
Replication of Experience Replay for Continual
Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this work, we investigate the results reported in the paper “Experience Replay1

for Continual Learning” [Rolnick et al., 2018] through a replication study of the2

CLEAR method. More specifically, we review the contributions of this paper3

and report a detailed specification of our replication process for sequential task4

learning and implementing the CLEAR method for experience replay. Through5

our investigation, we found that the authors did not release a codebase of their6

contributions, and only the baseline, IMPALA [Espeholt et al., 2018], was available.7

We also found that the CLEAR method required many modifications to the baseline8

code with vague details not well described in the paper. To this end, we include our9

solutions to fixing the IMPALA codebase and how we adapted it for the CLEAR10

method. Lastly, we describe our attempts to implement the CLEAR method with11

and without behavioral cloning (Figure 2 in the original paper) and report our12

replicated graph of IMPALA for sequential task learning.13

1 Introduction14

When interacting with a complex environment, agents must be able to continually learn and adapt15

as task specifications change. One desiderata of an intelligent agent is that after it has learned how16

to perform one task, it should be able to perform more effectively in the future when exposed to17

similar tasks. However, one major issue in Deep Reinforcement Learning (RL) is the problem of18

catastrophic forgetting, in which an agent overrides previously learned information after being trained19

on a new task. Catastrophic forgetting has plagued Deep RL agents from transferring previously20

learned policies to new scenarios, making continual learning in RL a difficult hurdle to overcome.21

Simply put, catastrophic forgetting is a symptom of the agent adapting too quickly to new experiences,22

which destabilizes the learning process.23

One common method of overcoming catastrophic forgetting is to teach the agent tasks in a simultane-24

ous manner, which prevents the agent from forgetting critical information for any given task since the25

agent will be exposed to all the tasks consistently throughout training. However, while this method26

is feasible when access to simulated training data is abundant, it does not apply well in domains27

where computational resources for training data is limited and scarce, or when not all tasks are known28

beforehand, such as robotics. Therefore, the motivation of this paper is to enable Deep RL agents29

to leverage past experiences (experience replay) in order to overcome catastrophic forgetting when30

learning sequential tasks.31

Rolnick et al. [2018] contributes a method for Continual Learning with Experience And Replay,32

termed the CLEAR method. The CLEAR method enables Deep RL agents to utilize both on-line33

learning methods to adapt new experiences into the learning process, while also using off-line34

learning through replay to stabilize learning and prevent catastrophic forgetting in sequential task35

learning scenarios. The authors also compare their method of implementing CLEAR with and without36

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

behavioral cloning, and report the results in Figure 2 of the original paper. The reason why this figure37

is of interest is because it demonstrates that even without behavioral cloning, the CLEAR method is38

able to do very well in overcoming catastrophic forgetting, making it an attractive method for enabling39

continual learning in Deep RL agents. It was this figure that we originally sought out to replicate40

and verify that the CLEAR method truly resolves the issue of catastrophic forgetting for continual41

learning. However, as noted in the following article, we encountered many issues in both fixing the42

original code base and implementing the CLEAR method as described by the authors. Therefore, our43

final results include our replication of Figure 1 in the original paper, where the baseline was ran on44

several different domains in a sequential manner. By replicating this figure, we demonstrate that we45

were able to fix the codebase to get the baseline code working, which is useful and necessary for any46

future researchers interested in replicating the CLEAR results.47

2 The CLEAR Method48

The CLEAR method [Rolnick et al., 2018] uses actor-critic training on a mixture of new and replayed49

experiences. In this actor-critic training method, there are many distributed actors each using50

different parameterized policies to choose actions for their given task. Each of these actors feed their51

experiences into a global buffer, which a single learner uses to update global parameters that the52

actors pull from. Because of this global buffer, the learner uses delayed experiences in the learning53

process, requiring an off-policy algorithm for integrating in the experiences from the actors.54

For this actor-critic method, the value function is updated with an L2 loss, and the policy is regularized55

by reducing the entropy loss:56

Lvalue := (Vθ(hs)− vs)2

Lentropy :=
∑
a

πθ(a|hs)logπθ(a|hs)

CLEAR uses the V-Trace off-policy learning algorithm [Espeholt et al., 2018] and adds two loss57

terms to induce behavioral cloning between the network and its past self.58

Lpolicy−cloning :=
∑
a

µ(a|hs)log
µ(a|hs)
πθ(a|hs)

