
Proceedings of Machine Learning Research 102:512–526, 2019 MIDL 2019 – Full paper track

Adversarial Pseudo Healthy Synthesis Needs Pathology Factorization

Tian Xia1 TIAN.XIA@ED.AC.UK

Agisilaos Chartsias1 AGIS.CHARTSIAS@ED.AC.UK

Sotirios A. Tsaftaris1,2 S.TSAFTARIS@ED.AC.UK
1 School of Engineering, University of Edinburgh, West Mains Rd, Edinburgh EH9 3FB, UK
2 The Alan Turing Institute, London, UK

Abstract
Pseudo healthy synthesis, i.e. the creation of a subject-specific ‘healthy’ image from a patho-

logical one, could be helpful in tasks such as anomaly detection, understanding changes induced by
pathology and disease or even as data augmentation. We treat this task as a factor decomposition
problem: we aim to separate what appears to be healthy and where disease is (as a map). The
two factors are then recombined (by a network) to reconstruct the input disease image. We train
our models in an adversarial way using either paired or unpaired settings, where we pair disease
images and maps (as segmentation masks) when available. We quantitatively evaluate the quality
of pseudo healthy images. We show in a series of experiments, performed in ISLES and BraTS
datasets, that our method is better than conditional GAN and CycleGAN, highlighting challenges
in using adversarial methods in the image translation task of pseudo healthy image generation.
Keywords: pseudo healthy synthesis, GAN, cycle-consistency, factorization

1. Introduction

The aim of pseudo healthy synthesis is to synthesize a subject-specific ‘healthy’ image from a patho-
logical one. Generating such images can be valuable both in research and in clinical applications.
For example, these images can be used as a means to perform pathology segmentation (Bowles
et al., 2017; Ye et al., 2013), detection (Tsunoda et al., 2014), to help with the visual understand-
ing of disease classification networks (Baumgartner et al., 2018) and to aid experts with additional
diagnostic information (Sun et al., 2018).

A challenge with pseudo healthy synthesis is the lack of paired pathological and healthy images
for training, i.e. we do not have images of the same patient moments before and after pathology has
appeared. Thus, methods based on pure supervised learning are not fit for our purpose. While lon-
gitudinal observations could perhaps partially alleviate this problem, the time difference between
observations is an additional factor that may complicate learning. Thus, it is imperative to over-
come this lack of paired data. One approach is to learn distributions that characterize the domains
of healthy and pathological images, for example by learning a compact manifold of patch-based
dictionaries (Ye et al., 2013; Tsunoda et al., 2014), or alternatively by learning mappings between
the two domains with the use of adversarial training (Sun et al., 2018).

We follow a similar approach here but focus on factorizing the pathology. Simple schematic
and examples are shown in Figure 1. We aim to separate what appears to be healthy out of a
disease image. We let neural networks decompose an input image into a healthy image (one factor)
via a generator, and a binary map that aims to localize disease (the other factor) via a segmentor.
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Figure 1: Example results and simple illustration of our method. The three rows of (a) show input
pathological images, corresponding pseudo healthy images, and pathology segmentation
masks, respectively. Images are taken from the BraTS dataset. In (b) a pseudo healthy
image x̃h and a pathology mask m̃p are generated from a pathological image xp, and then
finally a reconstructed image x̂p is generated from x̃h and m̃p.

These two factors are then composed together to reconstruct the input via another network. The
pathological map is necessary as a factor to solve the one-to-many problem1 (Chu et al., 2017): the
healthy image must by definition contain ‘less information’ than the disease image.

We can train the segmentor in a supervised way using ‘paired’ pathological images and their
corresponding masks. However, since annotations of pathology are not easy to acquire, we also
propose an ‘unpaired’ training strategy. We take advantage of several losses including a cycle-
consistency loss (Zhu et al., 2017), but use a modified second cycle where we enforce healthy-to-
healthy image translation to approach the identity. Finally, since most pseudo healthy methods focus
on applications of the synthetic data, results are either evaluated qualitatively or by demonstrat-
ing improvements on downstream tasks. A direct quantitative evaluation of the quality of pseudo
healthy images has been largely ignored. In this paper, we propose two numerical evaluation met-
rics for characterizing the ‘healthiness’ (i.e. how close to being healthy) and ‘identity’ (i.e. how
close to corresponding to the input identity) of synthetic results.

