example of a
slimmable network that can switch between four model variants with different numbers of active
channels. The parameters of all model variants are shared and the active channels in different layers
can be adjusted. For brevity, we denote a model variant in a slimmable network as a switch, the
number of active channels in a switch as its width. 0.25× represents that the width in all layers
are scaled by 0.25 of the full model. In contrast to other solutions above, slimmable networks have
several advantages: (1) For different conditions, a single model is trained, benchmarked and de-
ployed. (2) A near-optimal trade-off can be achieved by running the model on a target device and
adjusting active channels accordingly. (3) The solution is generally applicable to (normal, group,
depthwise-separable, dilated) convolutions, fully-connected layers, pooling layers and many other
building blocks of neural networks. It is also generally applicable to different tasks including clas-
sification, detection, identification, image restoration and more. (4) In practice, it is straightforward
to deploy on mobiles with existing runtime libraries. After switching to a new configuration, the
slimmable network becomes a normal network to run without additional runtime and memory cost.

However, neural networks naturally run as a whole and usually the number of channels cannot be
adjusted dynamically. Empirically training neural networks with multiple switches has an extremely
low testing accuracy around 0.1% for 1000-class ImageNet classification. We conjecture it is mainly
due to the problem that accumulating different number of channels results in different feature mean
and variance. This discrepancy of feature mean and variance across different switches leads to inac-
curate statistics of shared Batch Normalization layers (Ioffe & Szegedy, 2015), an important training
stabilizer. To this end, we propose a simple and effective approach, switchable batch normalization,
that privatizes batch normalization for different switches of a slimmable network. The variables
of moving averaged means and variances can independently accumulate feature statistics of each
switch. Moreover, Batch Normalization usually comes with two additional learnable scale and bias
parameter to ensure same representation space (Ioffe & Szegedy, 2015). These two parameters
may able to act as conditional parameters for different switches, since the computation graph of a
slimmable network depends on the width configuration. It is noteworthy that the scale and bias can
be merged into variables of moving mean and variance after training, thus by default we also use
independent scale and bias as they come for free. Importantly, batch normalization layers usually
have negligible size (less than 1%) in a model.

We first conduct comprehensive experiments on ImageNet classification task to show the effective-
ness of switchable batch normalization for training slimmable neural networks. Compared with

2



Published as a conference paper at ICLR 2019

individually trained networks, we demonstrate similar (and in many cases better) performances of
slimmable MobileNet v1 [0.25, 0.5, 0.75, 1.0]×, MobileNet v2 [0.35, 0.5, 0.75, 1.0]×, ShuffleNet [0.5, 1.0, 2.0]×

and ResNet-50 [0.25, 0.5, 0.75, 1.0]× ([∗]× denotes available switches). We further train a 8-switch
slimmable MobileNet v1 [0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 1.0]× without accuracy drop to demonstrate
the scalability of our method. Beyond image classification, we also apply slimmable networks to
various applications including COCO bounding-box object detection, instance segmentation and
person keypoints detection. Experiments show that slimmable networks achieve better performance
than individual ones at different widths respectively. The proposed slimmable networks are not only
flexible and practical by design, but also effective, scalable and widely applicable according to our
experiments. Lastly we visualize and discuss the learned features of slimmable networks.

2 RELATED WORK

Model Pruning and Distilling. Model pruning and distilling have a rich history in the literature of
deep neural networks. Early methods (Han et al., 2015a;b) sparsify connections in neural networks.
However, such networks usually require specific software and hardware accelerators to speedup.
Driven by this fact, Molchanov et al. (2016), Wen et al. (2016), Li et al. (2016a), Liu et al. (2017), He
et al. (2017), Luo et al. (2017), Anwar et al. (2017), Kim et al. (2017) and Ye et al. (2018) encourage
structured sparsity by pruning channels, filters and network depth and fine-tuning iteratively with
various penalty terms. As another family, model distilling methods (Hinton et al., 2015; Romero
et al., 2014; Zhuang et al., 2018) first train a large network or an ensemble of networks, and then
transfer the learned knowledge to a small model. Soft-targets and intermediate representations from
trained large models are used to train a small model.