Lvalue−cloning := ||Vθ(hs)− Vreplay(hs)||22
Note that the policy-cloning loss function reflects a minimization of the KL divergence between µ59

and πtheta, while the value-cloning loss attempts to minimize the L2 norm between the replay value60

function and the value function induced by the current policy θ.61

3 Replication Procedures62

For the DMLab experiments, Rolnick et al. [2018] modified the network in IMPALA [Espeholt et al.,63

2018], the source code for which is available at github.com/deepmind/scalable_agent. We64

also started from that codebase and made modifications to it in our attempt to replicate CLEAR.65

3.1 Setup66

3.1.1 Using the provided docker file67

We started with building the scalable_agent repository using the docker file provided by the developers68

of the repositories. Details of our efforts and the errors faced for the first attempt are as follow:69

• One of the pre-requisites for setting up the scalable_agent repository was to set up the70

deepmind-lab repository (https://github.com/deepmind/lab). The first round of er-71

rors were related to building up the deepmind-lab repo and revolved around pip issues, and72

linking .so files using the Bazel compiler73

2

github.com/deepmind/scalable_agent
https://github.com/deepmind/lab

• We used our college’s jupyter-repo2docker open source project to attempt to resolve the74

dependency issues inherent in their docker file as suggested. This route did not resolve all75

the issues. Even the solutions provided on the closed issues of the github repositories were76

not useful77

Figure 1: Closed issue regarding the dockerfile not working

• We then switched to making our own virtual environment with manual installations of the78

dependencies to build the repository from scratch79

• Figuring this out took us around a day80

3.1.2 Manual Installation81

Details of our efforts and the errors faced while manually installing the dependencies and building82

the scalable_agent repository are as follow:83

• The deepmind-lab repository with the tasks/environments to run by the agent is compiled84

with a Bazel compiler. The instructions to install Bazel were wrongly provided in the readme85

of repository. Closed issues of the github repo were able to better guide us in making the86

Bazel compiler work87

Figure 2: Closed issue regarding solution to making the Bazel compiler work

Instead of doing deb and apt-get we had to wget a stable script file release and update the88

environment path. This solved the Bazel error we were getting89

• For the pip issues in the docker file, we had to search and look at the Python.BUILD90

script. Although the script suggested that the Scalable_agent repository supported both91

python2 and python3, the python2 functions had function incompatibility issues, leading us92

to reinstall all the previous dependencies for python3. We had to install a specific version of93

Tensorflow==1.15.0 and dm-sonnet==1.23 that made the repository work94

3

• For resolving the linking issues; the dynamic batching module had to be re-run with the95

right version of the GCC library (gcc=4.8)96

After spending around a week purely on installation, we were able to get the scalable_agent repository97

up and running, and have a requirements.txt file detailing the correct versions of all the necessary98

dependencies for the scalable_agent codebase. We are happy to release it for people who want to99

work on this project in the future.100

3.2 Implementation101

3.2.1 Replay Buffer102

Rolnick et al. [2018] described the implementation of a replay buffer to store necessary information103

for the off-policy V-trace algorithm. Each actor needed a separate replay buffer of capacity =104

number_of_frames/(2 ∗ number_of_actors). Every actor forwarded a tuple to the learner,105

containing the current unroll (trajectory) and the replay history. The learner selected samples from106

the replay buffer and the current unroll using (50%, 50%) probability. Once the buffers were filled107

up to the capacity, the new unrolls were added using reservoir sampling, as mentioned by Isele and108

Cosgun [2018], so that the buffer contains uniform random samples up to the present point and not109

just recent unrolls. In reservoir sampling, each experience is assigned a random value, which serves110

as the key in priority queue where the experiences are preserved with the highest key values.111

For the implementation of the replay buffer, we had to figure out where in the code should the112

buffer be populated (whether it was inside the build_actor function or the train function). The113

build_actor function generates the output containing the agent state, agents output and environments114

output, while in the train function the build_actor, build_learner and run.session loop is called.115

We made multiples attempts at designing the data structure for the replay buffer since the authors116

provided no information on this. When asked about the implementation of the replay buffer as a117

GitHub issue, the authors provided a vague answer that they used a custom C++ implementation with118

a promise of release around a year back. The only information provided was to use tf_py function to119

make wrappers for the replay buffer to increase the speed. A screenshot of the issue is provided in120