Our contributions in this work are three-fold:

1. We propose a 2D method that factorizes anatomical and pathological information.

2. We consider two training settings: (a) paired: when we have paired images and ground-truth
pathology masks; (b) unpaired: when such pairs are not available.

3. We propose numerical evaluation metrics to explicitly evaluate the quality of pseudo healthy
synthesized images, and compare our method with conditional GAN (Mirza and Osindero,
2014) and CycleGAN (Zhu et al., 2017) on ISLES and BraTS datasets.

2. Related work on pseudo healthy synthesis

Medical image synthesis is an active research topic in medical image analysis (Frangi et al., 2018)
with an active community and dedicated workshops (e.g. the SASHIMI MICCAI series). For brevity

1. There could be many disease images that could originate from the same healthy image, e.g. consider the simple
setting of a lesion in many different locations on the same brain.
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here we focus on methods related to pseudo healthy image synthesis with adversarial mechanisms.
Image synthesis (translation) can be solved by a conditional GAN that learns a mapping between
image domains (e.g. A to B). However, preservation of ‘identity’ is not guaranteed: there are no
explicit costs to enforce that an image from domain A to be translated to the same image in domain
B. CycleGAN uses a cycle-consistency loss to promote identity and has been profoundly adopted
in medical image analysis (Huo et al., 2018; Zhang et al., 2018; Wolterink et al., 2017; Chartsias
et al., 2017; Wang et al., 2018).

Baumgartner et al. (2018) used Wasserstein GAN (Arjovsky et al., 2017) to generate disease
effect maps, and used these maps to synthesize pathological images. Andermatt et al. (2018) com-
bined the idea of Baumgartner et al. (2018) with CycleGAN to perform pseudo healthy synthesis for
pathology detection. Yang et al. (2016) used a Variational Auto-encoder to learn a mapping from
pathological images to quasi-normal (pseudo healthy) images to improve atlas-to-image registra-
tion accuracy with large pathologies. Schlegl et al. (2017) and Chen and Konukoglu (2018) trained
adversarial auto-encoder networks only on normal data, then used the trained model to synthesize
normal data from abnormal data as a way of detecting the anomaly. Sun et al. (2018) proposed a
CycleGAN-based method to perform pseudo healthy synthesis treating ‘pathological’ and ‘healthy’
as two domains.

The majority of these works use pseudo healthy images to achieve improvements in downstream
tasks. While the performance on such downstream tasks relies on pseudo healthy image quality, it is
not explicitly evaluated. Herein, we pay particular attention to consistently evaluate how ‘healthy’
the synthetic images look, and whether they correspond to the same ‘identity’ of the input. All
methods rely on some form of adversarial training to approximate a distribution. However, as
we will detail below, when one of the domains has less information the one-to-many problem can
appear and CycleGAN may collapse. Our method treats pathology as a ‘residual’ factor: it factorizes
anatomical and pathological information using adversarial and cycle-consistent losses to bypass the
one-to-many problem.

3. Methodology

3.1. Problem overview

We denote a pathological image as xp and a healthy image as xh, drawn from P and H distributions,
respectively, i.e xp∼P and xh∼H . Our task is to generate a pseudo healthy image x̃h for a sample
xp, such that x̃h lies in the distribution of healthy images, i.e. x̃h ∼H . In the meantime, we also
want the generated image x̃h to maintain the identity of the original image xp, i.e. to come from the
same subject as xp. Therefore, pseudo healthy synthesis can be formulated as two major objectives:
remove the disease of pathological images, and maintain the identity and realism as good as possible.

