
Under review as a conference paper at ICLR 2019

CLINICAL RISK: WAVELET RECONSTRUCTION
NETWORKS FOR MARKED POINT PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Timestamped sequences of events, pervasive in domains with data logs, e.g, health
records, are often modeled as point processes with rate functions over time. Lead-
ing classical methods for risk scores such as Cox and Hawkes processes use such
data but make strong assumptions about the shape and form of multivariate in-
fluences, resulting in time-to-event distributions irreflective of many real world
processes. Recent methods in point processes and recurrent neural networks capa-
bly model rate functions but may be complex and difficult to interrogate. Our work
develops a high-performing, interrogable model. We introduce wavelet reconstruc-
tion networks, a multivariate point process with a sparse wavelet reconstruction
kernel to model rate functions from marked, timestamped data. We show they
achieve improved performance and interrogability over baselines in forecasting
complications and scheduled care visits in patients with diabetes.

1 INTRODUCTION

Clinical risk scores are commonly used analytic devices in health care. There are risk scores for
predicting strep throat from sore throats (Centor et al., 1981), mortality from vital signs (Gardner-
Thorpe et al., 2006), heart attacks from routine clinic visits (D’Agostino et al., 2008), and many
more. Policy is implemented around these risk scores, from rates of reimbursement to physician
compensation (Asch et al., 2015). When used for early warning, risk scores have been associated
with reduced mortality (Seymour et al., 2017).

Underlying these approaches is the formulation of risk over time given some set of features. For
example, in Cox models, a study time t0 = 0 is defined and the risk model is λ(t; t′, x), where x
are defined by features timestamped before time t′ = t0, i.e., a time invariant model. In Hawkes
processes, the risk model is also λ(t; t′, x) but where x contains all history up to time t′ = t, i.e., a
nowcasting model. Cox and Hawkes models can be limited by their assumptions, which often are
inappropriate for the health care setting, and include, for example, the assumptions of proportional
hazards and summation over kernel activations. We formulate a point process model to address these
limitations and develop multi-forecasting, the forecasting task across the two dimensions of time: t′
and t.

To motivate our specific formulation, consider the limitations of the Hawkes process in health care.
First, the Hawkes process encodes an additive relationship of change in rate from recurring precursors,
i.e., burstiness, whereas in health care, the repeated measurement of an event beyond the first, say of
glucose, might be irrelevant. Second, clinical event timing may be routine, scheduled, or emergent,
which suggests that kernel learning will improve model performance because changes in the rate may
be time-dependent and not immediate. Third, clinical event processes are marked, with marks that
could be categorical, real, or null values: e.g., bacterial culture: staphylococcus aureus, glucose: 200,
and ketoacidosis: NA

Our model addresses each of these limitations. To address the first limitation, summation, we adopt a
reduction layer where we allow for reductions other than “sum” of kernel contributions from recurring
events. To address the second and third limitations, non-specific timing and lack of marks, we propose
a kernel learning method over one dimension (time) and two dimensions (time-value) using wavelet
reconstructions. The motivation for wavelets is illustrated in Figure 1, where a discrete wavelet
reconstruction encodes the relationship of time-delayed events identified through cross-correlation.
While cross-correlations capture all relative timings, many may be spurious or coincidental. The
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wavelet representation of relative timing instead is learned through likelihood optimization. To capture
the effect of the value distribution of marks on events, two-dimensional wavelet reconstructions are
value indexed, producing a one-dimensional reconstruction that is passed forward to the reduction
layer. We show that we can encode the wavelets, the relative-to-absolute mapping, and the reduction
step on a computation graph to conduct learning.

Point process

Feature(s)
Target(s)

Cross-correlation

Noisy prediction
1 1 1 1 0 0 03Wavelet

Relative timing

Figure 1: Illustrative 1-d cross-correlation motivating
the discrete wavelet reconstruction kernel for relative
time dependencies.

We apply our model first in simulations of heart at-
tacks and scheduled hemoglobin A1c checks. We
then evaluate the model in a real cohort to forecast
complications and adherence to clinical partici-
pation in patients with diabetes. Empirically, we
show that our model has improved performance
over baselines in single forecasts and explore its
performance in multi-forecasts in terms of predic-
tion and representation.

