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Ordinal Pattern: A New Descriptor for Brain
Connectivity Networks

Daoqiang Zhang†, Jiashuang Huang, Biao Jie, Junqiang Du, Liyang Tu, Mingxia Liu†

Abstract—Brain connectivity networks based on magnetic
resonance imaging (MRI) or functional MRI (fMRI) data provide
a straightforward way to quantify the structural or functional
systems of the brain. Currently, there are several network
descriptors developed for representing and analyzing brain con-
nectivity networks. However, most of them are designed for un-
weighted networks, regardless of the valuable weight information
of edges, or do not take advantage of the ordinal relationship
of weighted edges (even though they are designed for weighted
networks). In this paper, we propose a new network descriptor
(i.e., ordinal pattern that contains a sequence of weighted edges)
for brain connectivity network analysis. Compared with previous
network properties, the proposed ordinal patterns can not only
take advantage of the weight information of edges but also
explicitly model the ordinal relationship of weighted edges in
brain connectivity networks. We further develop an ordinal
pattern based learning framework for brain disease diagnosis
using resting-state fMRI data. Specifically, we first construct a set
of brain functional connectivity networks, where each network
is corresponding to a particular subject. We then develop an
algorithm to identify ordinal patterns that frequently appear in
brain connectivity networks of patients and normal controls.
We further perform discriminative ordinal pattern selection
and extract feature representations for subjects based on the
selected ordinal patterns, followed by a learning model for
automated brain disease diagnosis. Experimental results on both
ADNI and ADHD-200 datasets demonstrate that our method
outperforms several state-of-the-art approaches in the tasks of
disease classification and clinical score regression.

Index Terms—Connectivity network, network descriptor, brain
disease diagnosis, classification, regression.

I. INTRODUCTION

OUR brain is a complex network, containing a large num-
ber of structurally/functionally interconnected regions.

Through a continuous integration of information across differ-
ent regions of the brain, the structural/functional communica-
tion between brain regions plays a key role in the complicated
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cognitive process. Thus, it is essential to examine the struc-
tural/functional connectivity in the brain, which may provide
interesting insights into the core organization of the brain [1],
[2]. In the context of neuroimaging, magnetic resonance
imaging (MRI) and functional magnetic resonance imaging
(fMRI) provide efficient and non-invasive solutions to map
structural/functional connectivity patterns of the brain [3]–[9],
respectively. Based on fMRI data, recent studies [10]–[14]
have shown that brain functional connectivity networks are
effective in helping understand the pathology of brain diseases,
e.g., Alzheimer’s disease (AD), mild cognitive impairment
(MCI), and attention deficit hyperactivity disorder (ADHD).

In a brain structural/functional connectivity network, we
generally treat each anatomical brain region as a particular
node and regard the structural/functional connections between
brain regions as edges. To facilitate the automated diagnosis
for brain diseases, one usually first constructs a brain struc-
tural/functional connectivity network for each subject based on
MRI/fMRI and then extract network properties (or descriptors)
as feature representation to represent this subject for subse-
quent learning models. Although many properties have been
proposed to describe brain structural/functional connectivity
networks [10], [11], [13], most of them are designed for
unweighted networks (ignoring edge weights), or do not take
advantage of the ordinal relationship of weighted edges (even
though they are designed for weighted networks).

Recently, diffusion model of communication is reported to
be more appropriate for the analysis of brain networks [15]–
[17]. Specifically, a diffusion process means that the flow
of information in a network is dispersive by propagating
simultaneously along multiple ”fronts,” rather than pointing to
a single destination. With diffusion, information sent from a
single node can reach any of a number of destinations via any
of multiple paths that are possibly biased by edge weights [15].
That is, the weighted edges in these paths may have the ordinal
relationship in the diffusion model of communication for
brain network analysis. Hence, descriptors that consider both
the weight information and the ordinal relationship among
weighted edges can represent the network more precisely,
and thus may bring better learning performance for brain
connectivity network based methods.

To this end, we propose a new network descriptor (called
ordinal pattern [18]) for representing brain connectivity net-
works, and also apply it to computer-aided brain disease
diagnosis. In an ordinal pattern, we construct a sequence of
weighted edges for a brain connectivity network, to make
use of both edge weights and the ordinal relationship among
weighted edges. Compared with conventional network prop-
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Fig. 1. Illustration of our proposed ordinal pattern based learning framework
for brain disease diagnosis, including 1) imaging data pre-processing, 2)
frequent ordinal pattern mining, 3) selection of discriminative ordinal patterns,
and 4) feature extraction and model construction.

erties, our proposed ordinal patterns are directly designed
on weighted networks, which can naturally take advantage
of the weights of edges and the ordinal relationship among
weighted edges in brain connectivity networks. Furthermore,
we develop an ordinal pattern based brain disease diagnosis
framework using resting-state fMRI (rs-fMRI) data, with a
schematic diagram given in Fig. 1. Specifically, we first pre-
process rs-fMR images and construct a set of brain connec-
tivity networks, where each network is corresponding to a
particular subject. We then propose to identify the frequent
ordinal patterns from the network sets of patients and nor-
mal controls (NCs) separately. We further select the most
discriminative ordinal patterns and extract features for brain
connectivity networks (w.r.t. subjects). Finally, we construct a
classification/regression model using our ordinal pattern based
representations. The preliminary work of this method was re-
ported on MICCAI [18]. In this journal paper, we have offered
new contributions in the following aspects: 1) investigating
the learned ordinal pattern based feature representations, 2)
describing the ordinal pattern mining algorithm and releasing
the code, 3) applying the proposed method to regression tasks
for clinical scores, and 4) studying the influence of three
parameters on the performance of our method.

The major contributions of this paper are three-fold. First,
a new network descriptor (ordinal pattern) is developed to
represent brain connectivity networks, as well as a mining
algorithm to identify the most discriminative ordinal patterns
in a data-driven manner. To the best of our knowledge,

the proposed ordinal pattern is among the first attempts to
utilize the ordinal relationship among weighted edges in brain
connectivity networks. Second, we develop an ordinal pattern
based brain diagnosis framework based on rs-fMRI data,
where the ordinal pattern based features are extracted from the
brain connectivity networks for representing subjects. Third,
we evaluate the proposed method on two datasets, with results
demonstrating the effectiveness of our proposed method.