Adaptive Computation Graph. To reduce computation of a neural network, some works propose
to adaptively construct the computation graph of a neural network. Liu & Deng (2017), Wu et al.
(2017), Lin et al. (2017) and Wang et al. (2017) introduced additional controller modules or gating
functions to determine the computation graph based on the current input. Amthor et al. (2016), Veit
& Belongie (2017), Huang et al. (2017), Kuen et al. (2018) and Hu et al. (2017) implanted early-
exiting prediction branches to reduce the average execution depth. The computation graph of these
methods are conditioned on network input, and lower theoretical computational complexity can be
achieved.

Conditional Normalization. Many real-world problems require conditional input. Feature-wise
transformation (Dumoulin et al., 2018) is a prevalent approach to integrate different sources of in-
formation, where conditional scales and biases are applied across the network. It is commonly
implemented in the form of conditional normalization layers, such as batch normalization or layer
normalization (Ba et al., 2016). Conditional normalization is widely used in tasks including style
transfer (Dumoulin et al., 2016; Li et al., 2017a; Huang & Belongie, 2017; Li et al., 2017b), image
recognition (Li et al., 2016b; Yang et al., 2018) and many others (Perez et al., 2017b;a).

3 SLIMMABLE NEURAL NETWORKS

3.1 NAIVE TRAINING OR INCREMENTAL TRAINING

To train slimmable neural networks, we begin with a naive approach, where we directly train a
shared neural network with different width configurations. The training framework is similar to the
one of our final approach, as shown in Algorithm 1. The training is stable, however, the network
obtains extremely low top-1 testing accuracy around 0.1% on 1000-class ImageNet classification.
Error curves of the naive approach are shown in Figure 2. We conjecture the major problem in
the naive approach is that: for a single channel in a layer, different numbers of input channels in
previous layer result in different means and variances of the aggregated feature, which are then
rolling averaged to a shared batch normalization layer. The inconsistency leads to inaccurate batch
normalization statistics in a layer-by-layer propagating manner. Note that these batch normalization
statistics (moving averaged means and variances) are only used during testing, in training the means
and variances of the current mini-batch are used.

We then investigate incremental training approach (a.k.a. progressive training) (Tann et al., 2016).
We experiment with Mobilenet v2 on ImageNet classification task. We first train a base model A

3



Published as a conference paper at ICLR 2019

(MobileNet v2 0.35×). We fix it and add extra parameters B to make it an extended model A+B
(MobileNet v2 0.5×). The extra parameters are fine-tuned along with the fixed parameters of A
on the training data. Although the approach is stable in both training and testing, the top-1 accu-
racy only increases from 60.3% of A to 61.0% of A+B. In contrast, individually trained MobileNet
v2 0.5× achieves 65.4% accuracy on the ImageNet validation set. The major reason for this accu-
racy degradation is that when expanding base model A to the next level A+B, new connections, not
only from B to B, but also from B to A and from A to B, are added in the computation graph. The
incremental training prohibits joint adaptation of weights A and B, significantly deteriorating the
overall performance.

3.2 SWITCHABLE BATCH NORMALIZATION

Motivated by the investigations above, we present a simple and highly effective approach, named
Switchable Batch Normalization (S-BN), that employs independent batch normalization (Ioffe &
Szegedy, 2015) for different switches in a slimmable network. Batch normalization (BN) was orig-
inally proposed to reduce internal covariate shift by normalizing the feature: y′ = γ y−µ√

σ2+ε
+ β,

where y is the input to be normalized and y′ is the output, γ, β are learnable scale and bias, µ, σ2 are
mean and variance of current mini-batch during training. During testing, moving averaged statistics
of means and variances across all training images are used instead. BN enables faster and stabler
training of deep neural networks (Ioffe & Szegedy, 2015; Radford et al., 2015), also it can encode
conditional information to feature representations (Perez et al., 2017b; Li et al., 2016b).

To train slimmable networks, S-BN privatizes all batch normalization layers for each switch in a
slimmable network. Compared with the naive training approach, it solves the problem of feature ag-
gregation inconsistency between different switches by independently normalizing the feature mean
and variance during testing. The scale and bias in S-BN may be able to encode conditional infor-
mation of width configuration of current switch (the scale and bias can be merged into variables of
moving mean and variance after training, thus by default we also use independent scale and bias
as they come for free). Moreover, in contrast to incremental training, with S-BN we can jointly
train all switches at different widths, therefore all weights are jointly updated to achieve a better
performance. A representative training and validation error curve with S-BN is shown in Figure 2.