Our results provide benefit for diabetes risk assess-
ment. Whereas the central focus of the diabetes
adherence literature is on adherence to medica-
tion and therapeutic regimen (García-Pérez et al.,
2013; Edelman and Polonsky, 2017), our method
provides a lens to investigate adherence to contin-
ued diabetes care participation, which is important
because, for one, participation is associated with
better diabetes control (Schectman et al., 2008).
Additionally, forecasts of complications and ad-
herence to participation, at different times in the
care process and at different forecast distances, are central concerns in clinical decision-making. For
example, many diabetes medications require regular clinical monitoring, and the risk of complica-
tions and noncompliance to clinical participation both affect regimen choice. By focusing on these
outcomes, our forecasting tools provide relevant information for the clinical decision-making process.

Related work. Both neural networks and Hawkes process variants are used for rate modeling in
health care: a few recent examples include Choi et al. (2015), Du et al. (2016), Alaa et al. (2017),
and Bao et al. (2017). To effectively model the hazard two key properties are used: (1) the ability of
Hawkes processes to capture relative timing of interdependent events, and (2) the flexible functional
forms of neural networks that are able to capture relative timings, albeit somewhat opaquely. The
closest work is likely that of Bao et al. (2017), where the authors adopt dyadic influence functions.
However in that work marks are not used and the dyads selected are a subset of the Haar wavelet
basis. Outside of health applications, related literature includes Hawkes kernel learning, e.g. Zhou
et al. (2013); Linderman and Adams (2014); Lee et al. (2016). Our method follows these approaches,
instead using a wavelet representation across value and time to capture long-range dependencies.
Compared to Mei and Eisner (2017) that generalizes the Hawkes process with neural networks,
our method (1) allows events to have marks, (2) enables forecasting and multi-forecasting (not just
nowcasting), and (3) can be seen to have a generalized linear form.

Our method of mapping relative timing hazard components onto absolute time possesses the advan-
tages of the Hawkes approach and adopts a simple but well-performing neural network architecture.
To achieve the mapping, a stepwise hazard approximation is made, as is done in Jing and Smola
(2017) and Weiss (2017), however, instead of LSTMs and forests that have challenging interpre-
tations, our method remains interpretable for small data sets, where exploration with visualization
similar to that of Caruana et al. (2015) can be performed. Our method uses wavelets to represent
event contributions, and several survival analysis approaches have also adopted them in univariate
models, e.g., in Antoniadis et al. (1994) and Brillinger (1997). Outside of survival analysis and point
processes, wavelet-inspired neural networks have seen success, with Wave-net using wavelets to
classify time series (Bakshi and Stephanopoulos, 1993), and Wavenet adopting a multi-layer hidden
neural architecture to connect distant time steps (Van Den Oord et al., 2016).

Contributions. The contributions of this work are as follows: our work generalizes multivariate
Hawkes processes to allow for non-additive event rate relationships. Like other works, e.g. Linderman
and Adams (2014), our work learns the kernel function that relates multivariate event histories to the
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rate. However, in our work we use wavelets as the kernel, akin to a multivariate development from
Brillinger (1997). We leverage the scaling property of wavelets to formulate a regularization that
balances spatiotemporal generalizability with deterministic or near-deterministic event timing. Unlike
many sequence models, e.g. Hochreiter and Schmidhuber (1997), which are affected strongly by
choice of time step, our work adopts an absolute and relative time frame, and therefore the granularity
of the absolute time domain need not be determined a priori. Additionally, unlike some point process
formulations, our work models marks that are 1-d (event times) and 2-d (event times and their
category or real value). Our work is explicit about types of forecasting tasks, and the methods are
adapted for several purposes: forecast performance, interrogability, and representation. We show that
our method performs as well as or better than comparison algorithms in predicting complications and
forecasting adherence.

2 BACKGROUND

Let E be the set of events with target event y ∈ E the event we want to forecast. Associated with
each event e is a value v ∈ V . An example consists of a sequence of (time, event, value) tuples and
a period of interest for forecasting. For the n-th example, n ∈ {1 . . . N}, define Tn as the number
of tuples. Then the sequence can be written as (tin, ein, vin) for i ∈ {1 . . . Tn}, with the period of
interest denoted as τny .