3.2. The one-to-many problem: motivation for factorization

CycleGAN has to somehow invent (or hide) information when one domain contains less information
than the other. In our case domain P does contain disease information that should not be present in
H , which leads to failure cases as shown in Figure 2. When CycleGAN cannot invent information,
Chu et al. (2017) in fact showed that it hides information within an image to be able to solve the
one-to-many mapping. Recently, several papers (Chartsias et al., 2018; Almahairi et al., 2018;
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pathological synthetic reconstructed pathological synthetic reconstructed

Figure 2: CycleGAN failure cases caused by the one-to-many problem. Each subfigure from left to
right shows the input, the pseudo healthy and the input reconstruction. The lesion location
in the reconstruction differs from the original one, since an accurate pseudo healthy image
has no information to guide the reconstruction process. Images taken from ISLES.

Huang et al., 2018; Lee et al., 2018; Esser et al., 2018) have shown that one needs to provide
auxiliary information in the form of a style or modality specific code (actually a vector) to guide the
translation and allow many-to-many mappings. Our paper does follow this practice, but instead of
providing a vector we consider the auxiliary information of where the disease could be, such that the
decoder does not have to invent where things should go, and conversely the encoder does not have
to hide information. We thus achieve that pseudo healthy images are of high quality, correspond to
the identity of the same input, and also produce realistic disease maps.

3.3. Proposed approach

A schematic of our proposed method is illustrated in Figure 3. Recall that our task is to transform an
input pathological image xp to a disease-free image x̃h whilst maintaining the identity of xp. Towards
this goal, our method uses the cycle-consistency losses and treats ‘pathological’ and ‘healthy’ as
two image domains. To solve the one-to-many mapping problem, we estimate a disease map from
a pathological image using a segmentation network, and then use the map to provide information
about disease location. Specifically, there are three main components: ‘G’ the ‘generator’; ‘S’ the
‘segmentor’; and ‘R’ the ‘reconstructor’ trained using two cycles: Cycle P-H and Cycle H-H.

Cycle P-H, we perform pseudo healthy synthesis, where ‘G’ takes a pathological image xp as
input and outputs a ‘healthy’ looking image x̃h: x̃h = G(xp). ‘S’ takes xp as input and outputs a
pathology map m̃p: m̃p = S(xp). ‘R’ takes the synthesized ‘healthy’ image x̃h and the segmented
mask m̃p as input and outputs a ‘pathological’ image x̂p: x̂p = R(x̃h, m̃p) = R(G(xp),S(xp)).

Cycle H-H utilizes healthy images and stabilizes the training. It starts with a healthy image xh
and a null ‘healthy’ mask mh. First, ‘R’ generates a fake ‘healthy’ image x̃h: x̃h = R(xh,mh), which
is then segmented into a healthy mask m̂h: m̂h = S(x̃h) and transformed to a reconstructed healthy
image x̂h: x̂h = G(x̃h).

There are several reasons why we design Cycle H-H in such a way. First, a pathology mask for
a real healthy image is, by definition, a black mask. Second, we want to prevent the reconstructor
‘R’ from inventing pathology when the input disease map is black. Third, we want to guide the
generator ‘G’ and segmentor ‘S’ to preserve identity when the input (to both) is a ‘healthy’ image,
such that the synthesized ‘healthy’ image is as similar to the input ‘healthy’ image as possible.
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Figure 3: Training flowchart. Cycle P-H is the translation path from ‘pathological’ to ‘healthy’ and
then back to ‘pathological’; Cycle H-H is the path from a healthy image and a black mask
to a fake healthy image, then back to the reconstructed image and mask.

Similarly, when the input to the segmentor ‘S’ is a ‘healthy’ image, it should output a ‘healthy’ (no
disease) map, i.e. a black mask.

3.4. Losses

The training losses are L CC, L GAN1 and L Seg and L GAN2 .
L CC is the cycle-consistency loss:

L CC = Exp∼P [‖R(G(xp),S(xp))− xp‖1]

+Exh∼H ,mh∼Hm [‖G(R(xh,mh))− xh‖1]+Exh∼H ,mh∼Hm [‖S(R(xh,mh))−mh‖1],

where the first term is defined in Cycle P-H and the last two terms are defined in Cycle H-H. Note
that the third term uses Mean Average Error instead of Dice, because if the target mask is black,
then given any result mask, Dice loss will always produce 1.