Figure 3121

Figure 3: Github issue - Replay buffer implementation

The order in which the data structures were implemented for the replay buffer and the errors we ran122

into implementing each of them are as follows:123

3.2.1.1 Replay buffer as list per actor124

The replay buffers were implemented as a list of lists data structure where each replay buffer was125

implemented as a list per actor, and all the replay buffers per actor were put into one list. This did not126

4

work since the samples of unrolls had to be reorganized into a specific internal structure initialized by127

the developers of the authors, and the samples from the replay buffers could not be packed into this128

specific internal structure to be fed to the learner.129

The exact error we faced is shown in Figure 4.130

Figure 4: Error - Replay Buffer as a list data structure per actor

3.2.1.2 Replay buffer as queue per actor131

Implementing each replay buffer as a queue per actor led to issues with TensorFlow ’s serializability.132

Initializing multiple queue runners to enqueue the unrolls in the replay buffers caused errors, as133

shown in Figure 5.134

Figure 5: Error - Replay Buffer as a queue data structure per actor

Asynchroniscity among multiple threads lead to multiple blocking statements, and the above errors of135

running out of input to fill the receiving buffer. As stated by the documentation of TensorFlow, using a136

coordinator object with the queue runners could potentially resolve the issues, but the scalable_agent137

codebase was written to optimize for speed concerns specifically, and these optimizations were so138

interwoven in the code that it made it hard for us to incorporate the coordinator object.139

3.2.1.3 Replay buffer as list per actor - second attempt140

We went back to the implementation of replay buffer as a list, with the goal of overcoming the141

structure packing issues described in Section 3.2.1.1. We were able to overcome the structure issue142

by separating the replay buffer into separate replay buffers for each actor correctly, but the code143

processed this structure before sending it to the learner. This structure processing can be found in144

lines 551 − 571 of the original code in the scalable_agent repository, and we started facing a new145

error during this processing, as shown in Figure 6.146

5

Figure 6: Error - Replay Buffer as a list data structure per actor - transpose error

We believe that this error came up because our replay buffer was a list of lists, while the way the147

unroll was processed by the developers of the code was a list of a custom tensor object class. We148

tried converting our replay buffer list into a tensor object but ran into the error of incompatible types.149

3.2.1.4 Replay buffer as list per task150

We went back to the implementation of replay buffer as a list, but this time implemented it as a list151

per task to overcome the type error, as mentioned in 3.2.1.3. This implementation led us to the error152

of not being able to pack the sequence into the specific internal structure, as shown in Figure 7.153

Figure 7: Error - Replay Buffer as a list data structure per task

3.2.1.5 Replay buffer as queue per task154

The methods of the tensor class Queue were able to handle the type errors and sequence packing155

errors by themselves. The reason we were more inclined to a list structure than a queue structure as156

used by developers of the Scalable agent code was that we didn’t want to dequeue from the replay157

buffer; instead, we wanted to keep appending to it to maintain the history of trajectories. Nevertheless,158

we again attempted to use the queue data structure, but this time per task. This implementation again159

did not work and gave us the same error as Section 3.2.1.2, shown in Figure 5.160

We had to try all these attempts because the authors were not clear about the details for the implemen-161

tation of the replay buffer. We imagine that for researchers wanting to use this codebase as a baseline162

for their research, spending so much in implementing the original code is not an effort well-spent.163

Replication of the replay buffer would have been more feasible if we at least had an idea of what164

underlying data structures were used and a better understanding of the optimizations of the code. The165

latter could have been achieved by providing better documentation of the scalable_agent repository.166

6

3.2.2 Sequential Training167

The IMPALA (scalable_agent) codebase has settings for single-task and multi-task training, cor-168

responding to the separate and simultaneous training shown in Figure 1 in Rolnick et al. [2018].169

However, the setting used in Rolnick et al. [2018] is sequential training (the right-most image in170

Figure 1), to demonstrate the network’s performance for continual learning. Rolnick et al. [2018] did171

not specify how they modified the scalable_agent codebase to have the network trained on sequences172

of tasks, therefore, we operated solely on our guesses of how sequential training was implemented.173

Sequential training is essentially single-task training where the task switches from time to time.174

Therefore, we initially sought to modify the single-task training setting to switch the training task175

after a number of frames. In the single-task setting, all actors are initialized with the same task. We176

modified the code to reinitialize the actors with a new task after a number of frames, and in effect177

switching the training task. However, trying to reinitialize the actors gave us an error stating that the178

