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Abstract

Many time series are effectively generated by a combination of deterministic
continuous flows along with discrete jumps sparked by stochastic events. However,
we usually do not have the equation of motion describing the flows, or how they are
affected by jumps. To this end, we introduce Neural Jump Stochastic Differential
Equations that provide a data-driven approach to learn continuous and discrete
dynamic behavior, i.e., hybrid systems that both flow and jump. Our approach
extends the framework of Neural Ordinary Differential Equations with a stochastic
process term that models discrete events. We then model temporal point processes
with a piecewise-continuous latent trajectory, where the discontinuities are caused
by stochastic events whose conditional intensity depends on the latent state. We
demonstrate the predictive capabilities of our model on a range of synthetic and
real-world marked point process datasets, including classical point processes (such
as Hawkes processes), awards on Stack Overflow, medical records, and earthquake
monitoring.

1 Introduction

In a wide variety of real-world problems, the system of interest evolves continuously over time, but
may also be interrupted by stochastic events [1, 2, 3]. For instance, the reputation of a Stack Overflow
user may gradually build up over time and determines how likely the user gets a certain badge, while
the event of earning a badge may steer the user to participate in different future activities [4]. How
can we simultaneously model these continuous and discrete dynamics?

One approach is with hybrid systems, which are dynamical systems characterized by piecewise
continuous trajectories with a finite number of discontinuities introduced by discrete events [5].
Hybrid systems have long been used to describe physical scenarios [6], where the equation of motion
is often given by an ordinary differential equation. A simple example is table tennis — the ball follows
physical laws of motion and changes trajectory abruptly when bouncing off paddles. However, for
problems arising in social and information sciences, we usually know little about the time evolution
mechanism. And in general, we also have little insight about how the stochastic events are generated.

Here, we present Neural Jump Stochastic Differential Equations (JSDEs) for learning the continuous
and discrete dynamics of a hybrid system in a data-driven manner. In particular, we use a latent vector
z(t) to encode the state of a system. The latent vector z(t) flows continuously over time until an event
happens at random, which introduces an abrupt jump and changes its trajectory. The continuous flow
is described by Neural Ordinary Differential Equations (Neural ODEs), while the event conditional
intensity and the influence of the jump are parameterized with neural networks as functions of z(t).

The Neural ODEs framework models continuous transformation of a latent vector as an ODE flow
and parameterizes the flow dynamics with a neural network [7]. The approach is a continuous analogy
to residual networks, ones with infinite depth and infinitesimal step size, which brings about many
desirable properties. Remarkably, the derivative of the loss function can be computed via the adjoint
method, which integrates the adjoint equation backwards in time with constant memory regardless of
the network depth. However, the downside of these continuous models is that they cannot incorporate
discrete events (or inputs) that abruptly change the latent vector. To address this limitation, we extend
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the Neural ODEs framework with discontinuities for modeling hybrid systems. In particular, we
show how the discontinuities caused by discrete events should be handled in the adjoint method.
More specifically, at the time of a discontinuity, not only does the latent vector describing the state
of the system changes abruptly; as a consequence, the adjoint vector representing the loss function
derivatives also jumps. Furthermore, our Neural JSDE model can serve as a stochastic process for
generating event sequences. The latent vector z(t) determines the conditional intensity of event
arrival, which in turn causes a discontinuity in z(t) at the time an event happens.

A major advantage of Neural JSDEs is that they can be used to model a variety of marked point
processes, where events can be accompanied with either a discrete value (say, a class label) or a
vector of real-valued features (e.g., spatial locations); thus, our framework is broadly applicable
for time series analysis. We test our Neural JSDE model in a variety of scenarios. First, we find
that our model can learn the intensity function of a number of classical point processes, including
Hawkes processes and self-correcting processes (which are already used broadly in modeling, e.g.,
social systems [8, 9, 10]). After, we show that Neural JSDEs can achieve state-of-the-art performance
in predicting discrete-typed event labels, using datasets of awards on Stack Overflow and medical
records. Finally, we demonstrate the capabilities of Neural JSDEs for modeling point processes
where events have real-valued feature vectors, using both synthetic data as well as earthquake data,
where the events are accompanied with spatial locations as features.