Let λy(t) be the rate functions of interest, dropping the subscript n for ease of notation. The
multivariate Hawkes process can then be written as follows:

λy(t) = λ0(t) +

|E|∑
e=1

βe

T∑
i=1

ge(t− ti)1(ti < t, ei = e)

where λ0(t) is a baseline population rate function, ge(·) is a kernel function for event e relating its
effect on the rate of y, βe are event-specific parameters, and 1(·) is the indicator function. Typically
ge(·) is an event-specific exponential decay function with a learnable decay parameter. Self-exciting
processes are defined by gy(·) > 0, bursty processes by ge(·) > 0, and inhibitory processes by
ge(·) < 0. A few recent variations include Linderman and Adams (2014) where ge is a Bayesian
graph kernel and Xu et al. (2017) where ge is an infectivity function and triggering kernel product.

Given λny(t), the log likelihood of the data is:

LL(X|θ) =

N∑
n=1

( Tny∑
i=1

log λny(tiny) +

∫
τny

λny(t)dt
)

(1)

The form of the Hawkes process is limiting, however, because (1) the effect of ge(·) decays over
time, (2) the effect over ge(·) is additive, (3) the value associated with each event is not considered,
and (4) the time restriction in the indicator function implies nowcasting (1(ti < t)) not forecasting
(1(ti < t− c) for some c > 0). Making modifications to achieve these characteristics is desirable
to effectively model many real-world processes. For example, a patient with new-onset diabetes
schedules an appointment with a typical gap interval of 3 months, and the presence of 1 or 10 elevated
readings may not affect the timing of the scheduled appointment. The former suggests the utility of
kernel learning, and the latter suggests summation over ge is not the appropriate reduction.

The proposed method addresses these concerns. In particular, we adopt discrete wavelet reconstruc-
tions, which both allows kernel learning and the use of marks. Additionally, by representing the
point process as a neural network, we are able to (1) use maximization alongside summation in a
reduction layer (the formulation enables specification of any number of reductions), and (2) conduct
time-dependent censoring. We formalize the model below.

3 WAVELET RECONSTRUCTION NETWORKS

We now define wavelet reconstruction networks (WRNs) shown in Figure 2. We specify the form
of the rate function, define our kernel function, and impose restrictions on the kernel function for
forecasting and multi-forecasting.
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Figure 2: Wavelet reconstruction network architecture

Let hej(t; ti, τd) be a piecewise-constant kernel function for event e on absolute time intervals τd
with index set J = {1, 2}, where j = 1 indicates a time kernel and j = 2 indicate a time-value kernel.
Let R be a set of reduce functions, which for our model we set R = {sum,max}. Then rτyi={1,...,T}
indicates the reduction over T functions over the interval τy . We propose the following rate function:

λy(t) = λ0(t) +

|E|∑
e=1

R,J∑
r,j

βerjr
τy
i={1,...,T}

(
hej(t; ti, τd)1(ei = e)

)
. (2)

Note that the kernel function hej is on absolute time, whereas ge is defined on relative time in the
previous section. This is done to specify the translation of the wavelet reconstructions on discrete
relative-time intervals onto discrete absolute-time intervals, which requires additional treatment
to prevent causal leakage. We define the kernel function on relative time below, followed by the
definition of hej using the translation function.

Discrete wavelet reconstruction kernel. Recall that the discrete wavelet transform (DWT) is an
invertible transform of a signal between a time space and a time-frequency space used in multi-
resolution analysis and signal compression (Mallat, 1989). Here we use the inverse DWT to encode
the parameters in the time-frequency space to reconstruct the signal as the kernel function as follows.

For each event, we use one- to two- dimensional wavelets, with j = 1 referring to time reconstructions,
and j = 2 referring to time and event value reconstructions. We use discrete wavelets of size (α) and
(α, |S|), with α time intervals on the interval [0,maxn(maxtiny

tiny − mintine
tine)] on the time

dimension, and with s ∈ S disjoint value intervals in [min(v),max(v)] on the value dimension. For
point events, we use the notation s ∈ S where |S| = 1, and categorical events are treated as separate
point events. Note that j = 1 reconstructions are the temporal analogues of missingness indicators.

Let parameterswej be the wavelet coefficient tensors for event e and wavelet reconstruction dimension
j, and let gejs be the kernel function on relative time for event e and interval s, with gejs(t− ti) = 0
for t−ti < 0. Define the set of wavelet reconstruction functionals by: Φ = {φej : (wej , ve) 7→ gejs}.
Conceptually, given event value ve, the wavelet reconstruction functional φej reconstructs the signal
from wej and indexes the value dimension with ve, producing function gejs, a function with inputs of
relative time.