S-BN also has two important advantages. First, the number of extra parameters is negligible. Table 2
enumerates the number and percentage of parameters in batch normalization layers (after training,
µ, σ, γ, β are merged into two parameters). In most cases, batch normalization layers only have less
than 1% of the model size. Second, the runtime overhead is also negligible for deployment. In prac-
tice, batch normalization layers are typically fused into convolution layers for efficient inference.
For slimmable networks, the re-fusing of batch normalization can be done on the fly at runtime
since its time cost is negligible. After switching to a new configuration, the slimmable network
becomes a normal network to run without additional runtime and memory cost.

Table 2: Number and percentage of parameters in batch normalization layers.

MobileNet v1 1.0× MobileNet v2 1.0× ShuffleNet 2.0× ResNet-50 1.0×
Conv and FC 4,210,088 (99.483%) 3,470,760 (99.027%) 5,401,816 (99.102%) 25,503,912 (99.792%)
BatchNorm 21,888 (0.517%) 34,112 (0.973%) 48,960 (0.898%) 53,120 (0.208%)

3.3 TRAINING SLIMMABLE NEURAL NETWORKS

Our primary objective to train a slimmable neural network is to optimize its accuracy averaged from
all switches. Thus, we compute the loss of the model by taking an un-weighted sum of all train-
ing losses of different switches. Algorithm 1 illustrates a memory-efficient implementation of the
training framework, which is straightforward to integrate into current neural network libraries. The
switchable width list is predefined, indicating the available switches in a slimmable network. During
training, we accumulate back-propagated gradients of all switches, and update weights afterwards.
Empirically we find no hyper-parameter needs to be tuned specifically in all of our experiments.

4



Published as a conference paper at ICLR 2019

Algorithm 1 Training slimmable neural network M .

Require: Define switchable width list for slimmable network M , for example, [0.25, 0.5, 0.75, 1.0]×.
1: Initialize shared convolutions and fully-connected layers for slimmable network M .
2: Initialize independent batch normalization parameters for each width in switchable width list.
3: for i = 1, ..., niters do
4: Get next mini-batch of data x and label y.
5: Clear gradients of weights, optimizer.zero grad().
6: for width in switchable width list do
7: Switch the batch normalization parameters of current width on network M .
8: Execute sub-network at current width, ŷ =M ′(x).
9: Compute loss, loss = criterion(ŷ, y).

10: Compute gradients, loss.backward().
11: end for
12: Update weights, optimizer.step().
13: end for

4 EXPERIMENTS

In this section, we first evaluate slimmable networks on ImageNet (Deng et al., 2009) classification.
Further we demonstrate the performance of a slimmable network with more switches. Finally we
apply slimmable networks to a number of different applications.

4.1 IMAGENET CLASSIFICATION

We experiment with the ImageNet (Deng et al., 2009) classification dataset with 1000 classes. It is
comprised of around 1.28M training images and 50K validation images.

We first investigate slimmable neural networks on three state-of-the-art lightweight networks, Mo-
bileNet v1 (Howard et al., 2017), MobileNet v2 (Sandler et al., 2018), ShuffleNet (Zhang et al.,
2017), and one representative large model ResNet-50 (He et al., 2016).

To make a fair comparison, we follow the training settings (for example, learning rate schedul-
ing, weight initialization, weight decay, data augmentation, input image resolution, mini-batch size,
training iterations, optimizer) in corresponding papers respectively (Howard et al., 2017; Sandler
et al., 2018; Zhang et al., 2017; He et al., 2016). One exception is that for MobileNet v1 and Mo-
bileNet v2, we use stochastic gradient descent (SGD) as the optimizer instead of the RMSPropOp-
timizer (Howard et al., 2017; Sandler et al., 2018). For ResNet-50 (He et al., 2016), we train for
100 epochs, and decrease the learning rate by 10× at 30, 60 and 90 epochs. We evaluate the top-1
classication error on the center 224×224 crop of images in the validation set. More implementation
details are included in Appendix A.