2 Background, Motivation, and Challenges

In this section, we review classical temporal point process models and the Neural ODE framework of
Chen et al. [7]. Compared to a discrete time step model like an RNN, the continuous time formation
of Neural ODEs makes it more suitable for describing events with real-valued timestamps. However,
Neural ODEs enforce continuous dynamics and therefore cannot model sudden event effects.

2.1 Classical Temporal Point Process Models

A temporal point process is a stochastic generative model whose output is a sequence of discrete
events H = {τj}. An event sequence can be formally described by a counting function N(t)
recording the number of events before time t, which is defined as follows:

N(t) =
∑
τj∈H

H(t− τj), where H(t) =

{
0 t ≤ 0

1 otherwise,
(1)

where H is the Heaviside step function. Oftentimes, we are interested in a temporal point process
whose future outcome depends on historical events [11]. Such dependency is best described by a
conditional intensity function λ(t). LetHt denote the subset of events up to but not including t. Then
λ(t) defines the probability density of observing an event conditioned on the event history:

P {event in [t, t+ dt) | Ht} = λ (t) · dt (2)
Using this form, we now describe some of the most well-studied point process models, which we
later use in our experiments.

Poisson processes. The conditional intensity is a function g(t) independent of event historyHt. The
simplest case is a homogeneous Poisson process where the intensity function is a constant λ0:

λ(t) = g(t) = λ0. (3)

Hawkes processes. These processes assume that events are self-exciting. In other words, an event
leads to an increase in the conditional intensity function, whose effect decays over time:

λ(t) = λ0 + α
∑
τj∈Ht

κ(t− τj), (4)

where λ0 is the baseline intensity, α > 0, and κ is a kernel function. We consider two widely used
kernels: (1) the exponential kernel κ1, which is often used for its computational efficiency [12]; and
(2) the power-law kernel κ2, which is used for modeling in seismology [13] and social media [14]:

κ1(t) = e−βt, κ2(t) =

{
0 t < σ
β
σ

(
t
σ

)−β−1
otherwise.

(5)
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The variant of the power-law kernel we use here has a delaying effect.

Self-correcting processes. A self-correcting process assumes the conditional intensity grows expo-
nentially with time and an event suppresses future events. This model has been used for modeling
earthquakes once aftershocks have been removed [15]:

λ(t) = eµt−βN(t). (6)

Marked temporal point processes. Oftentimes, we care not only about when an event happens, but
also what the event is; having such labels makes the point process marked. In these cases, we use a
vector embedding k to denote event type, and H = {(τj ,kj)} for an event sequence, where each
tuple denotes an event with embedding kj happening at timestamp τj . This setup is applicable to
events with discrete types as well as events with real-valued features. For discrete-typed events, we
use a one-hot encoding kj ∈ {0, 1}m, where m is the number of discrete event types. Otherwise, the
kj are real-valued feature vectors.

2.2 Neural ODEs

A Neural ODE defines a continuous-time transformation of variables [7]. Starting from an initial
state z(t0), the transformed state at any time ti is given by integrating an ODE forward in time:

dz(t)

dt
= f(z(t), t; θ), z(ti) = z(t0) +

∫ ti

t0

dz(t)

dt
dt. (7)

Here, f is a neural network parameterized by θ that defines the ODE dynamics.