L GAN1 is the least squares discriminator loss over synthetic images (Mao et al., 2017):

L GAN1 = max
Dx

min
G

1
2
Exp∼P [‖Dx(G(xp))−1‖2]+max

Dx

1
2
Exh∼H [‖Dx(xh)‖2]

+max
Dx

min
R

1
2
Exh∼H ,mh∼Hm [‖Dx(R(xp,mh))−1‖2]+max

Dx

1
2
Exh∼H [‖Dx(xh)‖2],

where the first two terms correspond to Cycle P-H and the last two for Cycle H-H.
To train ‘S’, we use two different training settings whether we have paired or unpaired data, and

use a supervised or a GAN loss, respectively.
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In the paired setting, we use manually annotated pathology masks corresponding to pathological
images in L Seg = Exp∼P,mp∼Pm [Dice(S(xp)−mp)], with a differentiable Dice (Milletari et al.,
2016) loss.

In the unpaired setting, since pathological images lack paired annotations, we replace L Seg
with a discriminator Dm which classifies real pathology masks from inferred masks:

L GAN2 = max
Dm

min
S

1
2
Exp∼P [‖Dm(S(xp))−1‖2]+max

Dm

1
2
Emp∼Pm [‖Dm(mp)‖2],

where a pathological image xp and a mask mp come from different volumes.

4. Experiments

4.1. Experimental settings

Dataset and preprocessing: We demonstrate our method on two datasets. We use the FLAIR
data of the Ischemic Lesion Segmentation (ISLES) 2015 dataset (Maier et al., 2017), which contains
images of 28 volumes that are skull stripped and re-sampled to an isotropic spacing of 1mm3 (SISS)
resp. We also use FLAIR data from MRI scans of glioblastoma (GBM/HGG), made available in the
Brain Tumour Segmentation (BraTS) 2018 (Menze et al., 2015) challenge. The BraTS data contain
images of 79 volumes that are skull-striped, and interpolated to 1mm3 resolution. Both datasets are
released with segmentation masks of the pathological regions. For each dataset, we normalize each
volume by clipping the intensities to [0, V99.5], where V99.5 is the 99.5% largest pixel value of the
corresponding volume, then we normalize the resulting intensities to [0, 1]. We choose the middle
60 slices from each volume and label a slice as ‘healthy’ if its corresponding pathology mask is
black, and as ‘pathological’ otherwise. We divide the datasets into a training and a testing set of 22
and 6 volumes for ISES, and 50 and 29 volumes for BraTS respectively.
Training and implementation details: The method is implemented in Python using Keras (Chol-
let et al., 2015). The loss function for the paired data option is defined as Lpaired = λ1L CC +
λ2L GAN1 +λ3L Seg, where λ1 = 10, λ2 = 1, and λ3 = 10 (same values as Chartsias et al. (2018)).
The loss function for the unpaired data option is defined as Lunpaired = λ1L CC + λ2L GAN1 +
λ3L GAN2 , where λ1 = 10, λ2 = 2, and λ3 = 10 (λ2 has been increased to focus the attention on
synthesis). Architecture details are in the Appendix.
Baselines: We consider two pseudo healthy synthesis baselines for comparison: a conditional GAN
(Mirza and Osindero, 2014) (that is deterministic and is conditioned on an image) that consists of a
pseudo healthy generator, trained with unpaired data and an adversarial loss against a discriminator
that classifies real and fake healthy images; and a CycleGAN which considers two domains for
healthy and unhealthy and is trained as in Zhu et al. (2017) to learn a domain translation using
unpaired data.

4.2. Evaluation metrics

We propose, and use, numerical evaluation metrics to quantitatively evaluate the synthesized pseudo
healthy images in terms of ‘healthiness’ and ‘identity’ i.e. how healthy do they look and how close
to the input they are (as a proxy to identity).