Relative- to absolute-time transformations. To relate the absolute-time kernel hej with the relative-
time discrete kernel gejs, we define the following causally-protective translation function. Let τd
denote disjoint caglad intervals that comprise τy the target interval in absolute time, and let τe be
the relative-time intervals of the wavelet reconstruction. We denote lower and upper endpoints with
b·c and d·e. Then, for event time ti, the absolute wavelet reconstruction intervals have endpoints
bτiec = bτec+ ti and dτiee = dτee+ ti. The transformation q is given by:

hej(t; ti, τd) = q
(
gejs(t−ti), τd

)
=

∑
τie∧τd 6=∅,bτiec≥dτde(max(bτdc, dτiee)− bτiec)gejs(t− ti)

dτde − bτdc
,

where ∧ denotes interval intersection. The second condition for inclusion in summation, bτiec ≥ dτde,
prevents causal leakage by ignoring intervals τie that affect an interval τd that both precedes and
intersects it.
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Figure 3: Left: three absolute time hazards (green, blue, and purple) for one trajectory with different steps
sizes and censor times. Right: forecasting tasks. The vertical distance from the line t′ = t is censor distance c.
Common loss definitions are along solid lines.

One advantage of our relative-time specification is that the granularity over absolute time can be
adjusted with small effect on the hazard. By comparison, RNNs and their analogues need to be
retrained if there are changes to the time-step specification. Figure 3 (left) illustrates this with an
absolute-time hazard function of a single trajectory using different absolute time steps and applying
censorship at different times, resulting in absolute-time hazards similar but not identical. Sharp
discontinuities near target event times can result in relatively large likelihood differences, and the
ability to choose the absolute time granularity τd post-training facilitates hazard recovery as needed.
Figure 3 (left) also acts as a causality leakage check by demonstrating that the hazard is unaffected
by the presence or censorship of future events.

Forecasting. Thus far we have specified hej as a nowcasting kernel because gejs is zero and non-
contributory when t−ti < 0 for all e and s. For forecasting, we incorporate time-dependent censoring
with functional C, the Hadamard censor, and hyperparameter c the censoring distance, to prevent
recent events, i.e., risk modifiers, from affecting the rate. Let C(c)

(
t; ti
)

equal 1 if t− ti > c and 0
otherwise, and let ψejc(wej , ve) = ψej(c)(wej , ve) = C(c) ◦ φej(wej , ve) where ◦ is the Hadamard
product. We can specify the forecasting rate function analogous to Equation 2 as follows:

λyc(t) = λ0(t) +

|E|∑
e=1

R,J∑
r,j

βerjri={1,...,T}
(
q(ψejc(wej , vi); τd)1(ei = e)

)
(3)

For multi-forecasting, we choose a vector of desired relative forecast times {c} and maximize the
average log-likelihood over all c. This may be distinguished from training separate forecasting
models because the parameters of the model are tied. Figure 3 (right) contrasts the forecasting tasks.
Compared to single forecasts along any given line, multi-forecasting captures more of the valid
forecast region (shaded gray) that is relevant for clinical decision making.

Learning. The parameters of the model are Θ = {wej , βerj}. Because the system may be overdeter-
mined, we add regularization terms. The first is γβ

∑
e

∑
rj ||βerj ||1 akin to the LASSO (elastic-net

regularization is equally straightforward). The second is the regularizer γw
∑
ej ||u(wej)||1 akin to

sparse shrinkage on the wavelet tensor with a choice for u.

We define u(wej) =
⊗

k∈{1,...,j} 2lk/2 ◦ wej , where lk is the wavelet scale parameter of the k-th
dimension. The idea is that regularization on wavelets for point events corresponds to smoothing a
function of Dirac deltas over time, and we want the log loss effect of a Dirac delta (an element of
the first term in Equation 1) to be in proportion to the activation of the unnormalized wavelet basis
function so that the data drive the choice of smoothness. To do so, the regularization must be in
proportion to

⊗
k∈{1,...,j} 2lk/2. An example is the orthonormal two-level Haar wavelet, where the

orthonormal transformation matrix is written as the Hadamard product of expanded, exponentiated
scale parameters and unnormalized basis functions, where 1 is a column vector of ones:([

2−1

2−1

2−1/2

2−1/2

]
1ᵀ

)
◦

[
1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

]
.
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Figure 4: Examples: acute coronary syndrome–angina (left), ACS (middle); diabetes simulation (right).