We first show training and validation error curves in Figure 2. The results of naive training approach
are also reported as comparisons. Although both our approach and the naive approach are stable in
training, the testing error of naive approach is extremely high. With switchable batch normalization,
the error rates of different switches are stable and the rank of error rates is also preserved consistently
across all training epochs.

Next we show in Table 3 the top-1 classification error for both individual networks and slimmable
networks given same width configurations. We use S- to indicate slimmable models. The error
rates for individual models are from corresponding papers except those denoted with †. The run-
time FLOPs (number of Multiply-Adds) for each model are also reported as a reference. Table 3
shows that slimmable networks achieve similar performance compared to those that are individually
trained. Intuitively compressing different networks into a shared network poses extra optimization
constraints to each network, a slimmable network is expected to have lower performance than indi-
vidually trained ones. However, our experiments show that joint training of different switches indeed
improves the performance in many cases, especially for slim switches (for example, MobileNet v1
0.25× is improved by 3.3%). We conjecture that the improvements may come from implicit model
distilling (Hinton et al., 2015; Romero et al., 2014) where the large model transfers its knowledge to
small model by weight sharing and joint training.

5



Published as a conference paper at ICLR 2019

0 2 4 6
Training iterations (5x10e4)

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 e
rro

r r
at

e
naive training
training with S-BN

0 10 20 30 40 50 60 70 80
Training iterations (5x10e4)

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n 
er

ro
r r

at
e

0.25 ×
0.5 ×
0.75 ×
1.0 ×

0 5 10
0.85

0.90

0.95

1.00

naive training

0.25 ×
0.5 ×
0.75 ×
1.0 ×

Figure 2: Training and validation curves of slimmable networks. Left shows the training error of
the largest switch. Right shows testing errors on validation set with different switches. For naive
approach, the training is stable (left) but testing error is high (right, zoomed). Slimmable networks
trained with S-BN have stable and rank-preserved testing accuracy across all training iterations.

Table 3: Results of ImageNet classification. We show top-1 error rates of individually trained net-
works and slimmable networks given same width configurations and FLOPs. We use S- to indicate
slimmable models, † to denote our reproduced result.

Individual Networks Slimmable Networks FLOPs

Name Params Top-1 Err. Name Params Top-1 Err.

MobileNet v1 1.0× 4.2M 29.1
S-MobileNet v1
[0.25, 0.5, 0.75, 1.0]× 4.3M

28.5 (0.6) 569M
MobileNet v1 0.75× 2.6M 31.6 30.5 (1.1) 317M
MobileNet v1 0.5× 1.3M 36.7 35.2 (1.5) 150M
MobileNet v1 0.25× 0.5M 50.2 46.9 (3.3) 41M

MobileNet v2 1.0× 3.5M 28.2
S-MobileNet v2
[0.35, 0.5, 0.75, 1.0]× 3.6M

29.5 (-1.3) 301M
MobileNet v2 0.75× 2.6M 30.2 31.1 (-0.9) 209M
MobileNet v2 0.5× 2.0M 34.6 35.6 (-1.0) 97M
MobileNet v2 0.35× 1.7M 39.7 40.3 (-0.6) 59M

ShuffleNet 2.0× 5.4M 26.3
S-ShuffleNet
[0.5, 1.0, 2.0]× 5.5M

28.7 (-2.4) 524M
ShuffleNet 1.0× 1.8M 32.6 34.5 (-0.9) 138M
ShuffleNet 0.5× 0.7M 43.2 42.7 (0.5) 38M

ResNet-50 1.0× 25.5M 23.9
S-ResNet-50
[0.25, 0.5, 0.75, 1.0]× 25.6M

24.0 (-0.1) 4.1G
ResNet-50 0.75×† 14.7M 25.3 25.1 (0.2) 2.3G
ResNet-50 0.5×† 6.9M 28.0 27.9 (0.1) 1.1G
ResNet-50 0.25×† 2.0M 36.2 35.0 (1.2) 278M

Our proposed approach for slimmable neural networks is generally applicable to the above repre-
sentative network architectures. It is noteworthy that we experiment with both residual and non-
residual networks (MobileNet v1). The training of slimmable models can be applied to convo-
lutions, depthwise-separable convolutions (Chollet, 2016), group convolutions (Xie et al., 2017),
pooling layers, fully-connectted layers, residual connections, feature concatenations and many other
building blocks of deep neural networks.