Assuming the loss function depends directly on the latent variable values at a sequence of checkpoints
{ti}Ni=0 (i.e., L = L({z(ti)}; θ)), Chen et al. proposed to use the adjoint method to compute the
derivatives of the loss function with respect to the initial state z(t0), model parameters θ, and the
initial time t0 as follows. First, define the initial condition of the adjoint variables as follows,

a(tN ) =
∂L

∂z(tN )
, aθ(tN ) = 0, at(tN ) =

∂L
∂tN

= a(tN )f(z(tN ), tN ; θ). (8)

Then, the loss function derivatives dL/dz(t0) = a(t0), dL/dθ = aθ(t0), and dL/dt0 = at(t0) can be
computed by integrating the following ordinary differential equation backward in time:

da(t)

dt
= −a(t)

∂f(z(t), t; θ)

∂z(t)
, a(t0) = a(tN ) +

∫ t0

tN

da(t)

dt
−
∑
i6=N

δ(t− ti)
∂L
∂z(ti)

 dt
daθ(t)

dt
= −a(t)

∂f(z(t), t; θ)

∂θ
, aθ(t0) = aθ(tN ) +

∫ t0

tN

daθ(t)

dt
dt

dat(t)

dt
= −a(t)

∂f(z(t), t; θ)

∂t
, at(t0) = at(tN ) +

∫ t0

tN

dat(t)
dt

−
∑
i 6=N

δ(t− ti)
∂L
∂ti

 dt. (9)

Although solving Eq. (9) requires the value of z(t) along its entire trajectory [7], z(t) can be
recomputed backwards in time together with the adjoint variables starting with its final value z(tN )
and therefore induce no memory overhead.

2.3 When can Neural ODEs Model Temporal Point Processes?

The continuous Neural ODE formulation makes it a good candidate for modeling events with real-
valued timestamps. In fact, Chen et al. applied their model for learning the intensity of Poisson
processes, which notably do not depend on event history. However, in many real-world applications,
the event (e.g., financial transactions or tweets) often provides feedback to the system and influences
the future dynamics [16, 17].

There are two possible ways to encode the event history and model event effects. The first approach
is to parametrize f with an explicit dependence on time: events that happen before time t changes the
function f and consequently influence the trajectory z(t) after time t. Unfortunately, even the mild
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assumption requiring f to be finite would imply the event effects “kick in” continuously, and therefore
cannot model events that create immediate shocks to a system (e.g., effects of Federal Reserve interest
rate changes on the stock market). For this reason, areas such as financial mathematics have long
advocated for discontinuous time series models [18, 19]. The second alternative is to encode the
event effects as abrupt jumps of the latent vector z(t). However, the original Neural ODE framework
assumes a Lipschitz continuous trajectory, and therefore cannot model temporal point processes that
depend on event history (such as a Hawkes process).

In the next section, we show how to incorporate jumps into the Neural ODE framework for modeling
event effects, while maintaining the simplicity of the adjoint method for training.

3 Neural Jump Stochastic Differential Equations

In our setup, we are given a sequence of eventsH = {(τj ,kj)} (i.e., a set of tuples, each consisting
of a timestamp and a vector), and we are interested in both simulating and predicting the likelihood
of future events.

3.1 Latent Dynamics and Stochastic Events

At a high level, our model represents the latent state of the system with a vector z(t) ∈ Rn. The
latent state continuously evolves with a deterministic trajectory until interrupted by a stochastic event.
Within any time interval [t, t+ dt), an event happens with the following probability:

P {event happens in [t, t+ dt) | Ht} = λ(t) · dt, (10)

where λ(t) = λ(z(t)) is the total conditional intensity for events of all types. The embedding of an
event happening at time t is sampled from k(t) ∼ p(k|z(t)). Here, both λ(z(t)) and p(k|z(t)) are
parameterized with neural networks and learned from data. In cases where events have discrete types,
p(k|z(t)) is supported on the finite set of one-hot encodings and the neural network directly outputs
the intensity for every event. On the other hand, for events with real-valued features, we parameterize
p(k|z(t)) with a Gaussian mixture model, whose parameters η depend on z(t). The mapping from
z(t) to η is learned with another neural network.

Next, let N(t) be the number of events up to time t. The latent state dynamics of our Neural JSDE
model is described by the following equation:

dz(t) = f(z(t), t; θ) · dt+ w(z(t),k(t), t; θ) · dN(t), (11)

where f and w are two neural networks that control the flow and jump, respectively. Following our
definition for the counting function (Eq. (1)), all time dependent variables are left continuous in t, i.e.,
limε→0+ z(t− ε) = z(t). Section 3.3 describes the neural network architectures for f , w, λ, and p.