The rest of the paper is organized as follows. In Section II,
we first briefly review relevant studies. We then introduce
materials and describe the proposed method in Section III. In
Section IV, we present the experimental settings and results,
and investigate the influence of parameters. In Section V, we
further study the frequently identified ordinal patterns and the
impact of the ordinal relationship, and present the limitations
of our method as well as possible research directions. We
conclude this paper in Section VI.

II. RELATED WORK

Thanks to the development of neuroimaging technologies,
recent studies have shown that brain structural/functional con-
nectivity networks constructed on structural/functional MRI
have great promise in revealing the pathology of brain dis-
eases [10]–[14], [19], [20]. In a typical computer-aided brain
disease diagnosis system, we usually first build a particu-
lar brain connectivity network for each subject using struc-
tural/functional MRI data, and then extract measures from
the brain connectivity network for the subsequent classifica-
tion/regression task. Previous studies have developed various
network properties for representing brain structural/functional
connectivity networks, such as node strength [10], clustering
coefficients [11], and subnetworks [13]. For instance, Wee et
al. [11] extracted clustering coefficients from brain connectiv-
ity networks to build classifiers for AD diagnosis. Durante et
al. [21] exploited the network information through low-rank
factorizations to identify patients characterized by the AD
disease. Fei et al. [13] mined discriminative subnetworks from
brain connectivity networks for MCI conversion prediction.
Solmaz et al. [22] applied the bag-of-words based approach to
represent each subject as a histogram for ADHD classification.

However, existing properties of brain connectivity networks
commonly ignore the valuable weight information of edges.
Actually, in the construction process of brain connectivity
networks, one usually assigns a weight to each edge to
quantitatively measure the connectivity strength between a pair
of nodes (i.e., a pair of brain regions). For simplicity, lots
of studies often first adopt a simple thresholding strategy to
transform the original weighted brain connectivity networks
into unweighted ones and then extract properties from such
unweighted networks as feature representations for subjects.
Recently, Jie et al. [12] proposed a multi-thresholding strategy
for extracting properties from brain connectivity networks
using fMRI data. Specifically, they first thresholded each
functional connectivity network using different thresholds,
and then extracted clustering coefficients of each region-of-
interest (ROI) with the remaining ROIs from each thresholded
connectivity network as features for feature selection and MCI
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conversion prediction. Although this method can achieve better
performance than single-thresholding based approaches, it still
cannot take advantage of the weight information of edges.

Recently, several descriptors based on weighted networks
have been proposed for brain network analysis. For instance,
Zhou et al. [23] used connectivity strength between ROIs to
analyze divergent network connectivity changes in behavioral
variant frontotemporal dementia and AD. Abraham et al. [24]
and Casanova et al. [25] used the correlation feature between
signals of ROIs for the prediction of autism spectrum disorder
and the classification of sex, respectively. Challis et al. [26]
calculated the covariance between signals of ROIs as features
of subjects for AD/MCI classification. Wang et al. [27]
extracted regional homogeneity (i.e., Kendall’s coefficient
concordance) from rs-fMRI signals for ADHD classification.
Dey et al. [28] computed a local descriptor comprising of a set
of properties of the nodes for ADHD detection. Jie et al. [29]
integrated local connectivity properties (i.e., local weighted
clustering coefficients) and global topological properties for
MCI classification. Chung et al. [30] defined a heat-kernel-
based feature representation to capture salient network proper-
ties that can be used to discriminate between different network
topologies, and applied it to the analysis of preterm babies.

Although the network descriptors mentioned above are
designed on the weight connectivity networks, most of them
ignore the ordinal relationship of weighted edges in connec-
tivity networks. Recent studies have shown that many brain
diseases (e.g., AD, MCI, and ADHD) are not only related to
single brain regions but also corresponding to local modular
structures [31]. For instance, many pieces of evidence [32]–
[34] have declared that the normal local modular structures
of brain connectivity networks are disrupted in AD and MCI.
In the research of ADHD, altered functional networks were
demonstrated in the brains of ADHD patients when compared
with the NCs, where increased local efficiencies combined
with a decreasing tendency in global efficiencies are found
in ADHD [35], [36]. Unfortunately, it is hard to precisely
describe such disorders in local structures caused by brain
diseases using existing properties that ignores the ordinal
relationship of edges in brain connectivity networks. To this
end, we propose ordinal patterns to describe brain connec-
tivity networks, which can model the ordinal relationship of
weighted edges. We further develop an ordinal pattern based
brain disease diagnosis framework, by identifying the most
discriminative ordinal patterns in a data-driven manner.

III. MATERIALS AND METHOD

In this section, we first introduce the materials and the image
pre-processing approach used in this study. We then introduce
the definitions of ordinal pattern and frequent ordinal pattern,
and the proposed ordinal pattern based learning framework for
computer-aided brain disease diagnosis.

A. Materials and Image Pre-processing

1) Data Acquisition: Two datasets are used in this study.
The first dataset contains all subjects with rs-fMRI data from
the baseline ADNI database [37], including 34 AD patients,

TABLE I
DEMOGRAPHIC AND CLINICAL INFORMATION OF SUBJECTS FROM 2

DATASETS. WE REPORT CORRESPONDING VALUES AS MEAN±STAND
DEVIATION; M/F: MALE/FEMALE; MMSE: MINI-MENTAL STATE

EXAMINATION. ALL THE RECRUITED SUBJECTS WERE DIAGNOSED BY
EXPERT CONSENSUS PANELS.

Datasets Class Subject # Age Gender (M/F) MMSE

ADNI
AD 34 72.5 ± 7.1 16/18 21.04 ± 3.55

MCI 99 71.1 ± 7.4 47/52 27.24 ± 2.12

NC 50 75.0 ± 6.9 21/29 28.60 ± 2.72

ADHD-200
ADHD 118 11.2 ± 2.7 25/93 -

NC 98 12.2 ± 2.1 51/47 -

99 MCI patients, and 50 NCs. Data acquisition for this dataset
was performed as follows: 34 axial slices, matrix size 64×64,
4mm slice thickness, 0mm spacing, 256mm FOV, TR=2 s,
TE=32ms, flip angle=77. The mini-mental state examination
(MMSE) scores for subjects in ADNI are available. Another
dataset is ADHD-200 with the Athena1 pre-processed rs-fMRI
data acquired from the New York University Child Study
Center (NYU), containing 118 ADHD patients and 98 NCs.
The acquisition of rs-fMRI data in ADHD-200 was performed
as follows: 47 axial slices, matrix size 49 × 58, 4mm slice
thickness, 0mm spacing, 240mm FOV, TR=2 s, TE=15ms,
flip angle=90, voxel size 3×3×4mm. The demographic and
clinical information of subjects is listed in Table I.

