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ABSTRACT

Inferring temporally coherent data features is crucial for a large variety of learning
tasks. We propose a network architecture that introduces temporal recurrent con-
nections for the internal state of the widely used residual blocks. We demonstrate
that, with these connections, convolutional neural networks can more robustly
learn stable temporal states that persist between evaluations. We demonstrate
their potential for inferring high-quality super-resolution images from low reso-
lution images produced with real-time renderers. This data arises in a wide range
of applications, and is particularly challenging as it contains a strongly aliased
signal. Hence, the data differs substantially from the smooth inputs encountered
in natural videos, and existing techniques do not succeed at producing acceptable
image quality. We additionally propose a series of careful adjustments of typical
generative adversarial architectures for video super-resolution to arrive at a first
model that can produce detailed, yet temporally coherent images from an aliased
stream of inputs from a real-time renderer.

1 INTRODUCTION

Learning expressive and stable representations is a goal that lies at the heart of a vast range of deep
learning tasks (Dahl et al., 2011; Radford et al., 2015; Chen et al., 2016). While typical recurrent
architectures focus on feedback loops to form persistent latent-spaces (Rumelhart et al., 1988; Chai-
tanya et al., 2017), we show that for inference tasks where the result is conditioned on a stream of
inputs, these existing architectures unnecessarily complicate the learning task, and fail to reliably
stabilize the inference. With our work, we propose a new type of connection for the very widely
used building blocks of ResNet architectures (He et al., 2015) that lets the network easily compare
internal states in-place. The learned representation can then, e.g., yield a detailed image sequence
with natural changes. We demonstrate this with a particularly challenging learning objective: we
aim for the synthesis of detailed images from a stream of strongly aliased inputs. Specifically,
we show that adversarially trained convolutional neural networks (CNNs) can be leveraged to pro-
duce detailed images from unfiltered, low-resolution images generated via point-sampling with a
rasterization-based real-time renderer. Real-time graphics are the basis for a wide range of appli-
cations: Generating images with a sufficient resolution from low resolution, yet computationally
light-weight renderings is a task that is, e.g., important for generating content for the high resolution
screens of mobile devices, and is especially interesting for streaming services of games in order to
compute the final resolution only on the client.

Our work shares its goal with a variety of approaches that have been proposed for generating high-
quality images for raytracing algorithms (Zhang et al., 2016; Chaitanya et al., 2017) and purely
image-based super-resolution algorithms (Sajjadi et al., 2017; Sajjadi et al., 2018; Chu et al., 2018).
Our architecture differs from previous works as the proposed recurrent connection allows the net-
work to learn a temporally stable latent-space representation that does not negatively impact the
residual flow of a ResNet architecture. Also, the temporal connections for deeper layers of the
network are important for successful learning, as we will demonstrate below.

While the basic concept of depth-recurrent connections could potentially be applied to a variety
of sequence-based learning tasks, we focus on demonstrating its potential for pushing forward the
limits of real-time rendering. Hence, we additionally outline a series of modifications to existing
architectures which are crucial for achieving high quality of the strongly aliased input images from
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Figure 1: Given a strongly aliased low-resolution input rendering with one sample per pixel, re-
current non-adversarial training ((Chaitanya et al., 2017) with modifications for fair comparisons)
produces blurry results, and existing adversarial methods ((Chu et al., 2018), re-trained) introduce
strong flickering artifacts. Trained on the same data, due to the proposed DRR connections our
network infers more consistent spatio-temporal features (see the supplemental footage for a clear
assessment of the temporal differences).

typical real-time rendering pipelines. A typical input for our network is shown on the left of Fig. 1.
This application scenario is especially challenging for CNNs, since it requires to work with images
that need to be rendered at very high frame rates and, thus, exhibit severe aliasing due to point
sampling and typically low resolutions. The aliasing not only distorts the spatial signal, but likewise
affects the temporal changes. Therefore, a super-resolution (SR) network can’t rely on receiving
smoothly changing, filtered inputs that allow for localization of small features. Rather, it has to learn
over the course of multiple frames to infer consistent output images(Fig. 1, right) from spatially and
temporally aliased input content. As we will demonstrate in a number of studies below, this task
is where our proposed depth-recurrent connections unfold their strength. They enable the network
to match the data distribution of the targets, i.e., to synthesize images with a high visual quality in
terms of detail as well as their temporal behavior. We show results and comparisons in the paper,
and provide many additional evaluations in the supplemental material 1, where videos more clearly
show spatial and temporal differences.