Now that we have fully defined the latent dynamics and stochastic event handling, we can simulate
the hybrid system by integrating Eq. (11) forward in time with an adaptive step size ODE solver.
The complete algorithm for simulating the hybrid system with stochastic events is described in
Appendix A.1. However, in this paper, we focus on prediction instead of simulation.

3.2 Learning the Hybrid System

For a given set of model parameters, we compute the log probability density for a sequence of events
H = {(τj ,kj)} and define the loss function as

L = − logP(H) = −
∑
j

log λ(z(τj))−
∑
j

log p(kj |z(τj)) +

∫ tN

t0

λ(z(t))dt. (12)

In practice, the integral in Eq. (12) is computed by a weighted sum of intensities λ(z(ti)) on
checkpoints {ti}. Therefore, computing the loss function L = L ({z(ti)}; θ) requires integrating
Eq. (11) forward from t0 to tN and recording the latent vectors along the trajectory.

The loss function derivatives are evaluated with the adjoint method (Eq. (9)). However, we encounter
jumps in the latent vector ∆z(τi) = w(z(τj),kj , τj ; θ) when integrating the adjoint equations
backwards in time (Fig. 1). These jumps also introduce discontinuities to the adjoint vectors at τj .
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Figure 1: Reverse-mode differentiation of
an ODE with discontinuities. Each jump
∆z(τj) in the latent vector (green, top
panel) also introduces a discontinuity for
adjoint vectors (green, bottom panel).

Denote the right limit of any time dependent variable x(t) by x(t+) = limε→0+ x(t+ ε). Then, at
any timestamp τj when an event happens, the left and right limits of the adjoint vectors a, aθ, and at
exhibit the following relationships (see Appendix A.2 for the derivation):

a(τj) = a(τ+j ) + a(τ+j )
∂ [w(z(τj),kj , τj ; θ)]

∂z(τj)

aθ(τj) = aθ(τ
+
j ) + a(τ+j )

∂ [w(z(τj),kj , τj ; θ)]

∂θ

at(τj) = at(τ
+
j ) + a(τ+j )

∂ [w(z(τj),kj , τj ; θ)]

∂τj
. (13)

In order to compute the loss function derivatives dL/dz(t0) = a(t0), dL/dθ = aθ(t0), and dL/dt0 =
at(t0), we integrate the adjoint vectors backwards in time following Eq. (9). However, at every τj
when an event happens, the adjoint vectors is discontinuous and needs to be lifted from its right limit
to its left limit. One caveat is that computing the Jacobian in Eq. (13) requires the value of z(τj) at
the left limit, which need to be recorded during forward integration. The complete algorithm for
integrating z(t) forward and z(t),a(t),aθ(t),at(t) backward is described in Appendix A.3.

3.3 Network Architectures

Figure 2 shows the network architectures that parameterizes our model. In order to better simulate
the time series, the latent state z(t) ∈ Rn is further split into two vectors: c(t) ∈ Rn1 encodes the
internal state, and h(t) ∈ Rn2 encodes the memory of events up to time t, where n = n1 + n2.

Dynamics function f(z). We parameterize the internal state dynamics ∂c(t)/∂t by a multi-layer
perceptron (MLP). Furthermore, we require ∂c(t)/∂t to be orthogonal to c(t). This constrains the
internal state dynamics to a sphere and improves the stability of the ODE solution. On the other hand,
the event memory h(t) decays over time, with a decay rate parameterized by another MLP, whose
output passes through a softplus activation to guarantee the decay rate to be positive.

Jump function w(z(t)). An event introduces a jump ∆h(t) to event history h(t). The jump is
parameterized by a MLP that takes the event embedding k(t) and internal state c(t) as input. Our
architecture also assumes that the event does not directly interrupt internal state (i.e., ∆c(t) = 0).