Improving prediction. The formulation in Equation 3 can be seen as a generalized linear model
of censored, add-/max- reductions of wavelet reconstructions. While the generalized linear form
lends itself to interpretation, we consider whether non-linearities will further improve predictive
performance. Unlike images, where local pixels are spatially related, any given ordering of clinical
event types may not capture valuable event relationships. Therefore we introduce permute-and-pool
layers (WRN-PPL) that randomly permute event ordering within time step, randomly select sign,
perform max-pool, and project linearly to the next layer. In place of the double summation in Equation
3, we apply a random sign ({−1, 1}) Hadamard tensor Z and pass the result to P parallel permutation
layers with max pools of size min(2p, |E||J ||R|) for p = 0 to P − 1. The outputs of the max pool
are then linearly combined and output to the next layer.

4 EXPERIMENTS

We conduct tests in two simulations and on one real health care data set. For direct comparison, we
evaluate performance against methods in the nowcasting framework using negative log likelihood
and ranking measures. Then we explore WRN and WRNPPL in forecasting and multi-forecasting.

Setup. We divide the data into a train, tune, and held out test set. Model development is performed
on train and tune sets with parameters determined by early stopping. Models are then evaluated
on the held out test set. We use the Goodman-Kruskal γ statistic as a measure of concordance
among non-tied pairs: (agree - disagree - prior)/(agree + disagree + prior), where the prior penalizes
algorithms providing identical predictions. Agreement occurs when the predicted average rate and
the empirical average rate are both greater in one example compared to the other, ties when either is
the same, and disagreement otherwise. A crude interpretation of γ is the difference (1− γ)/2 gives
the width of a band corresponding to random guessing of correct ordering, and correctly predicting
all other pairs. Further details of parameter setting, e.g. preprocessing, bin widths, optimizer settings,
are in the Appendix. The code is written in PyTorch 0.4.1 and will be released upon publication.

Comparison methods. We compare wavelet reconstruction networks (WRNs) with homogeneous
Poisson processes, time-invariant and nowcasting Fourier basis functions, multivariate Hawkes
processes, and two long short-term memory (LSTM) networks. Briefly, the Fourier methods are given
by f(t|t0, x) =

∑
k

∑
l wklsin((2πl/τ)(t− t0))+vklcos((2πl/τ)(t− t0))xk, where x corresponds

to features, i.e., event by value interval occurrences, at or before time 0 (t0 = 0, time-invariant) and
at t0 = t (nowcasting), k indexes the event by value interval by time step, and l indexes the basis
function component. L2 regularization are applied to wkl and vkl. Then the rate function is defined
as λ(·) = w0 + f(·)2. For nowcasting, the Fourier method is given features from 16 previous time
steps, and since in nowcasting t− t0 = 0, the formula reduces to a generalized linear model of vklxk
terms. The multivariate Hawkes process we use includes a kernel with event-specific exponential
decay parameter γe > 0: i.e, ge(t− ti) = e−γe(t−ti). We use a learnable constant baseline rate λ0.
We learn βe without constraint, rather than βe ≥ 0 or βe ≤ 0 of Hawkes and inhibitory processes
respectively. We apply a positivity constraint to ensure the rate is non-negative.

The first LSTM method is a variant of the multi-task healthcare LSTM from Lipton et al. (2016)
where the preprocessing involves zero- or last-value carry forward- imputation, mean-reducing, and
adding missing indicators. Because our task is nowcasting not multi-label classification, we modify
the loss function accordingly. The second LSTM is a WRN preprocessing LSTM analogue. The
LSTM includes a linear-embedded input (i× h), two LSTM hidden layers (h× h), and output to a
rectified linear layer (h× 1) where h is the hidden unit width. For each model, the output is a hazard
per time step λny , and the loss is the point process log likelihood in Equation 1.
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Table 1: Negative log likelihood on the held out test set. Asterisk (*) denotes simulation; KNR: {ketoacidosis,
neuropathy, retinopathy}; H. Poission: homogeneous Poisson; Time-invariant: Fourier prediction at time t = 0;
Nowcast: 16-step history as nowcast features. LSTM1: Lipton et al. (2016), best of zero-imputation or last-
value carry forward, with missingness indicators; LSTM2: LSTM with WRN preprocessing; WRN: wavelet
reconstruction network; PPL: with permute pool layer. Best performer in bold.