2) Image Pre-processing: Imaging pre-processing is per-
formed using Statistical Parametric Mapping (SPM) software
package2. Specifically, we first removed the first ten acquired
fMR images of each subject in ADNI, and the first four fMR
images of each subject in ADHD-200 Then, we performed
slice timing correction for the remaining images, followed
by re-aligning the remaining images to the first volume for
head motion correction. Here, we only used the blood-oxygen-
level-dependent (BOLD) signals extracted from gray matter
(GM) tissue to construct functional connectivity networks,
since the regions of ventricles and white matter (WM) contain
a relatively high proportion of noise caused by the cardiac
and respiratory cycles [38]. Accordingly, we first segmented
the T1-weighted MR image of each subject into GM, WM, and
cerebrospinaluid (CSF). Then, we used the GM tissue of each
subject to mask their corresponding fMR images to eliminate
the possible effect of WM and CSF in the fMRI time series.

Then, we co-registered the first scan of remaining images
to the T1-weighted MR image of the same subject, and the
estimated transformation was also applied to the remaining
fMRI scans of the same subject. We then partitioned the brain
space of fMRI scans into 90 regions of interesting (ROIs)
by warping the Automated Anatomical Labeling (AAL) [39]
template to the subject space by using a deformable registra-
tion method [40]. For each subject, the mean time series
of each ROI was computed by averaging the GM-masked
fMRI time series over all voxels in the particular ROI. For
each subject in the ADNI dataset, the GM-masked mean time
series of each region is band-pass filtered within the frequency
interval of [0.025Hz, 0.100Hz], and the spatial smoothing

1http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:
AthenaPipeline

2http://www.fil.ion.ucl.ac.uk/spm/

http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 2. Illustration of the proposed ordinal patterns defined on a weighted
network corresponding to a specific subject. Here, we show two types of
ordinal patterns that contain two and three edges, respectively.

was performed using a 6mm full width at half maximum
(FWHM) Gaussian filter. For each subject in the ADHD-200
dataset, the range of frequencies for band-pass filtering is
[0.009Hz, 0.080Hz], and the kernel for spatial smoothing is
a 6mm full width at half maximum (FWHM) Gaussian filter.

3) Network Construction: For each subject, the GM-
masked fMRI time series of all voxels within each ROI
were averaged to be the mean time series of the particular
ROI. Denote t as the length of time series, and X =
[x1, x2, · · · , xq, · · · , xQ] ∈ RQ×t as a training subject with
a total of Q ROIs, where xq ∈ Rt is the regional mean time
series of the q-th ROI. With each ROI as a node, we then
computed the Pearson correlation coefficients between the i-
th and j-th ROIs as the connectivity weight for the nodes i and
j (i, j = 1, · · · , Q). Thus, we can construct a fully-connected
weighted network for each subject. Given multiple subjects,
we finally obtained a set of brain networks.

B. Ordinal Pattern

Definition 1 (Weighted Network). For a weighted network
G = {V, E ,w}, we denote V as a set of nodes, E as a set of
edges, and w as a weight vector for edges. Let w(ei) represent
the i-th element of w, which is the weight of the edge ei.

Definition 2 (Ordinal Pattern). Given a weighted network
G = {V, E ,w}, if w(ei) > w(ej) for all 0 < i < j ≤ M ,
op = {e1, e2, · · · , eM} ⊆ E is called an ordinal pattern.
Here, M is the number of edges in the ordianl pattern op.

From this definition, we can see that an ordinal pattern is
constructed by a sequence of weighted edges, where these
edges are ordered according to their corresponding weights.
In Fig. 2, we show an illustration of the proposed ordi-
nal pattern of a weighted network (containing five nodes
and seven weighted edges). We can construct ordinal pat-
terns that contain two edges, e.g., op1 = {ea−b, eb−c} and
op3 = {ed−c, ec−e}. We can see that the ordinal pattern
op1 denotes the ordinal relationship w(ea−b) > w(eb−c)
between a pair of edges (i.e., ea−b and eb−c). Then, we
can construct ordinal patterns that contain three edges, e.g.,
op4 = {ea−b, eb−c, ec−e} and op5 = {eb−c, ec−d, ec−e}. That
is, our proposed ordinal pattern is a specific combination of the
ordinal relationship among weighted edges. Given an ordinal
pattern opi = {ea−b, eb−c, · · · , em−n}, any valid ordinal
pattern opj = {ea−b, eb−c, · · · , em−n, en−o} is called a child
of opi, and opi is called the parent of opj . Apparently, to
construct a valid ordinal pattern, en−o must be an edge which
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Fig. 3. Illustration of a deep first search (DFS) tree for mining frequent
ordinal patterns. Here, a child of the ordinal pattern op1 = {ea−b, eb−c} is
op4 = {ea−b, eb−c, ec−e}, and the parent of opM+1 is opM .

weight is smaller than that of the edge em−n. On the other
hand, from Fig. 2, we can observe that the proposed ordinal
pattern would follow a tree structure, where these patterns are
defined on undirected graphs.

Compared with previous properties of brain connectivity
networks, the proposed ordinal patterns have at least two
advantages. First, the ordinal pattern is defined on a weighted
network directly, which considers both weights of edges and
the ordinal relationship among weighted edges. In contrast,
most of the conventional properties of brain connectivity
networks do not utilize such ordinal relationship among edges.
Second, as a particular subnetwork, an ordinal pattern can
model the ordinal relationship of weighted edges in a brain
network, which can preserve the local topology of the network.

C. Frequent Ordinal Pattern

We further propose to identify the ordinal patterns that
frequently appear in brain connectivity networks, which is
called frequent ordinal pattern in this study. Denote a set of
weighted networks as D = {G1,G2, · · · ,Gn, · · · ,GN}, where
N is the number of weighted networks in D. For clarity, we
first introduce several definitions.

Definition 3 (Frequency Ratio). Given an ordinal pattern
op ∈ D, its frequency ratio FR(op|D) is defined as

FR(op|D) = 1

N

N∑
n=1

αn (1)

where αn = 1 if op is an ordinal pattern of Gn (Gn ∈ D), and
αn = 0 otherwise. Here, N is the number of networks in D.