Intensity λ(z(t)) and probability p(k|z(t)). We use a MLP to compute both the total intensity
λ(z(t)) and the probability distribution over the event embedding. For events that are discrete (where
k is a one-hot encoding), the MLP directly outputs the intensity of each event type. For events with
real-valued features, the probability density distribution is represented by a mixture of Gaussians,
and the MLP outputs the weight, mean, and variance of each Gaussian.

4 Experimental Results

Next, we use our model to study a variety of synthetic and real-world time series of events that
occur at real-valued timestamps. We train all of our models on a workstation with a 8 core i7-
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MLP multi-layer perceptron

negation

multiplication

softplus

orthogonalization

vector transfer

vector copy

vector concatenate

MLP

MLP

MLP

MLP

Figure 2: Neural network architectures that map latent vector z(t) to f(z(t)), w(z(t)), λ(z(t)), and
p(k|z(t)). The vectors and computations flow from left to right. The round-cornered rectangles
(yellow) is a fully connected multi-layer perceptron with CELU activation function. The circles (cyan)
are element-wise operations such as negation, multiplication, and softplus activation. The ellipse
(green) represents the projection that takes the output of the multi-layer perceptron and orthogonalizes
it against c. The colors of the curves encode the dimensionality of the vectors.

7700 CPU @ 3.60GHz processor and 32 GB memory. We use the Adam optimizer with β1 =
0.9, β2 = 0.999; the architectures, hyperparameters, and learning rates for different experiments are
reported below. The complete implementation of our algorithms and experiments are available at
https://github.com/000Justin000/torchdiffeq/tree/jj585.

4.1 Modeling Conditional Intensity — Synthetic Data from Classical Point Process Models

We first demonstrate our model’s flexibility to capture the influence of event history on the conditional
intensity in a variety of point processes models. To show the robustness of our model, we consider
the following generative processes (we only focus on modeling the conditional intensity in this part,
so all events are assigned the same type): (i) Poisson Process: the conditional intensity is given by
λ(t) = λ0, where λ0 = 1.0; (ii) Hawkes Process (Exponential Kernel): the conditional intensity is
given by Eq. (4) with the exponential kernel κ1 in Eq. (5), where λ0 = 0.2, α = 0.8, β = 1.0; (iii)
Hawkes Process (Power-Law Kernel): the conditional intensity is given by Eq. (4) with the power-law
kernel κ2 in Eq. (5), where λ0 = 0.2, α = 0.8, β = 2.0, σ = 1.0; and (iv) Self-Correcting Process:
the conditional intensity is given by Eq. (6), where µ = 0.5, β = 0.2.

For each generative process, we create a dataset by simulating 500 event sequences within the time
interval [0, 100] and use 60% for training, 20% for validation and 20% for testing. We fit our Neural
JSDE model to each dataset using the training procedure described above, using a 5-dimensional
latent state (n1 = 3, n2 = 2) and MLPs with one hidden layer of 20 units (the learning rate for the
Adam optimizer is set to be 10−3 with weighted decay rate 10−5). In addition, we fit the parameters of
each of the four point processes to each dataset using maximum likelihood estimation as implemented
in PtPack.1 These serve as baselines for our model. Furthermore, we also compare the performance of
our model with an RNN. The RNN models the intensity function on 2000 evenly spaced timestamps
across the entire time window (using a 20-dimensional latent state and tanh activation), and each
event time is rounded to the closest timestamp.

The average conditional intensity varies among different generative models. For a meaningful
comparison, we measure accuracy with the mean absolute percentage error:

1

t1 − t0

∫ t1

t0

dt |λ
∗
model(t)− λ∗GT(t)

λ∗GT(t)
| × 100%, (14)

1https://github.com/dunan/MultiVariatePointProcess

6

https://github.com/000Justin000/torchdiffeq/tree/jj585
https://github.com/dunan/MultiVariatePointProcess


Table 1: The mean absolute percentage error of the predicted conditional intensities. Each column
represents a different type of generating process. Each row represents a prediction model. In all cases,
our neural JSDE outperforms the RNN baseline by a significant margin.