Tensorflow graph is finalized and cannot be modified.179

As re-initializing the actors was not feasible, we decided to initialize all actors at the beginning with180

all the tasks we wanted to train the network on, and have separate queues to hold the output from the181

actors for a specific task. However, the way the learner was accessing the actors’ output was unclear182

and not well-documented in the codebase, and we were unsuccessful in modifying the code to switch183

the source of training data (and thus the training task) for the network.184

3.2.3 Additional Loss Functions185

In order to implement policy-cloning and value-cloning as detailed in the CLEAR method, we wrote186

two different python functions for each of the loss functions. The python code for these two loss187

functions can be found in Figure 8. Although we were unable to apply these loss functions in the188

training of the network, as the functions rely on the replay buffer being correctly implemented, we189

were able to write the loss functions based on the details in the paper, and include them here for190

posterity.191

Figure 8: Additional loss functions

4 Results192

With our implemented corrections to the IMPALA codebase, we were able to replicate the first figure193

in the CLEAR paper where actors were trained on separate tasks. Our replicated figure and the figure194

from the original paper are included in Figure 9. This figure is important because it helps differentiate195

between the effects of catastrophic forgetting and interference. Destructive interference is when two196

tasks that are being learned are in conflict with one another in terms of learned behavior. Catastrophic197

forgetting is when newly learned experiences override previous experiences. While these two are not198

mutually exclusive, interference can either be destructive (hurtful) or constructive (helpful), while199

catastrophic forgetting is often present whenever the agent switches between learning tasks. Figure 1200

7

Figure 9: (Left) Our replicated graph. (Right) Figure 1 from the CLEAR paper, separate tasks. Note
that we only replicated the explore_object_location_small curve

attempts to address the differences in these two failure modes by comparing the baseline method,201

IMPALA, on separate, simultaneous, and sequential task learning paradigms.202

We note that the original figure ran for one billion environment steps, but we were unable to run our203

model to completion under the same conditions due to our limited compute capability. We also note204

that in our figure, we only report the training curve for the explore_object_location_small curve.205

Overall, our graph has more variance than the figure in the original paper, but this is accounted for by206

the fact that we only report a single training instance of our model, while the graph from the paper207

appears to have averaged results over many runs (However, there is no mention in the original paper208

of how many times they ran their models, nor do they specify whether the graph includes standard209

deviation or confidence intervals). It is promising to note that our model starts off poorly (as expected210

when starting from scratch), and begins to learn such that the score begins to rise over time. It appears211

that our replicated graph has an average score that is around 20, which is similar to the actual figure212

at around the same amount of environment steps. Therefore, we find our replicated figure to positively213

suggest that our implementation results similarly reflects those found in the original paper.214

5 Conclusion215

This article describes our process of replicating the paper “Experience Replay for Continual Learning”216

and what results we gathered. We found issues with the original codebase and report detailed217

descriptions of how we approached these problems. In addition, many important implementation218

details for the model and figures were not included in the paper, and we therefore include our methods219

of implementing the CLEAR method based on our best guesses. In the end, while we were not able220

to successfully implement the replay buffer and sequential task training, which was necessary for221

replicating Figure 2 in the original paper, we were able to get the original baseline working on the222

separate tasks and write the loss functions for policy cloning and value cloning. Therefore, while we223

were not able to confirm that results of this paper, we contributed many corrections that are are useful224

for any other researchers who wish to implement the CLEAR method.225

Acknowledgments226

We would like to give special thanks to Neev Parikh, our assigned Teacher Assistant mentor, for227

discussions regarding our replication. We would also like to give thanks to Deniz Bayazit, who was228

originally on our team and contributed to our coding replication.229

References230

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam231

Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with232

importance weighted actor-learner architectures. In Proceedings of the International Conference233

on Machine Learning (ICML), 2018.234

8

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. CoRR,235

abs/1802.10269, 2018. URL http://arxiv.org/abs/1802.10269.236

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P Lillicrap, and Greg Wayne. Experience237

replay for continual learning. arXiv preprint arXiv:1811.11682, 2018.238

9

http://arxiv.org/abs/1802.10269

	Introduction
	The CLEAR Method
	Replication Procedures
	Setup
	Using the provided docker file
	Manual Installation

	Implementation
	Replay Buffer
	Sequential Training
	Additional Loss Functions

	Results
	Conclusion