‘Healthiness’ is not easy to directly measure since we do not have ground-truth pseudo healthy
images. However, given a pathology segmentor applied on a pseudo healthy synthetic image, we can
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measure the size of the segmented pathology as a proxy. To this end, we first train a segmentor to
predict disease from pathological images, and then use the pre-trained segmentor to predict disease
masks of synthetic pseudo healthy images and check how large the predicted disease areas are.
Formally, ‘healthiness’ can be defined as:

h = 1−
Ex̂h∼H [N( f pre(x̂h))]

Emp∼Pm [N(mp)]
= 1−

Exp∼P [N( f pre(G(xp)))]

Emp∼Pm [N(mp)]
,

where f pre is the pre-trained segmentor whose output is a pathology mask, and N(m) is the number
of pixels which are labeled as pathology in the mask m. We normalize by the average size of all
ground-truth pathological masks. Then we subtract the term from 1, such that h increases when the
images have smaller pathology.

‘Identity’ is measured using a masked Multi-Scale Structural Similarity Index (MS-SSIM) with
window width 11, defined as MS-SSIM[(1−mp)� x̂h,(1−mp)� xp]. This metric is based on the
assumption that a pathological image and its corresponding pseudo healthy image should look the
same in regions not affected by pathology.

4.3. Experiments on ISLES and BraTS datasets

We train our proposed method in both paired and unpaired settings on ISLES and BraTS datasets,
and compare with the baselines of Section 4.1. Some results can be seen in Figure 4, where we
observe that all synthetic images visually appear to be healthy. However, the pseudo healthy images
generated by conditional GAN are blurry and to some degree different from the original samples, i.e.
the lateral ventricles (cavities in the middle) change: a manifestation of loss of ‘identity’. Similarly,
we observe changes of lateral ventricles in the synthetic images generated by CycleGAN. These
changes are probably due to the fact that CycleGAN needs to hide information to reconstruct the
input images. We also observe that our methods preserve more details of the original samples.
Together, these observations imply that our proposed methods maintain better ‘identity’ than the
baselines.

We also use the proposed evaluation metrics to measure the quality of synthetic images gener-
ated by our method and baselines, respectively. The numerical results are shown in Table 1. We
can see that our proposed method (paired) when trained using pathological image and mask pairs
achieves the best results, followed by our proposed method (unpaired). Both paired and unpaired
versions outperform conditional GAN and CycleGAN in both the BraTS and ISLES datasets. The
improvements of our method are due to the factorization of pathology, which ensures maintaining
information of the pathology during the pseudo healthy synthesis such that the synthetic images do
not need to hide information.

5. Conclusion

In this paper, we propose an adversarial network for pseudo healthy synthesis with factorization of
pathology. Our proposed method is composed of a pseudo healthy synthesizer to generate pseudo
healthy images, a segmentor to predict a pathology map, i.e. as a way of factorizing pathology, and
a reconstructor to reconstruct the input pathological image conditioned on the map. Our method can
be trained in (a) paired mode when we have paired pathological images and masks; or (b) unpaired
mode for when we do not have image and mask pairs. We also propose two numerical evaluation
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Figure 4: Experimental results for BraTS and ISLES data are shown in the left and right part re-
spectively. Each part shows three samples (in three rows). The columns from left to right
show the ground-truth pathological images, and pseudo healthy images generated by con-
ditional GAN, CycleGAN, and the two proposed methods, respectively. A larger version
of these results are shown in Appendix.

metrics to explicitly measure the quality of the synthesized images. We demonstrate on ISLES and
BraTS datasets that our method outperforms the baselines both quantitatively and qualitatively.

Metrics that enforce or even measure identity is a topic of considerable interest in computer
vision (Antipov et al., 2017). Our approach here is simple (essentially measures the fidelity of the
reconstructed signal) but it does assume that changes due to disease are only local. This assumption
is also adopted by several methods (Andermatt et al., 2018; Sun et al., 2018; Baumgartner et al.,

Table 1: Evaluation results on BraTS and ISLES of our proposed method trained with and without
pairs, as well as of the baselines used for comparison. The best mean values for each
defined metric (identity, healthiness) are shown in bold. Statistical significant results (5%
level), of our methods compared to the best baseline are marked with a star (*).