Dataset Method (NLL)
H. Poisson Time-invarant Nowcast Hawkes LSTM1 LSTM2 WRN WRN-PPL

ACS* 0.44 0.43 0.36 0.39 0.21 0.13 0.23 0.15
A1c* 18.54 19.20 13.56 3.87 11.80 4.10 3.93 3.78
A1c 2.86 2.76 2.52 1.67 1.15 1.29 1.23 1.13
KNR 0.75 0.71 0.58 0.31 0.46 0.35 0.24 0.26

Table 2: Goodman-Kruskal γ, a measure of concordance, on the held out test set. Asterisk (*) denotes simulation.

Dataset Method (Goodman-Kruskal γ)
H. Poisson Time-invarant Nowcast Hawkes LSTM1 LSTM2 WRN WRN-PPL

ACS* -1.00 -0.81 0.08 -0.97 0.98 0.91 0.80 0.85
A1c* -1.00 -0.02 0.81 0.64 0.84 0.85 0.78 0.77
A1c -1.00 0.23 0.71 0.79 0.83 0.87 0.93 0.93
KNR -1.00 0.25 0.81 0.91 0.84 0.91 0.95 0.98

Simulations. The first simulation is of heart attack diagnoses denoted by acute coronary syndrome
(ACS). In this simulation, it is the elevation in value of troponin, a heart enzyme measurement,
outside the normal range (less than 0.01 ng/mL) that indicates ACS will occur in the next time unit
uniformly at random. Figure 4 (left, middle) illustrates two trajectories; note both the mark and the
timing are important for ACS determination. The second simulation is of diabetes care: patients with
diabetes undergo semi-regular appointments, e.g., annual eye and foot exams, quarterly hemoglobin
A1c measurements, and pre- and post-prandial glucose measurements. These patients are often
non-adherent with worsening adherence as a function of increasing time from adverse events. Figure
4 (right) illustrates the timings of an example trajectory.

Diabetes visits. We partnered with a regional health care system to investigate the risk of adverse
outcomes of diabetes and adherence to the care those patients received. From the regional cohort
followed from 2010 to 2017, we selected those at risk of diabetes as defined by an outpatient
measurement of hemoglobin A1c or glucose, or a diagnosis of hyperglycemia. Among those, we
excluded any individuals without at least two clinic encounters more than six months apart. We
additionally applied a censor date at the time of the last clinical event before a 30-month gap in care,
where there is uncertainty that the patient is lost to follow-up or is receiving care outside of network.

Application of the inclusion and exclusion criteria resulted in 798,818 timestamped events in a study
population of 4,732 individuals each representing a single example. We divided the population into
thirds: {train, tune, test} sets. We focused on two outcomes: (1) hemoglobin A1c measurements, as a
proxy for scheduled diabetes care, and (2) a combined outcome of {ketoacidosis, neuropathy, retinopa-
thy} as defined by ICD 9 and ICD 10 codes. Features included were extracted with string matching on
event descriptions of events documented as putative risk factors in clinical guidelines from the ADA,
AHA, and UpToDate, and included events from demographics, medications, encounters, laboratory,
diagnosis, and procedures tables. The extraction resulted in 575 features. Hemoglobin A1c was
measured at least once in 820 individuals (21%), and an adverse event occurred at least once in 137
individuals (3%). Additional details are given in the Appendix.

5 RESULTS

Nowcasting. Table 1 reports the negative log likelihoods for the experiments on the held out test sets.
Overall, the proposed wavelet reconstruction network WRN-PPL outperformed the other algorithms.
The WRN-PPL method excelled particularly in tasks with many target occurrences (A1c* and A1c
experiments) and performed near to the best in rare occurrence data (ACS* and KNR). The WRN
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Figure 5: Left: hazards and hemoglobin A1c events for A1C* simulation. Right: hazards and hemoglobin A1c
events for five random, test set patients in real cohort.

method outperformed the WRN-PPL method at the KNR task, which could be due to the relatively
low rate of target events (0.025 per year) where complexity may lead to overfitting; however the
difference in negative log likelihood is small. The WRN and WRN-PPL γ statistics showed effective
risk stratification of individuals with diabetes. A γ of 0.98 corresponds to a band of 0.01 under the
crude interpretation and suggests strong overall risk stratification.