Poisson Hawkes (E) Hawkes (PL) Self-Correcting

Poisson 0.1 188.2 95.6 29.1
Hawkes (E) 0.3 3.5 155.4 29.1

Hawkes (PL) 0.1 128.5 9.8 29.1
Self-Correcting 98.7 101.0 87.1 1.6

RNN 3.2 22.0 20.1 24.3
Neural JSDE 1.3 5.9 17.1 9.3

(A)

(C)

(B)

(D)

Figure 3: The ground truth and predicted conditional intensity of three event sequences generated by
different processes (A–C), and an example of the latent state dynamics (D). Each blue dot represents
an event at the corresponding time. In all cases, our model captures the general trends in the intensity.

where λ∗model(t) is the trained model intensity and λ∗GT(t) is the ground truth intensity. The integral
is approximated by evaluation at 2000 uniformly spaced points (the same points that are used for
training the RNN model). Table 1 reports the errors of the conditional intensity for our model and
the baselines. In all cases, our neural JSDE model is a better fit for the data than the RNN and other
point process models (except for the ground truth model, which shows what we can expect to achieve
with perfect knowledge of the process). Figure 3 shows how the learned conditional intensity of
our Neural JSDE model effectively tracks the ground truth intensities. Remarkably, our model is
able to capture the delaying effect in the power-law kernel (Fig. 3D) through a complex interplay
between the internal state and event memory: although an event immediately introduces a jump to
the event memory h(t), the intensity function peaks when the internal state c(t) is the largest, which
lags behind h(t).

4.2 Discrete Event Type Prediction on social and medical datasets.

Table 2: The classification error rate of our
model on discrete event type prediction. The
baseline error rates are taken form [20].

Error Rate [21] [20] NJSDE

Stack Overflow 54.1 53.7 52.7
MIMIC2 18.8 16.8 19.8

Next, we evaluate our model on a discrete-type event
prediction task with two real-world datasets. The
Stack Overflow dataset contains the awards history
of 6633 users in an online question-answering web-
site [21]. Each sequence is a collection of badges
a user received over a period of 2 years, and there
are 22 different badges types in total. The medical
records (MIMIC2) dataset contains the clinical visit
history of 650 de-identified patients in an Intensive Care Unit [21]. Each sequence consists of visit
events of a patient over 7 years, where event type is the reason for the visit (75 reasons in total).
Using 5-fold cross validation, we predict the event type of every held-out event (τj ,kj) by choosing
the event embedding with the largest probability p(k|z(τj)) given the past event historyHτj . For the
Stack Overflow dataset, we use a 20-dimensional latent state (n1 = 10, n2 = 10) and MLPs with
one hidden layer of 32 units to parameterize the dynamics function f , w, λ, p. For MIMIC2, we use
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Figure 4: The ground truth and predicted event embedding in one event sequences.

Figure 5: Contour plots of the predicted conditional intensity and the locations of earthquakes (red
dots) over the years 2007-2018 using earthquake training data from 1970–2006.

a 64-dimensional latent state (n1 = 32, n2 = 32) and MLPs with one hidden layer of 64 units. The
learning rate is set to be 10−3 with weighted decay rate 10−5.

We compare the event type classification accuracy of our model against two other models for learning
event sequences that directly simulate the next event based on the history, namely neural point process
models based on an RNN [21] or LSTM [20]. Note that these approaches model event sequences but
not trajectories. Our model not only achieve similar performance with these state-of-the-art models
for discrete event type prediction (Table 2), but also allows us to model events with real-valued
features, as we study next.

4.3 Real-Valued Event Feature Prediction — Synthetic and Earthquake data

Next, we use our model to predict events with real-valued features. To this end, we first test our model
on synthetic event sequences whose event times are generated by a Hawkes process with exponential
kernel, but the feature of each event records the time interval since the previous event. We train our
model in a similar way as to Section 4.1, using a 10-dimensional latent state (n1 = 5, n2 = 5) and
MLPs with one hidden layer of 20 units (the learning rate for Adam optimizer is set to be 10−4 with
weighted decay rate 10−5). This achieves a mean absolute error of 0.353. In contrast, the baseline
of simply predicting the mean of the features seen so far has an error of 3.654. Figure 4 shows one
event sequence and predicted event features.