6



Published as a conference paper at ICLR 2019

4.2 MORE SWITCHES IN SLIMMABLE NETWORKS

The more switches available in a slimmable network, the more choices one have for trade-offs
between accuracy and latency. We thus investigate how the number of switches potentially impact
accuracy. In Table 4, we train a 8-switch slimmable MobileNet v1 and compare it with 4-switch
and individually trained ones. The results show that a slimmable network with more switches have
similar performance, demonstrating the scalability of our proposed approach.

Table 4: Top-1 error rates on ImageNet classification with individually trained networks, 4-switch
S-MobileNet v1 [0.25, 0.5, 0.75, 1.0]× and 8-switch S-MobileNet v1 [0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 1.0]×.

0.25× 0.35× 0.45× 0.5× 0.55× 0.65× 0.75× 0.85× 1.0×
Individual 50.2 - - 36.7 - - 31.6 - 29.1
4-switch 46.9 (3.3) - - 35.2 (1.5) - - 30.5 (1.1) - 28.5 (0.6)
8-switch 47.6 (2.6) 41.1 36.6 - 33.8 31.4 30.2 (1.4) 29.2 28.4 (0.7)

4.3 OBJECT DETECTION, INSTANCE SEGMENTATION AND KEYPOINTS DETECTION

Finally, we apply slimmable networks on tasks of bounding-box object detection, instance segmen-
tation and keypoints detection based on detection frameworks MMDetection (Chen et al., 2018) and
Detectron (Girshick et al., 2018).

Table 5: Average precision (AP) on COCO 2017 validation set with individually trained networks
and slimmable networks. ResNet-50 models are used as backbones for Faster-RCNN, Mask-RCNN
and Keypoints-RCNN based on detection frameworks (Girshick et al., 2018; Chen et al., 2018).
Faster 1.0× indicates Faster-RCNN for object detection with ResNet-50 1.0× as backbone.

Type Individual Networks Slimmable Networks
Box AP Mask AP Kps AP Box AP Mask AP Kps AP

Faster 1.0× 36.4 - - 36.8 (0.4) - -
Faster 0.75× 34.7 - - 36.1 (1.4) - -
Faster 0.5× 32.7 - - 34.0 (1.3) - -
Faster 0.25× 27.5 - - 29.6 (2.1) - -

Mask 1.0× 37.3 34.2 - 37.4 (0.1) 34.9 (0.7) -
Mask 0.75× 35.6 32.9 - 36.7 (1.1) 34.3 (1.4) -
Mask 0.5× 33.4 30.9 - 34.7 (1.5) 32.6 (1.7) -
Mask 0.25× 28.2 26.6 - 30.2 (2.0) 28.6 (2.0) -

Kps 1.0× 50.5 - 61.3 52.8 (2.3) - 63.9 (2.6)
Kps 0.75× 49.6 - 60.5 52.7 (3.1) - 63.6 (3.1)
Kps 0.5× 48.5 - 59.8 51.6 (3.1) - 62.6 (2.8)
Kps 0.25× 45.4 - 56.7 48.2 (2.8) - 59.5 (2.8)

Following the settings of R-50-FPN-1× (Lin et al., 2016; Girshick et al., 2018; Chen et al., 2018),
pre-trained ResNet-50 models at different widths are fine-tuned and evaluated. The lateral convolu-
tion layers in feature pyramid network (Lin et al., 2016) are same for different pre-trained backbone
networks. For individual models, we train ResNet-50 with different width multipliers on ImageNet
and fine-tune them on each task individually. For slimmable models, we first train on ImageNet
using Algorithm 1. Following Girshick et al. (2018), the moving averaged means and variances
of switchable batch normalization are also fixed after training. Then we fine-tune the slimmable
models on each task using Algorithm 1. The detection head and lateral convolution layers in feature
pyramid network (Lin et al., 2016) are shared across different switches in a slimmable network. In
this way, each switch in a slimmable network is with exactly same network architecture and FLOPs
with its individual baseline. More details of implementation are included in Appendix B. We train
all models on COCO 2017 train set and report Average Precision (AP) on COCO 2017 validation
set in Table 5. In general, slimmable neural networks perform better than individually trained ones,
especially for slim network architectures. The gain of performance is presumably due to implicit
model distillation (Hinton et al., 2015; Romero et al., 2014) and richer supervision signals.