Definition 4 (Frequent Ordinal Pattern). Give a set of
weighted networks D = {G1,G2, · · · ,Gn, · · · ,GN} and a pre-
defined threshold value θ, if FR(op|D) > θ, the ordinal
pattern op is a frequent ordinal pattern of D.

From this definition, we can see that frequent ordinal
patterns are ordinal patterns that frequently appear in a set
of weighted networks. For a set of brain networks, a frequent
ordinal pattern may reflect the functional information that is
common to all subjects. It is easy to show that the frequent
ordinal patterns have several appealing properties.

Property 1. For an ordinal pattern, its frequency ratio is no
larger than the frequency ratio of its parent.
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Property 2. If an ordinal pattern is not a frequent ordinal
pattern, its children and descendants are not frequent ordinal
patterns, either; if an ordinal pattern is a frequent ordinal
pattern, its parents must be frequent ordinal patterns.

As illustrated in Fig. 3, op4 = {ea−b, eb−c, ec−e} is a child
of op1 = {ea−b, eb−c}, and op1 is the parent of op4. Based
on Eq. 1, we can obtain FR(op1) > FR(op4). Besides, if
opM is not a frequent ordinal pattern, its child opM+1 is not a
frequent ordinal pattern, either. This is an appealing property,
which helps us significantly reduce the searching space in the
following algorithm for mining frequent ordinal patterns.

D. Frequent Ordinal Pattern Mining

Motivated by the idea of frequent subgraph mining ap-
proach [13], [41], we propose a frequent ordinal pattern mining
algorithm3 based on a deep first search (DFS) tree [42].
Specifically, as illustrated in Fig. 3, we first randomly choose
an edge (e.g., ea−b) that connects the first node (e.g., a that is
corresponding to the first brain region in the template space).
If the frequency ratio of ea−b is larger than a threshold θ, we
treat the node a as the root node. Then, the path from the root
node to the current node forms a specific ordinal pattern, e.g.,
op1 = {ea−b, eb−c}. Given a set of connectivity networks,
we can record the number of occurrences of this ordinal
pattern, as well as compute its frequency ratio. According
to Property 1, if an ordinal pattern (e.g., op1) is a frequent
ordinal pattern (i.e., its frequency ratio is larger than θ), we
can further search its children (e.g., op4). In contrast, if an
ordinal pattern (e.g., opM ) is not a frequent ordinal pattern, we
can directly prune its children and descendants (e.g., opM+1).
The max number of edges in a frequent ordinal pattern is
limited by the depth (denoted as level) of a DFS tree. For
instance, if level = 3, there will be at most 3 edges in an
identified frequent ordinal pattern. That is, a larger level will
generate more frequent ordinal patterns and more running time
of the proposed algorithm. The pseudo codes of our proposed
algorithm for frequent ordinal pattern mining are given in
Algorithms 1-2, while the computational complexity analysis
is shown in the Supplementary Materials.

Algorithm 1: Pseudo code of frequent ordinal pattern
mining algorithm

Input: A weighted network set D; The max depth of the DFS
tree level; The threshold θ for frequency ratio in Eq. (1)

Output: The frequent ordinal pattern set OP
1 Compute the frequency ratios of all edges in E appeared in D;
2 Remove infrequent edges in E according to Definition 4;
3 foreach e ∈ E do
4 Initialize op with e;
5 OPM(D, level, θ, op);
6 endfor

We now analyze the off-line computational complexity
of the proposed algorithm (Algorithms 1-2) for mining the
frequent ordinal patterns. In Algorithms 1-2, two key factors
determine the computational complexity, including the number

3http://ibrain.nuaa.edu.cn

Algorithm 2: OPM(D, level, θ, op)
Input: D, level, θ, op
Output: OP

1 Construct Ec by finding edges that are connected to edges in op;
2 foreach e ∈ Ec do
3 if e /∈ op then
4 opnew = {op, e};
5 Compute the frequency ratio of opnew as FR(opnew)

according to Eq. (1);
6 if FR(opnew) > θ then
7 Add opnew into OP ;
8 if |opnew| < level then
9 OPM(D, level, θ, opnew);

10 endif
11 endif
12 endif
13 endfor

of edges and the max depth (i.e., level) of the DFS tree. Given
a fully-connected weighted network containing ne edges and
a fixed level, the computational complexity of mining the
frequent ordinal patterns is O( ne!

(ne−level)! ). Given N training
subjects, the overall computational complexity of Algorithms 1
and 2 is O(N× ne!

(ne−level)! ). It is worth noting that, according
to Property 1, many edges will not be searched in the pro-
posed algorithm, and hence the real computational cost of our
method is less than O(N× ne!

(ne−level)! ). Using a computer with
the processor of Intel(R) Core(TM)2 i3-3220HQ 3.30GHz,
the proposed method requires approximately 10 minutes to
mine frequent ordinal patterns from a training set containing
152 networks (with each network corresponding to a specific
subject), and the implementation of the proposed algorithm is
based on Matlab. In particular, since the training process is
performed off-line, the proposed method would be scalable to
large databases in the application/testing stage.

E. Ordinal Pattern based Learning Framework

1) Network Construction and Frequent Ordinal Pattern
Mining: Using the above-mentioned pre-processing method
for rs-fMRI data, we can construct one brain functional con-
nectivity network for each subject, where each node denotes
a particular ROI, and the weight of an edge is the Pearson
correlation coefficient between a pair of ROIs. Given all
training subjects, we can obtain two sets of brain networks.
The first set contains all networks from patients, and the
second one includes all networks from NCs. We then construct
ordinal patterns on both sets of brain networks of patients
and NCs separately. We further mine the frequently ordinal
patterns from both sets using Algorithms 1-2.

2) Discriminative Ordinal Pattern Selection: Since not all
identified frequent ordinal patterns are discriminative, we
further perform ordinal pattern selection to preserve the most
informative frequent ordinal patterns and discard those with
less discriminative power. Currently, there exist various mea-
sures to evaluate the discriminative power of a feature, such
as t-test [43] and ratio score [44]. In this study, we utilize the

http://ibrain.nuaa.edu.cn
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ratio score (RS) [44] to measure the discriminative capability
of all identified frequent ordinal patterns.