Finally, we provide an illustrative example of real-world data with real-valued features. We use our
model to predict the time and locations of earthquakes above level 4.0 in 2007–2018 using historical
data from 1970–2006.2 In this case, an event’s features are the longitude and latitude locations of an
earthquake. This time, we use a 20-dimensional latent state (n1 = 10, n2 = 10), and parameterize
the event feature’s probability density distribution by a mixture of 5 Gaussians. Figure 5 shows the
contours of the conditional intensity of the learned Neural JSDE model.

2Data from https://www.kaggle.com/danielpe/earthquakes
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5 Related Work

Modeling point processes. Temporal point processes are elegant abstractions for time series analysis.
The self-exciting nature of the Hawkes process has made it a key model within machine learning
and information science [22, 23, 24, 25, 26, 27, 28, 29]. However, classical point process models
(including the Hawkes process) make strong assumptions about how the event history influences
future dynamics. To get around this, RNNs and LSTMs have been adapted to directly model events as
time steps within the model [21, 20]. However, these models do not consider latent space dynamics
in the absence of events as we have, which may reflect time-varying internal evolution that inherently
exists in the system. Xiao et al. also proposed a combined approach to event history and internal state
evolution by simultaneously using two RNNs — one that takes event sequence as input, and one
that models evenly spaced time intervals [30]. In contrast, our model provides a unified approach
that addresses both aspects by making a connection to ordinary differential equations and can be
efficiently trained with the adjoint method using only constant memory. Another approach uses GANs
to circumvent modeling the intensity function [31]; however, this cannot provide insight into the
dynamics in the system. Most related to our approach is the recently proposed ODE-RNN model [32],
which uses an RNN to make abrupt updates to a hidden state that mostly evolves continuous.

Learning differential equations. More broadly, learning parameters of differential equations from
data has been successful for physics-based problems with deterministic dynamics [33, 34, 35, 36, 37].
In terms of modeling real-world randomness, Wang et al. introduced a jump-diffusion stochastic
differential equation framework for modeling user activities [38], parameterizing the conditional
intensity and opinion dynamics with a fixed functional form. More recently, Ryder et al. proposed
an RNN-based variational method for learning stochastic dynamics [39], which has later been
generalized for infinitesimal step size [40, 41]. These approaches focus on randomness introduced by
Brownian motion, which cannot model abrupt jumps of latent states. Finally, recent developments of
robust software packages [42, 43] and numerical methods [44] have made the process of learning
model parameters easier and more reliable for a host of models.

6 Discussion

We have developed Neural Jump Stochastic Differential Equations, a general framework for modeling
temporal event sequences. Our model learns both the latent continuous dynamics of the system and
the abrupt effects of events from data. The model maintains the simplicity and memory efficiency
of Neural ODEs and uses a similar adjoint method for learning; in our case, we additionally model
jumps in the trajectory with a neural network, and handle the effects of this discontinuity in the
learning method. Our approach is quite flexible, being able to model intensity functions and discrete
or continuous event types, all while providing interpretable latent space dynamics.
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A Appendix

A.1 Algorithm for Simulating Hybrid System with Stochastic Events

Algorithm 1: Dynamics simulation for hybrid system
Input : model parameter θ, start time t0, end time tN , initial state z(t0)
Output : event sequenceH
initialize t = t0, j = 0, H = {}, z = z(t0)
while t < tN do

dt = AdpativeForwardStepSize(z, t, θ) . from ODE solver
(τj ,kj) = SimulateNextEvent(z, t, θ) . sample exponential distribution
if τj > t+ dt then

z = StepForward(z, dt, θ) . 1st term in Eq. (11)
else
H = H ∪ {(τj ,kj)} . record event
j = j + 1
dt = τj − t . shrink step size
z = StepForward(z, dt, θ)
z = JumpForward(z, (τj ,kj), θ) . 2nd term in Eq. (11)

end
t = t+ dt

end

Note that when an event i happens within the step size dt proposed by the ODE solver, dt needs to
shrink so that t+ dt is no larger than τi.