7



Published as a conference paper at ICLR 2019

5 VISUALIZATION AND DISCUSSION

0.
25
×

0.
5×

0.
75
×

1.
0×

Figure 3: Top-activated images for same channel 3 9 in different switches in S-MobileNet v1. Dif-
ferent rows represent results from different switches. Images with red outlines are mis-classified.
Note that the white color in RGB is [255, 255, 255], yellow in RGB is [255, 255, 0].

Visualization of Top-activated Images. Our primary interest lies in understanding the role that
the same channel played in different switches in a slimmable network. We employ a simple visual-
ization approach (Girshick et al., 2014) to visualize the images with highest activation values on a
specific channel. Figure 3 shows the top-activated images of the same channel in different switches.
Images with green outlines are correctly classified by the corresponding model, while images with
red outlines are mis-classified. Interestingly the results show that for different switches, the major
role of same channel (channel 3 9 in S-MobileNet v1) transits from recognizing white color (RGB
value [255, 255, 255]) to yellow color (RGB value [255, 255, 0]) when the network width increases.
It indicates that the same channel in slimmable network may play similar roles (in this case to rec-
ognize colors of RGB value [255, 255, ∗]) but have slight variations in different switches (the one in
quarter-sized model focuses more on white color while the one in full model on yellow color).

2 4 6 8

0.3

0.2

0.1

0.0

0.1

0.2

0.3
BN 1_1 to 1_8, mean

0.25 ×
0.5 ×
0.75 ×
1.0 ×

2 4 6 8
0

2

4

6

8

10

12

BN 1_1 to 1_8, var

2 4 6 8

0.0

0.5

1.0

1.5

2.0

BN 1_1 to 1_8, scale

2 4 6 8

1

0

1

2

3

4
BN 1_1 to 1_8, bias

2 4 6 8
8

6

4

2

0

2
BN 12_1 to 12_8, mean

2 4 6 8
3

4

5

6

7

8

9

BN 12_1 to 12_8, var

2 4 6 8

0.4

0.5

0.6

0.7

0.8
BN 12_1 to 12_8, scale

2 4 6 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0
BN 12_1 to 12_8, bias

Figure 4: Values of BN parameters in different switches. We show BN values of both shallow (left,
BN 1 1 to 1 8) and deep (right, BN 12 1 to 12 8) layers of S-MobileNet v1.

Values of Switchable Batch Normalization. Our proposed S-BN learns different BN transforma-
tions for different switches. But how diverse are the learned BN parameters? We show the values
of batch normalization weights in both shallow (BN 1 1 to 1 8) and deep (BN 12 1 to 12 8) layers
of S-MobileNet v1 in Figure 4. The results show that for shallow layers, the mean, variance, scale
and bias are very close, while in deep layers they are diverse. The value discrepancy is increased
layer by layer in our observation, which also indicates that the learned features of a same channel in
different switches have slight variations of semantics.

6 CONCLUSION

We introduced slimmable networks that permit instant and adaptive accuracy-efficiency trade-offs
at runtime. Switchable batch normalization is proposed to facilitate robust training of slimmable
networks. Compared with individually trained models with same width configurations, slimmable
networks have similar or better performances on tasks of classification, object detection, instance
segmentation and keypoints detection. The proposed slimmable networks and slimmable training
could be further applied to unsupervised learning and reinforcement learning, and may help to re-
lated fields such as network pruning and model distillation.

8



Published as a conference paper at ICLR 2019

REFERENCES

Manuel Amthor, Erik Rodner, and Joachim Denzler. Impatient dnns-deep neural networks with
dynamic time budgets. arXiv preprint arXiv:1610.02850, 2016.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3):32,
2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei
Liu, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. mmdetection. https:
//github.com/open-mmlab/mmdetection, 2018.

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint
arXiv:1610.02357, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255. Ieee, 2009.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic
style. arXiv preprint arXiv:1610.07629, 2016.

Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian Strub, Harm de Vries, Aaron Courville,
and Yoshua Bengio. Feature-wise transformations. Distill, 2018. doi: 10.23915/distill.00011.
https://distill.pub/2018/feature-wise-transformations.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 580–587, 2014.

Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and Kaiming He. Detectron.
https://github.com/facebookresearch/detectron, 2018.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Computer Vision (ICCV), 2017 IEEE International Conference on, pp. 1398–1406.
IEEE, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Hanzhang Hu, Debadeepta Dey, J Andrew Bagnell, and Martial Hebert. Anytime neural networks
via joint optimization of auxiliary losses. arXiv preprint arXiv:1708.06832, 2017.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q Wein-
berger. Multi-scale dense networks for resource efficient image classification. arXiv preprint
arXiv:1703.09844, 2017.

9

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
https://github.com/facebookresearch/detectron


Published as a conference paper at ICLR 2019

Xun Huang and Serge J Belongie. Arbitrary style transfer in real-time with adaptive instance nor-
malization. In ICCV, pp. 1510–1519, 2017.

Andrey Ignatov, Radu Timofte, Przemyslaw Szczepaniak, William Chou, Ke Wang, Max Wu, Tim
Hartley, and Luc Van Gool. Ai benchmark: Running deep neural networks on android smart-
phones. arXiv preprint arXiv:1810.01109, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Eunwoo Kim, Chanho Ahn, and Songhwai Oh. Learning nested sparse structures in deep neural
networks. arXiv preprint arXiv:1712.03781, 2017.

Jason Kuen, Xiangfei Kong, Zhe Lin, Gang Wang, Jianxiong Yin, Simon See, and Yap-Peng Tan.
Stochastic downsampling for cost-adjustable inference and improved regularization in convolu-
tional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 7929–7938, 2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016a.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normaliza-
tion for practical domain adaptation. arXiv preprint arXiv:1603.04779, 2016b.

Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Demystifying neural style transfer. arXiv
preprint arXiv:1701.01036, 2017a.

Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. Universal style
transfer via feature transforms. In Advances in Neural Information Processing Systems, pp. 386–
396, 2017b.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In Advances in Neural
Information Processing Systems, pp. 2181–2191, 2017.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. arXiv preprint arXiv:1612.03144, 2016.

Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-efficiency trade-offs
by selective execution. arXiv preprint arXiv:1701.00299, 2017.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Computer Vision (ICCV),
2017 IEEE International Conference on, pp. 2755–2763. IEEE, 2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. arXiv preprint arXiv:1707.06342, 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Ethan Perez, Harm De Vries, Florian Strub, Vincent Dumoulin, and Aaron Courville. Learning
visual reasoning without strong priors. arXiv preprint arXiv:1707.03017, 2017a.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. arXiv preprint arXiv:1709.07871, 2017b.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. In-
verted residuals and linear bottlenecks: Mobile networks for classification, detection and segmen-
tation. arXiv preprint arXiv:1801.04381, 2018.

10



Published as a conference paper at ICLR 2019

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. Mnasnet: Platform-
aware neural architecture search for mobile. arXiv preprint arXiv:1807.11626, 2018.

Hokchhay Tann, Soheil Hashemi, R Bahar, and Sherief Reda. Runtime configurable deep neural
networks for energy-accuracy trade-off. In Proceedings of the Eleventh IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis, pp. 34. ACM, 2016.

Andreas Veit and Serge Belongie. Convolutional networks with adaptive computation graphs. arXiv
preprint arXiv:1711.11503, 2017.

Xin Wang, Fisher Yu, Zi-Yi Dou, and Joseph E Gonzalez. Skipnet: Learning dynamic routing in
convolutional networks. arXiv preprint arXiv:1711.09485, 2017.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 2074–2082,
2016.

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen Grauman,
and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. arXiv preprint
arXiv:1711.08393, 2017.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on, pp. 5987–5995. IEEE, 2017.

Linjie Yang, Yanran Wang, Xuehan Xiong, Jianchao Yang, and Aggelos K Katsaggelos. Efficient
video object segmentation via network modulation. arXiv preprint arXiv:1802.01218, 2018.

Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. arXiv preprint arXiv:1802.00124, 2018.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083, 2017.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards effective low-
bitwidth convolutional neural networks. In other words, 2:2, 2018.