Definition 5 (Ratio Score). Denote the network set of
patients as D+ (containing N+ networks), and that of NCs
as D− (containing N− networks). Given a frequent ordinal
pattern opi from D+, its ratio score (RS) is defined as

RS(opi|D) = log

N+∑
n=1

αn

N−∑
m=1

βm + ε

× N−

N+
(2)

where αn = 1 if opi is an ordinal pattern of Gn ∈ D+, and
αn = 0 otherwise; βm = 1 if opi is an ordinal pattern of
Gm ∈ D−, and βm = 0 otherwise. Here, ε is a small value
to prevent the denominator to be 0. Similarly, for the frequent
ordinal pattern opj from the network set of NCs (i.e., D−),
its ratio score is defined as

RS(opj |D) = log

N−∑
m=1

βm

N+∑
n=1

αn + ε

× N+

N−
(3)

where βm = 1 if opj is an ordinal pattern of Gm ∈ D−, and
βm = 0 otherwise; αn = 1 if opj is an ordinal pattern of
Gn ∈ D+, and αn = 0 otherwise. From Eqs. 2 and 3, we can
see that a large RS value indicates that the frequent ordinal
pattern has a strong discriminative ability, and vice versa. With
ratio scores, we can rank ordinal patterns in descending order
and select the top ones as the discriminative ordinal patterns.

3) Feature Extraction and Model Construction: Based on
ratio scores, we first select a total of k discriminative ordinal
patterns from training data, where half of them are from the
brain network set of patients and the other half are from
that of NCs. Then, the discriminative ordinal patterns are
combined to a feature matrix for representing the original
rs-fMRI data of subjects. Given N brain networks (with
each one corresponding to a particular subject) and k ordinal
patterns, the feature matrix is denoted as F ∈ RN×k, with
the element Fi,j denoting the j-th feature of the i-th subject.
If the connectivity network of the i-th subject owns the j-
th discriminative ordinal pattern, Fi,j = 1; and Fi,j = 0,
otherwise. Based on the feature matrix F of training subjects,
we further construct a linear support vector machine (SVM)
classifier and a linear support vector regressor (SVR) to
perform tasks of classification and regression, respectively.

Given a new testing subject with rs-fMRI data, we first
pre-process the imaging data, construct a weighted functional
connectivity network, and build ordinal patterns on this net-
work. We then extract the feature representation z ∈ Rk for
this subject based on the k discriminative ordinal patterns
(identified from training subjects). Finally, we feed the feature
vector z into the trained classifier and regressor for class label
prediction and clinical score estimation, respectively.

IV. EXPERIMENTS

In this section, we first present experimental settings, re-
sults of brain disease diagnosis and clinical score regression.

We then analyze the influence of parameters and compare
our method with several state-of-the-art approaches in brain
disease diagnosis using fMRI data.

A. Experimental Settings

In this work, we perform two groups of experiments, includ-
ing 1) disease classification, and 2) clinical score regression.
In the first group of experiments, with a linear SVM and a
10-fold cross-validation strategy, three classification tasks are
performed, including 1) AD vs. NC classification, 2) MCI
vs. NC classification, and 3) ADHD vs. NC classification.
Note that only training subjects are used for identifying
discriminative ordinal patterns. We evaluate the classification
performance by accuracy (ACC), sensitivity (SEN), specificity
(SPE), and the area under the receiver operating characteristic
(ROC) curve (AUC). In the second group of experiments, we
adopt a linear SVR as the regressor to estimate MMSE scores
for subjects in the ADNI dataset. We evaluate the performance
of regression by both correlation coefficient (Cor) and root
mean square error (RMSE) between estimated clinical scores
and actual clinical scores.

We first compare our method with a baseline method
(denoted as Baseline) to investigate the influence of ordinal
relationship among weighted edges in functional connectivity
networks. Specifically, in the Baseline method, we simply vec-
torize the weights of edges in the original weighted network
as a feature vector for each subject, without considering the
ordinal relationship among different edges. In contrast, we
explicitly utilize such ordinal relationship among weighted
edges in the proposed method. We further compare our method
with two network properties that are widely used in brain
network analysis, including cluster coefficients [11] and dis-
criminative subnetworks [13]. Since both properties require a
thresholding process, we adopt a single thresholding strategy
and a multi-thresholding [12], [31] strategy to transform the
original weighted networks to unweighted ones, respectively.
That is, besides Baseline, there are four competing network
properties, including 1) clustering coefficients with the single
thresholding strategy (CC), 2) clustering coefficient using
the multi-thresholding strategy (CCMT), 3) discriminative
subnetworks with the single thresholding strategy (DS), and
4) discriminative subnetworks using the multi-thresholding
strategy (DSMT).

A linear SVM/SVR is used as the classifier/regressor in
the proposed method and those five competing methods, with
a default parameter (i.e., C = 1). We adopt the default
parameters given by the authors for four competing methods
(i.e., CC [11], CCMT [11], [12], DS [13], and DSMT [12],
[13]). For our ordinal pattern based approach, the parameter
θ in defining frequent ordinal patterns (see Definition 4) is
empirically set as 0.7, while the parameter ε in Eqs. (2)
and (3) is empirically set as 0.1. With an inner cross-validation
strategy, the parameter level in our frequent ordinal pattern
mining algorithm is chosen from the range [1, 5] with the step
size of 1, and the number of discriminative ordinal patterns
(i.e., k) is chosen from [10, 120] with the step size of 10. We
further investigate the influence of three important parameters
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(i.e., level, k, and θ in Definition 4) on the performance of
our method in Section IV-D.
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Fig. 4. Illustration of the proposed ordinal pattern based feature representa-
tions for AD and NC subjects in AD vs. NC classification. Each row denotes a
subject, and each column is corresponding to a discriminative ordinal pattern.
Thus, the proposed ordinal pattern based representation for each subject is a
k-dimensional vector. Here, green and blue indicate 1 and 0, respectively.

B. Results of Brain Disease Classification

1) Classification Results: We conduct three classification
tasks in this group of experiments, including (1) AD vs. NC
classification, (2) MCI vs. NC classification, and (3) ADHD
vs. NC classification. The experimental results are reported
in Table II. To test whether the results of our method and
those of each competing method are statistically different, we
perform the paired Delong’s test [45] (with the significance
level at 0.05) on the AUC values achieved by our method and
each competing method. The AUC values in Table II further
marked by ∗ indicate that our method achieves significantly
different results compared with the competing methods.