At the other end, the time-invariant method performed marginally better than homogeneous Poisson.
The nowcast method performance shows the utility of incorporating time-varying information but
substantially underperformed compared to the other methods. The Hawkes process also lacked
performance with comparable NLL only in the A1c* data set. LSTM1 had good ranking characteris-
tics on the simulations but mediocre predictive performance with notably poor performance on the
simulation A1c*, where the timing of events, not their value distribution, determines the ground truth
rates. LSTM2 mostly outperformed LSTM1, suggesting the usefulness of WRN preprocessing, but
mostly underperformed against WRN-PPL.

Figure 5 shows the hemoglobin A1c predicted hazards profile for random test set patients using
WRN-PPL. The step function represents predicted hazard over time, points indicate true event times
and dotted lines show the difference from the baseline (homogeneous Poisson) rate. The WRN-PPL
algorithm makes predictions that anticipate appointments where hemoglobin A1c will be measured
in quasi-periodic fashion (right). Similarly, Figure 6 (left) illustrates the ability to model the rates of
complications. Medical guidelines do not specify scheduling for regular follow-up of the adverse
events, and this is congruent with the lack of periodicity in the KNR hazard predictions.

Forecasting, multi-forecasting, and interrogability. As one would expect, a trade-off occurs
between early prediction and predictive performance. The effect of WRN-PPL forecast distance
c on KNR prediction is shown in Figure 6 (right). Notably, the 3-month censored WRN-PPL has
approximately the same performance as the nowcasting LSTM2. Similarly, effects of single-model,
multiple-c prediction are shown in Figure 7 (left), illustrating the WRN-PPL improvement over
WRN for nowcasting (up to c < 1) but not for c ≥ 1. The coefficient profile as a function of c in
multiple-c prediction is also shown (middle left), demonstrating that relative-time attributions, which
are commonly used in association statements in health literature, appear to depend on censor time c.

Figure 7 (middle right and right) shows the wavelet reconstruction for the effect of troponin level and
timing on rate. Both reconstructions demonstrate recovery that acute coronary syndrome is diagnosed
within the next time unit after a troponin greater than 0.01 ng/mL. The multiple-c reconstruction on
the right more accurately reflects the uniform distribution hazard, namely, increasing hazard if the
event has not yet occurred.

6 DISCUSSION

The performance of WRN-PPL in Table 1 and Figure 5 illustrates the utility of our model, in
particular in identifying the near-periodicity of recurring events. For example, the rate prediction for
the individual denoted in green in Figure 5 (right) suggests that individual may have skipped, missed,
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Figure 6: Left: ketoacidosis, retinopathy, or polyneuropathy diagnoses and rate predictions for thirty random test
set patients. Right: combined outcome (KNR) negative log likelihood as a function of censor distance (in years).

Figure 7: Best viewed in color. Left: negative log likelihood as a function of forecast censoring distance
c for multi-forecasts. The permute and pool layer expresses greater expressivity to model the hazard than
WRN. Middle left: coefficient profile as a function of forecast censoring distance c for WRN. The reduction
layer comprises additions and maximums of 1-d and row-indexed 2-d reconstructions. Middle right: wavelet
reconstruction of troponin contribution to ACS hazard. A preceding troponin above 0.01 indicates increased
rate of ACS occurrence within the next hour. Right: WRN-PPL reconstruction image for multi-forecasting at
c = {0, 0.25, 0.5, 0.75, 1}.

or rescheduled 5 to 6 appointments over the last decade. The peaks reach hazards of approximately 3,
indicative of a mixture of belief and uncertainty–belief that in those months the event should occur at
a rate above three per year, and uncertainty about the occurrence of the appointment.

For multi-forecast learning, a comparison of the results in Table 1 and Figure 7 (left) demonstrates
the value of model expressivity. In particular, Table 1 shows that single forecasting outperforms
multi-forecasting at c = 0 in Figure 7 (right). However, Figure 7 (middle right and right) illustrates
that multi-forecasting improves the learned wavelet representation. These findings suggest that
the layering between the wavelet reconstruction (WRN: {reduction layer, linear}, and WRN-PPL:
{reduction, permute and pool, linear}) and the hazard output is not adequately expressive to map
the true wavelet reconstruction to the true hazard. We argue the solution is not in simplification nor
abandonment of the multi-forecast setting, but in leveraging the multi-forecast setting to facilitate
recovery of the wavelet reconstruction by using an even more expressive mapping.