A.2 Adjoint Sensitivity Analysis at Discontinuities

When the jth event happens at timestamp τj , the left and right limits of latent variables are related by,

z(τ+j ) = z(τj) + w(z(τj),kj , τj ; θ) (15)

where all the time dependent variables are left continuous in time. According to Remark 2 from [45],
the left and right limits of adjoint sensitivity variables at a discontinuity satisfy

a(τj) = a(τ+j )

(
∂z(τ+j )

∂z(τj)

)
. (16)

Substituting Eq. (15) in Eq. (16) gives,

a(τj) = a(τ+j )

(
I +

∂w(z(τj),kj , τj ; θ)

∂z(τj)

)
= a(τ+j ) + a(τ+j )

∂ [w(z(τj),kj , τj ; θ)]

∂z(τj)
. (17)

Moreover, Eq. (16) can be generalized to obtain the jump of aθ and at at the discontinuities. In the
work of Chen et al. [7], the authors define an augmented latent variables and its dynamics as,

zaug(t) =

[
z
θ
t

]
(t),

dzaug(t)

dt
= faug(z, t; θ) =

[
f(z, t; θ)

0
1

]
, aaug(t) = [a aθ at] (t).

(18)

Following the same convention, we define the augmented jump function at τj as,

waug(z(τj),kj , τj ; θ) =

[
w(z(τj),kj , τj ; θ)

0
0

]
. (19)
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We can verify that the left and right limits of the augmented latent variables satisfy

zaug(τ+j ) =

z(τj)

θ
τj

+

w(z(τj),kj , τj ; θ)

0
0

 = zaug(τj) + waug(z(τj),kj , τj ; θ). (20)

The augmented dynamics is only a special case of the general Neural ODE framework, and the jump
of adjoint variables can be calculated as

aaug(τj) = aaug(τ+j )

(
∂zaug(τ+j )

∂zaug(τj)

)
= [a aθ at] (τ+j )

I + ∂w
∂z(τj)

∂w
∂θ

∂w
∂τj

0 I 0
0 0 1

 , (21)

which is equivalent to Eq. (13).

A.3 Algorithm for Adjoint Method with Discontinuities

Algorithm 2: Algorithm for computing the loss function and its derivatives
Input : model parameter θ, start time t0, end time tN , initial state z(t0), event sequenceH
Output : loss function L and derivatives dL

/
dz(t0) = a(t0), dL

/
dθ = aθ(t0), dL

/
dt0 = at(t0)

initialize t = t0, z = z(t0)
while t < tN do

dt = AdpativeForwardStepSize(z, t, θ) . from ODE solver
(τj ,kj) = GetNextEvent(H, t) . find next event in sequence
if τj > t+ dt then

z = StepForward(z, dt, θ) . 1st term in Eq. (11)
else

dt = τj − t . shrink step size
z = StepForward(z, dt, θ)
z = JumpForward(z, (τj ,kj), θ) . 2nd term in Eq. (11)

end
t = t+ dt

end
L = L ({z(ti)}, {z(τj)}; θ) . compute loss function

initialize t = tN , a = ∂L
/
∂z(tN ), aθ = 0, at = a · f(z(tN ), tN ; θ), z = z(tN )

while t > t0 do
dt = AdpativeBackwardStepSize(z,a,aθ,at, t, θ) . from ODE solver
(τj ,kj) = GetPreviousEvent(H, t) . find previous event in sequence
if τj < t− dt then

z,a,aθ,at = StepBackward(z,a,aθ,at, dt, θ) . 1st term in Eq. (11), Eq. (9)
else

dt = t− τj . shrink step size
z,a,aθ,at = StepBackward(z,a,aθ,at, dt, θ)
z,a,aθ,at = JumpBackward(z,a,aθ,at, (τj ,kj), θ) . 2nd term in Eq. (11), Eq. (13)

end
t = t+ dt

end
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