BraTS ISLES
Methods ‘Identity’ ‘Healthiness’ ‘Identity’ ‘Healthiness’

conditional GAN 0.74+−0.05 0.82+−0.03 0.67+−0.02 0.86+−0.13
CycleGAN 0.80+−0.03 0.83+−0.04 0.78+−0.02 0.85+−0.11

proposed (unpaired) 0.83+−0.03 0.98+−0.07∗ 0.82+−0.03 0.94+−0.11∗

proposed (paired) 0.88+−0.03∗ 0.99+−0.02∗ 0.93+−0.02∗ 0.98+−0.04∗
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2018). When disease globally affects an image, new approaches must be devised which is seen as
future work.
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Appendix A. Architecture details

The detailed architecture of our generator ‘G’ is shown in Table 2. IN stands for Instance Nor-
malization. The detailed architecture of our reconstructor ‘R’ is shown in Table 3. The detailed
architecture of our discriminator ‘Dx’ and ‘Dm’ is shown in Table 4.

Table 2: Detailed architecture of generator ‘G’.

Layer Input filter size stride IN activation Output
conv2d (208,160,1) 7 1 Yes ReLu (208,160,32)
conv2d (208,160,32) 3 2 Yes ReLu (104,80,64)
conv2d (104,80,64) 3 2 Yes ReLu (52,40,128)

residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
upsampling2d (52,40,128) - - - - (104, 80, 128)

conv2d (104, 80, 128) 3 1 Yes ReLu (104,80,64)
upsampling2d (104,80,64) - - - - (208, 160, 64)

conv2d (208, 160, 64) 3 1 Yes ReLu (208, 160, 32)
conv2d (208, 160, 32) 3 1 No sigmoid (208, 160, 1)

Table 3: Detailed architecture of reconstructor ‘R’.

Layer Input filter size stride IN activation Output
conv2d (208,160,2) 7 1 Yes ReLu (208,160,32)
conv2d (208,160,32) 3 2 Yes ReLu (104,80,64)
conv2d (104,80,64) 3 2 Yes ReLu (52,40,128)

residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
residual block (52,40,128) 3 1 Yes Leaky ReLu (52,40,128)
upsampling2d (52,40,128) - - - - (104, 80, 128)

conv2d (104, 80, 128) 3 1 Yes ReLu (104,80,64)
upsampling2d (104,80,64) - - - - (208, 160, 64)

conv2d (208, 160, 64) 3 1 Yes ReLu (208, 160, 32)
conv2d (208, 160, 32) 3 1 No sigmoid (208, 160, 2)
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Table 4: Detailed architecture of discriminator ‘Dx’ and ‘Dm’.

Layer Input filter size stride IN activation Output
conv2d (208,160,2) 4 2 Yes Leaky ReLu (104,80,32)
conv2d (104,80,32) 4 2 Yes Leaky ReLu (52,40,128)
conv2d (52,40,128) 4 2 Yes Leaky ReLu (26,20,256)
conv2d (26,20,256) 4 2 Yes Leaky ReLu (13,10,512)
conv2d (13,10,512) 4 1 No sigmoid (13,10,1)

The detailed architecture of our segmentor ‘S’ is a U-Net, and follows the structure of Ron-
neberger et al. (2015). We change the activation function from ‘ReLu’ to ‘Leaky ReLu’. We also
found that using residual connection on each layer slightly improved the results.

The pre-trained segmentor fpre which is used for evaluation uses the same structure as ‘S’. We
train the segmentor fpre on the ISLES and BraTS training datasets (see Section 4.1) respectively,
and then use it to evaluate synthetic images generated from samples in ISLES and BraTS testing
datasets. The Dice loss of the segmentor on ISLES and BraTS testing datasets are 0.12 and 0.16,
respectively.

Pathological
images

conditional 
GAN

CycleGAN Proposed 
(unpaired)

Proposed 
(paired)

BraTS

Figure 5: Experimental results for BraTS. The columns from left to right show the ground-truth
pathological images, and pseudo healthy images generated by conditional GAN, Cycle-
GAN, and the two proposed methods, respectively.
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Pathological
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Figure 6: Experimental results for ISLES. The columns from left to right show the ground-truth
pathological images, and pseudo healthy images generated by conditional GAN, Cycle-
GAN, and the two proposed methods, respectively.
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