Conclusion. Wavelet reconstruction networks is a forecasting method tailored for health care settings.
Its advantages include multi-resolution representation of relative time dependencies in 1 and 2
dimensions and enables time step specification at test time. The combinations of relative time
functions result in a model with powerful predictive capacity, flexibility, and interrogability. We
demonstrated improved performance of our system over competing methods in a analysis of diabetes
and showed the ability to capture quasi-periodic events that could be used to measure adherence and
forecast risk of complications.
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APPENDIX A ADDITIONAL EXPERIMENTAL DETAILS

A.1 PARAMETER SEARCH AND SETTINGS

There are number of settings to provide for the implementation. We set the number of absolute
time steps to 80, equal in size. We treat categorical variables both as empty marks and as an
indicator variable per category. We use one- and two-dimensional Haar wavelets with 64 relative
time bins and 16 value bins. The time bins are linearly spaced from 0 to the largest relative
difference of event and target in the training set. If a feature’s train set value distribution is both
positive and negative, the bins are mapped linearly across the value range, and if values are of
one sign, bins are spaced linearly in the space of a log(1 + |x|) feature transformation. In our
experiments we use a single permute-pool layer with P = 4. We use the Adam optimizer with
manual setting of the learning rate 10−3, event/reduction regularization parameter γβ = 10−7,
and wavelet regularization parameter γw = 1/N , all based on tune set performance. We use a
mini-batch of size 10. For ease of computation, we randomly subsample features whose number
of occurrences exceeded 50 to 50 samples. Inspection of the data suggests that the subsampling
would have negligible effect on performance while reducing memory requirements substantially.
Dates of events were perturbed across years and subsampled for further anonymity. We penalize
hazards below 10−5 by a large constant 100 per unit time on the train set, and pass all predictions
through a rectified linear unit to ensure valid hazards. We set a max hazard gain of log(10) to ensure
numeric stability. These constraints are appropriate for our tasks, as rates below 10−5 and above
10 are not meaningful for our applications. For LSTMs, we set h = 4 and 16 for the simulated and
real data experiments. We searched over {4, 8, 16, 32, 64, 128} LSTM hidden unit sizes, optimizer
learning rates of 10−2, 10−3, 10−4, and step sizes {40, 80, 160} using only the train and tune sets.
We set event/reduction regularization parameter γβ = 10−7 and wavelet regularization parameter
γw = 1/N , LSTM1 hidden sizes are 128, and LSTM2 hidden sizes h = 4 and 16 for the simulated
and real data experiments respectively based on tune set performance.

A.2 DESCRIPTIVE STATISTICS

Table 3 provides basic information about demographics and the outcomes for the regional cohort
patient population after inclusion and exclusion criteria have been applied.

Table 3: Descriptive statistics of the diabetes study population, reported with median [2.5%,97.5%] and n
(fraction).

Feature n=4,732
Age in 2010 35 [0, 82]
Gender

Female 2526 (0.53)
Male 2204 (0.47)

Type I DM 45 (0.01)
Type II DM 459 (0.10)
HbA1c 980 (0.21)

First 5.9 [4.8,10.2]
Any 6.7 [5.1,10.4]

Combined 137 (0.03)
Ketoacidosis 15 (0.00)
Polyneuropathy 88 (0.02)
Retinoptahy 34 (0.01)

APPENDIX B HAZARD EXAMPLES

Additional test set patient hazard predictions are given alongside occurring events. The figure shows
5 random test examples for hemoglobin A1c using WRN-PPL for nowcasting. Calibration plots
suggest the hazard predictions are accurate for high hazards, and 1.5- to 4-fold overestimates for low
hazards (though the absolute error is small).
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Figure 8: Hemoglobin A1c hazard prediction with nowcasting

Figure 9: Hemoglobin A1c calibration plot for multi-forecasting, with c = {0, 0.25, 0.5, 0.75, 1}. The legend
denotes the number of years prior the time at prediction is compared to the forecast time. Dotted line denote
2-fold miscalibration.

APPENDIX C LOSS-BY-EPOCH CURVES

Epoch curves were used for early stopping–the parameters used on the held out test set were those for
which the tune set negative log likelihood was minimized, only for the best performing hyperparameter
setting (identified through tune set performance).

Figure 10: Loss by epoch curves for real data, target: {ketoacidosis, polyneuropathy, retinopathy} used for early
stopping (left) and target: hemoglobin A1c (right).
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