A TRAINING ON IMAGENET

We mainly use three training settings corresponding to Howard et al. (2017); Sandler et al. (2018);
Zhang et al. (2017); He et al. (2016). For MobileNet v1 and MobileNet v2, we train 480 epochs
with mini-batch size 160, and exponentially (γ = 0.98) decrease learning rate starting from 0.045
per epoch. For ShuffleNet (g = 3), we train 250 epochs with mini-batch size 512, and linearly
decrease learning rate from 0.25 to 0 per iteration. For ResNet-50, we train 100 epochs with mini-
batch size 256, and decrease the learning rate by 10× at 30, 60 and 90 epochs. We use stochastic
gradient descent (SGD) as optimizer, Nesterov momentum with a momentum weight of 0.9 without
dampening, and a weight decay of 10−4 for all training settings. All models are trained on 4 Tesla
P100 GPUs and the batch mean and variance of batch normalization are computed within each GPU.

With the above training settings, the reproduced MobileNet v1 1.0×, MobileNet v2 1.0× and
ResNet-50 1.0× have similar top-1 accuracy (±0.5%). Our reproduced ShuffleNet 2.0× has top-1
error rate 28.2%, which is 1.9% worse than results in Zhang et al. (2017). It is likely due to the
inconsistency of mini-batch size and number of training GPUs.

B TRAINING ON COCO

We use pytorch-style ResNet-50 model (Chen et al., 2018) as backbone for COCO tasks, since our
pretrained ResNet-50 at different widths for ImageNet classification is also pytorch-style. However,
it is slightly different than the caffe-style ResNet-50 used in Detectron (Girshick et al., 2018) (the
stride for down-sampling is added into 3 × 3 convolutions instead of 1 × 1 convolutions). To this

11



Published as a conference paper at ICLR 2019

end, we mainly conduct COCO experiments based on another detection framework: MMDetec-
tion (Chen et al., 2018), which has hyper-parameter settings with same pytorch-style ResNet-50.
With same hyper-parameter settings (i.e., RCNN R50 FPN 1×), we fine-tune both individual
ResNet-50 models and slimmable ResNet-50 on tasks of object detection and instance segmenta-
tion. Our reproduced results on ResNet-50 1.0× is consistent with official models in MMDetec-
tion (Chen et al., 2018). For keypoint detection task, we conduct experiment on Detectron (Girshick
et al., 2018) framework by modifying caffe-style ResNet-50 to pytorch-style and training on 4 GPUs
without other modification of hyper-parameters. We have released code (training and testing) and
pretrained models on both ImageNet classification task and COCO detection tasks.

C ABLATION STUDY OF CONDITIONAL PARAMETERS IN BN

In our work, private parameters γ, β, µ, σ2 of BN are introduced in Switchable Batch Normalization
for each sub-network to independently normalize feature y′ = γ y−µ√

σ2+ε
+ β, where y is input and

y′ is output, γ, β are learnable scale and bias, µ, σ2 are moving averaged statistics for testing. In
switchable batch normalization, the private γ, β come for free because after training, they can be
merged as y′ = γ′y + β′, γ′ = γ√

σ2+ε
, β′ = β − γ′µ. Nevertheless, we present ablation study on

how these conditional parameters affect overall performance. The results are shown in Table 6.

Table 6: Top-1 error rates on ImageNet classification with two S-MobileNet v1 [0.25, 0.5, 0.75, 1.0]×

with private scale and bias or shared ones.

0.25× 0.5× 0.75× 1.0×
Private γ, β 46.9 35.2 30.5 28.5
Shared γ, β 47.1 (-0.2) 35.9 (-0.7) 30.9 (-0.4) 28.8 (-0.3)

12


	Introduction
	Related Work
	Slimmable Neural Networks
	Naive Training or Incremental Training
	Switchable Batch Normalization
	Training Slimmable Neural Networks

	Experiments
	ImageNet Classification
	More Switches in Slimmable Networks
	Object Detection, Instance Segmentation and Keypoints Detection

	Visualization and Discussion
	Conclusion
	Training on ImageNet
	Training on COCO
	Ablation Study of Conditional Parameters in BN