From Table II, we can observe that the proposed method
outperforms the Baseline method regarding four evaluation
measures (i.e., ACC, SEN, SPE, and AUC) in three clas-
sification tasks. These results suggest that the ordinal rela-
tionship among weighted edges can be used to improve the
performance of brain disease diagnosis in fMRI-based studies.
Besides, Table II shows the proposed method consistently
outperforms four popular network properties (i.e., CC, CCMT,
DS, and DSMT) in three classification tasks. For instance, our
method yields an ACC of 94.05% in the task of AD vs. NC
classification, which is better than the second best result (i.e.,
85.71%) yielded by DSMT. Also, the AUC values obtained by
our method are better than that achieved by four competing
methods in three tasks. On the other hand, the performance
difference in terms of AUC between our method and each
competing method is significant via the paired Delong’s test.
This demonstrates that the ordinal patterns are useful in identi-
fying AD/MCI/ADHD patients from the population of normal
controls, compared with the conventional network descriptors.

2) Ordinal Pattern based Representations: We also illus-
trate the proposed ordinal pattern based feature representations
for the original rs-fMR images of subjects. In Fig. 4, we show
the feature matrix of AD and NC subjects in training set in
a fold, where each row denotes a subject and each column
is corresponding to a discriminative ordinal pattern. There

are a total of k = 100 selected frequent ordinal patterns,
including 50 patterns mined from AD patients (i.e., the first
50 columns in Fig. 4) and 50 patterns identified from NC
subjects (i.e., the last 50 columns in Fig. 4). Thus, the proposed
ordinal pattern based representation for each subject is a k-
dimensional feature vector.

From Fig. 4, we can observe that there are many 1-values
in both the bottom left and the top right corners, while the
remaining parts are mostly filled with 0-values. It suggests that
the ordinal patterns identified from AD patients are different
from those mined from NCs, and thus such ordinal pattern
based features could be discriminative for representing both
AD patients and NCs. Also, due to the inter-subject variability
in rs-fMRI data, the proposed representation for two subjects
within the same group (i.e., AD or NC) may have different
values at the same ordinal pattern.

We further plot the top 3 discriminative ordinal patterns
identified in three classification tasks in Fig. 5. As shown in
the top left of Fig. 5 (a), the most discriminative ordinal
pattern for AD patients in AD vs. NC classification is op =

{eDCG.L−ACG.L, eACG.L−ROL.L, eROL.L−PAL.R, ePAL.R−LING.L,

ePAL.R−MOG.R}. This suggests that the functional
communication of a series of ROIs, such as middle cingulate
gyrus left (DCG.L), anterior cingulate gyrus left (ACG.L),
precuneus left (PCG.L), and precuneus right (PCG.R), are
discriminative in the task of AD vs. NC classification. Also,
these results imply that our ordinal patterns do reflect the
local structures of brain connectivity networks. Besides, we
also study the stability of ordinal patterns identified by our
method across ten folds in three classification tasks, with
results reported in Fig. S2 of the Supplementary Materials.

C. Results of Clinical Score Regression

We then perform the regression task for MMSE scores of
subjects in the ADNI dataset. Specifically, six types of network
properties are used in this group of experiments, including
Baseline, CC [11], CCMT [11], [12], DS [13], DSMT [12],
[13], and our proposed ordinal patterns. Based on a particular
network descriptor, we learn a linear SVR on training subjects
and estimate MMSE scores for testing subjects, with results
shown in Table III. Besides, in Fig. 6, we visually show the
scatter plots of estimated MMSE scores vs. actual MMSE
scores achieved by different methods for subjects in ADNI.

As can be seen from Table III, in the task of MMSE score
regression, our method achieves higher Cor and lower RMSE
values, compared with Baseline. This further implies that the
modeling the ordinal relationship among weighted edges helps
boost the learning performance of brain disease diagnosis
based on fMRI data. Also, from Table III and Fig. 6, one
can observe that our method consistently performs better than
CC, CCMT, DS, and DSMT, in terms of Cor and RMSE.
For instance, the Cor value of our method for AD and NC
subjects is 0.24, which is much higher than the second best
one (i.e., 0.12 achieved by DSMT). These results demonstrate
that the proposed ordinal pattern provides an effective solution
for representing brain connectivity networks.
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(a) Top 3 ordinal patterns identified from AD patients (left) and those from NC subjects (right) in AD vs. NC classification

AD: 15/34; NC: 0/50; RS: 5.39 AD: 15/34; NC: 0/50; RS: 5.39 AD: 15/34; NC: 0/50; RS: 5.39 AD: 0/34; NC: 21/50; RS: 4.96 AD: 0/34; NC: 21/50; RS: 4.96 AD: 0/34; NC: 20/50; RS: 4.91

(b) Top 3 ordinal patterns identified from MCI patients (left) and those from NC subjects (right) in MCI vs. NC classification

MCI: 37/99; NC: 1/50; RS: 2.83 MCI: 34/99; NC: 2/50; RS: 2.10 MCI: 34/99; NC: 2/50; RS: 2.10 MCI: 4/99; NC: 20/50; RS: 2.27 MCI: 4/99; NC: 20/50; RS: 2.27 AD: 5/99; NC: 20/50; RS: 2.05

ADHD: 32/118; NC: 3/98; RS: 2.15 ADHD: 32/118; NC: 4/98; RS: 1.87 ADHD: 3/118; NC: 4/98; RS: 1.84 ADHD: 2/118; NC: 28/98; RS: 2.78 ADHD: 3/118; NC: 30/98; RS: 2.46 ADHD: 3/118; NC: 27/98; RS: 2.35

(c) Top 3 ordinal patterns identified from ADHD patients (left) and those from NC subjects (right) in ADHD vs. NC classification 

Fig. 5. Illustration of the most discriminative ordinal patterns discovered by our proposed method in the classification tasks of (a) AD vs. NC,
(b) MCI vs. NC, and (c) ADHD vs. NC. For instance, the discriminative ordinal pattern in the left top corner can be recorded as op =
{eDCG.L−ACG.L, eACG.L−ROL.L, eROL.L−PAL.R, ePAL.R−LING.L, ePAL.R−MOG.R}. The bottom of each discriminative ordinal pattern lists
the number of occurrences of a particular ordinal pattern in both network sets of patients and NCs, as well as its ratio score (RS).

TABLE II
CLASSIFICATION RESULTS ACHIEVED BY SIX DIFFERENT METHODS IN THREE CLASSIFICATION TASKS. ACC: ACCURACY; SEN: SENSITIVITY; SPE:

SPECIFICITY; AUC: AREA UNDER THE ROC CURVE.

Method
AD vs. NC MCI vs. NC ADHD vs. NC

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Baseline 61.25 46.18 72.04 59.86 63.83 74.45 44.02 65.64 57.55 61.78 52.49 52.36

CC 72.62 73.53 67.94 70.94 71.14 72.73 68.00 68.69 71.29 72.03 70.41 70.51

CCMT 80.95 82.35 80.00 76.35 74.50 75.76 72.00 74.79 74.53 75.43 73.47 77.64

DS 76.19 76.47 76.00 75.59 77.18 78.79 74.00 74.89 81.01 81.36 80.61 80.82

DSMT 85.71 85.29 86.00 87.59 79.19 80.81 76.00 76.99 83.79 84.74 82.65 84.63

Proposed 94.05 96.77 92.45 96.35∗ 88.59 87.27 92.31 84.57∗ 87.50 88.89 85.85 87.37∗

TABLE III
REGRESSION RESULTS OF MMSE SCORES ACHIEVED BY DIFFERENT

METHODS ON THE ADNI DATASET. COR: CORRELATION COEFFICIENT;
RMSE: ROOT MEAN SQUARE ERROR.

Method
AD vs. NC MCI vs. NC

Cor RMSE Cor RMSE

Baseline 0.03 5.67 0.01 4.52

CC 0.05 4.42 0.02 3.49

CCMT 0.07 4.30 0.03 3.43

DS 0.10 4.33 0.09 2.59

DSMT 0.12 4.25 0.16 2.28

Proposed 0.24 4.07 0.21 1.97

D. Influence of Parameters

Now we investigate the influence of two parameters (i.e.,
level and k) on the performances of our method in three
classification tasks. Specifically, we vary the number of level
in the set {1, 2, · · · , 5}. Also, we vary the value of k in
the set {10, 22, · · · , 118} for both AD vs. NC and MCI
vs. NC classification, and in the set {10, 30, · · · , 190} for
ADHD vs. NC classification, respectively. The AUC values
achieved by our method using different parameters are shown
in Fig. 8, while the ACC values are reported in Fig. S1 of the
Supplementary Materials.

It can be observed from Fig. 8 that the results achieved by
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Fig. 6. Scatter plots of estimated MMSE scores vs. actual MMSE scores achieved by our method and 4 competing methods for (top) AD and NC subjects
and (bottom) MCI and NC subjects in ADNI using linear SVR as the regressor. Cor: Correlation coefficient.

the proposed method are stable when the number of selected
ordinal patterns is larger than 40 (i.e., k > 40) in three tasks.
Also, our method produces the overall good performance when
level = 4 in both tasks of AD vs. NC and MCI vs. NC
classification, and when level = 5 in the task of ADHD vs.
NC classification. The possible reason could be that the ADHD
patients would exhibit more significant functional connectivity
compared with normal controls, and such abnormal increased
functional connectivity may alternate the ordinal patterns of
brain connectivity on more brain regions [46]. In such a case,
our ordinal patterns would require a larger value of level to
include more brain regions for identifying ADHD patients,
compared with that used in AD and MCI diagnosis.

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

AD	  vs.	  NC MCI	  vs.	  NC ADHD	  vs.	  NC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AU
C

0.6

0.7

0.8

0.9

1.0

𝜃

Fig. 7. Influence of the threshold θ in Definition 4 on AUC values achieved
by the proposed method in three classification tasks.

We further analyze the influence of the parameter θ
in Definition 4. Specifically, we vary the value of θ in
{0.1, 0.2, · · · , 1} and record the AUC values achieved by our
method in three classification tasks in Fig. 7. From Fig. 7, we
can see that the performance of our method is relatively stable
when θ 6 0.8 in three tasks, and the performance slightly
slows down with the increase of θ when θ > 0.8. Note that,
with a small θ, the number of ordinal patterns that need to be

searched is large, which brings a huge computational burden.
In contrast, with a large θ, we can significantly reduce the
searching space by cutting a lot of ordinal patterns to be mined.
Hence, we empirically set θ = 0.7 in the experiments.

E. Comparison with State-of-the-art Approaches

We further compare the results achieved by our method with
those of the state-of-the-art approaches using rs-fMRI data
for brain disease classification. We list the details of these
methods and their respective results in three classification tasks
in Table IV. Note that results in Table IV were achieved by
five competing methods, where each method utilized different
subsets of the ADNI and ADHD-200 databases.

From Table IV, we can see that our method obtains good
performance in most cases. Specifically, compared with the
other methods, our method achieves much higher accuracies
in both tasks of AD vs. NC classification and ADHD vs.
NC classification, and obtains the comparable result in MCI
vs. NC classification. It is worth noting that MCI has a
variety of subcategories, such as MCI Converters (MCI-C)
and MCI Non-converters (MCI-NC) [37]. These complex
patient conditions have brought significant challenges for MCI
classification, especially in the case of large datasets. Since we
use a relatively larger dataset for MCI vs. NC classification
than that used in previous studies [26], [29], our method yields
reasonable results in MCI vs. NC classification.

V. DISCUSSION

In this section, we first show the most frequently identified
brain regions achieved by the proposed method, and then
present the limitations of our method as well as possible future
research directions.

A. Frequently Identified Brain Regions

In a brain connectivity network, each node is corresponding
to a specific ROI defined in the AAL template space. We
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS IN THREE CLASSIFICATION TASKS USING RS-FMRI DATA. ROI-VC: ROI VARIANCECOVARIANCE;

REHO: REGIONAL HOMOGENEITY; LDA: LINEAR DISCRIMINANT ANALYSIS; GP-LR: BAYESIAN GAUSSIAN PROCESS LOGISTIC REGRESSION; SVM:
SUPPORT VECTOR MACHINE. NOTE THAT DIFFERENT METHODS USED DIFFERENT SUBJECT SUBSETS FROM THE ADNI AND ADHD-200 DATASETS.

Classification Task Method Features Classifier Subjects Accuracy (%)

AD vs. NC
Zhou et al. [23] ROI-based difference LDA AD: 12; NC: 12 92.00

Challis et al. [26] ROI-VC GP-LR AD: 27; NC: 39 85.00

Proposed Ordinal pattern SVM AD: 34; NC: 50 94.05

MCI vs. NC
Challis et al. [26] ROI-VC GP-LR MCI: 50; NC: 21 75.00

Jie et al. [29] Clustering coefficients SVM MCI: 12; NC: 21 91.90

Proposed Ordinal pattern SVM MCI: 99; NC: 50 88.59

ADHD vs. NC
Wang et al. [27] ReHo SVM ADHD: 12; NC: 23 85.00

Dey et al. [28] Graph-based measure SVM ADHD: 307; NC: 307 73.50

Proposed Ordinal pattern SVM ADHD: 118; NC: 98 87.50
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Fig. 8. AUC values achieved by the proposed method using different values of two parameters (i.e., level, k) in the tasks of (left) AD vs. NC classification,
(middle) MCI vs. NC classification, and (right) ADHD vs. NC classification.

TABLE V
THE MOST FREQUENT 10 ROIS APPEARING IN DISCRIMINATIVE ORDINAL
PATTERNS OF SUBJECTS IN THREE CLASSIFICATION TASKS. THE ROIS ARE

LISTED IN DESCENDING ORDER ACCORDING TO THEIR FREQUENCIES.

AD vs. NC
Index ROI Full Name Related Studies

1 PCUN.L Precuneus left Alexander et al. [47]
2 PCUN.R Precuneus right Frisoni et al. [48]
3 DCG.L Middle cingulate gyrus left Supekar et al. [49]
4 DCG.R Middle cingulate gyrus right Supekar et al. [49]
5 IOG.R Inferior occipital gyrus right Supekar et al. [49]
6 LING.R Lingual gyrus right Supekar et al. [49]
7 IFGoperc.L Inferior frontal gyrus (opercular) left Supekar et al. [49]
8 ACG.L Anterior cingulate gyrus left Frisoni et al. [48]
9 AMYG.R Amygdala right Supekar et al. [49]
10 IOG.L Inferior occipital gyrus left Supekar et al. [49]

MCI vs. NC
Index ROI Full Name Related Studies

1 DCG.R Middle cingulate gyrus right Feng et al. [50]
2 PCUN.L Precuneus left Zhang et al. [51]
3 PCUN.R Precuneus right Zhang et al. [51]
4 DCG.L Middle cingulate gyrus left Feng et al. [50]
5 LING.L Lingual gyrus left Zhang et al. [51]
6 LING.R Lingual gyrus right Zhang et al. [51]
7 PAL.L Pallidum left Bai et al. [52]
8 IOG.L Inferior occipital gyrus left Zhang et al. [51]
9 IOG.R Inferior occipital gyrus right Liu et al. [53]
10 SMA.R Suplementary motor area right Zhang et al. [51]

ADHD vs. NC
Index ROI Full Name Related Studies

1 IFGoperc.R Inferior frontal gyrus (opercular) right Alexander et al. [47]
2 IFGtriang.R Inferior frontal gyrus (triangular) right Frisoni et al. [48]
3 ROL.L Rolandic operculum left Supekar et al. [49]
4 ROL.R Rolandic operculum right Supekar et al. [49]
5 SFGmed.L Superior frontal gyrus (media) left Supekar et al. [49]
6 SFGmed.R Superior frontal gyrus (media) right Supekar et al. [49]
7 ORBmed.L Orbitofrontal cortex (medial) left Supekar et al. [49]
8 INS.L Insula left Frisoni et al. [48]
9 INS.R Insula right Supekar et al. [49]
10 PUT.R Putamen right Supekar et al. [49]

now record the number of occurrences of each ROI among all
identified discriminative ordinal patterns in three classification
tasks (i.e., AD vs. NC, MCI vs. NC, and ADHD vs. NC clas-
sification). We visually plot those top 10 frequently identified
ROIs in three classification tasks in Fig. 9, with their names
listed in Table V. From Fig. 9 and Table V, we can observe
that the most frequent ROIs identified by our method are
consistent with those reported in previous studies [20], [47]–
[51]. For instance, in AD vs. NC classification, the most fre-
quently identified ROIs include precuneus left [47], precuneus
right [48], middle cingulate gyrus left [49], middle cingulate
gyrus right [49], and inferior occipital gyrus right [49].

B. Limitations and Future Work

Although the proposed method achieves good results in
both disease classification and clinical score regression, there
are still several limitations to be considered in this study.
First, in our ordinal pattern based binary feature matrix F, we
simply set its element Fi,j = 1 if the i-th brain connectivity
network contains the j-th ordinal pattern; and Fi,j = 0,
otherwise. Such binarization strategy may lead to the loss
of the statistical properties of weights of edges in ordinal
patterns. It is interesting to extract real-valued features based
on the proposed discriminative ordinal patterns, which will be
one of our future work. Second, we only select the most dis-
criminative ordinal patterns according to their discriminative
powers (evaluated by ratio scores). Based on such selection
criteria, the selected discriminative ordinal patterns could be
redundant. Inspired by these studies [12], [54], we can apply
feature selection strategies to refine the selected discriminative



0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2018.2798500, IEEE
Transactions on Medical Imaging

ZHANG et al.: ORDINAL PATTERN FOR BRAIN CONNECTIVITY NETWORKS 11

144123111

9158 10364

135126114

816963 102

120111103

837565 95

(c) ADHD vs. NC

(a) AD vs. NC

Atlas90-raw-256_256_256

Atlas90-raw-256_256_256

Atlas90-raw-256_256_256

(b) MCI vs. NC

Fig. 9. Visual plots of the most frequent ROIs identified by the proposed
method in three classification tasks.

ordinal patterns, to further improve the performance of our
method. Third, we only used ordinal patterns to represent brain
networks constructed on rs-fMRI data. As a general network
descriptor, the ordinal pattern can be applied to measure both
functional and structural connectivity networks. Hence, it is
straightforward to directly apply our method to problems
having both MRI and fMRI data. Besides, we will consider
the unbalanced data problem regarding the gender in ADHD-
200 in the future.

VI. CONCLUSION

In this paper, we proposed a novel network descriptor
(i.e., ordinal pattern) for the analysis of brain connectivity
network based on rs-fMRI data. The proposed ordinal patterns
are directly defined on weighted networks, which can make
use of the weights of edges and the ordinal relationship
among weighted edges in brain connectivity networks. We
further develop an ordinal pattern based learning framework
for automated brain disease diagnosis. Experimental results

on both ADNI and ADHD-200 databases demonstrate the
effectiveness of our method.
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