2 RELATED WORK

Deep learning has been successfully applied to a large variety of image-based super-resolution tasks
(Wang et al., 2015; Kim et al., 2016; Ledig et al., 2016). Here, convolutional architectures (CNNs)
(Dong et al., 2014) with residual blocks (He et al., 2015) are a very popular generator architecture
that offers training stability as well as high qualify inference. Targeting photo-realism, Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014) were introduced to prevent the undesirable
smoothing of direct loss formulations (Sajjadi et al., 2017; Ledig et al., 2016). For GAN architec-
tures, a second discriminator network is trained to classify real and generated samples that is used
to guide the generator network. The results of these GAN approaches were improved upon, e.g.,
by modifying the residual blocks and perceptual loss function (Wang et al., 2018), by employing
the Earth Movers distance to stabilize the training (Arjovsky et al., 2017), and by accounting for
the a-priori knowledge that fake samples exist (Jolicoeur-Martineau, 2018). Using the feature-space
differences of image classification networks, e.g. a pre-trained VGG network (Johnson et al., 2016)
or the discriminator in a GAN setting, as perceptual loss was shown to be highly effective as well.
Natural temporal changes of the generated content are crucial for video SR tasks. Often multiple
subsequent frames are used to generate a high-resolution (HR) frame (Liao et al., 2015). These
multi-frame approaches benefit from aligning the frames via warping which requires an estimation
of the image space motions. As this is usually not readily available for natural videos, optical flow
estimation networks are a popular choice (Caballero et al., 2016). As for spatial content, employing
an L2 loss to enforce temporal coherence is not optimal. Instead, extending the adversarial loss to
the temporal domain improves the temporal coherence of small-scale details (Pérez-Pellitero et al.,
2018; Xie et al., 2018; Chu et al., 2018). We likewise employ a spatio-temporal GAN architecture
in the following.

1Anonymous and time-stamped supplemental material for our submission can be downloaded at https:
//www.dropbox.com/sh/4tco2sb9ja034jo/AAAQC-8IBqoC6qt8M-lJ4asFa?dl=0.
All source code will be published upon acceptance.
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For deep learning methods, a variety of recurrent neural networks has been proposed (Rumelhart
et al., 1988; Hochreiter & Schmidhuber, 1997; Cho et al., 2014), and were shown to be useful for
image generation tasks. Chaitanya et al. (2017) uses recurrent connections to propagate a latent state
over time inside the network, while Sajjadi et al. (2018) use the previously generated high-resolution
(HR) output as input. The SR task also bears a certain similarity to other image enhancement
techniques like inpainting (Pathak et al., 2016; Zhang et al., 2018a), where progressive methods
provide state-of-the-art quality, or the removal of compression artifacts and text (Mao et al., 2016).
Likewise, temporal coherence is an important aspect in style transfer (Huang et al., 2017). We use
spatio-temporal self-supervision similar to previous work (Chu et al., 2018), but target a substantially
more challenging data domain than natural videos in the following.

Images of real-time renderers that can be generated quickly often exhibit strong aliasing. In this
context, the existing work focuses on enhancing path-traced images. A common application is im-
age denoising, e.g. for Monte-Carlo ray-tracing (Zhang et al., 2016; Chaitanya et al., 2017), where
a network learns to predict a noise pattern in order to infer a smooth image from a sparse set of
importance samples. Computer games and other real-time graphics applications, on the other hand,
use a rasterization-based rendering pipeline. Simple geometry is shaded with simplified but in-
creasingly complex lighting and texturing computations, and often only 1 sample per pixel is taken
to maintain the required frame rates. Compared to natural and path-traced synthetic images these
images are strongly under-sampled and exhibit aliasing artifacts that are different from the noisy im-
ages of path-tracing algorithms. Super-Sampling (SSAA), i.e. rendering at a higher resolution and
averaging, is a straight-forward, but expensive anti-aliasing (AA) solution. While Multi-Sampling
(MSAA) (Akenine-Moller et al., 2018) is a possible optimization, image-space methods (Lottes,
2009; Jimenez et al., 2011; 2012) are popular and try to reduce aliasing by detecting and smoothing
edges in image-space after rendering, temporal methods like Temporal Anti-Aliasing (TAA) (Ko-
rein & Badler, 1983) use the warped previous samples to smooth and stabilize edges. Here, the
use of deep leaning models for image enhancement in real-time settings is sparse. To the best of
our knowledge, only a closed-source solution exist, provided by Nvidia in the Turing architecture
(NVIDIA Corporation, 2018), and little is known about its internal realization. Instead, our goal is
to provide an open solution, and at the same time improve the state-of-the-art in GAN-based SR.

3 METHOD

Our main goal is to facilitate the learning of a stable internal network representation that persists
between repeated SR inference steps. In this way, the network can pass information from one frame
to the next such that a persistent and stable prediction over time is achieved. This is crucial for pro-
cessing strongly aliased input data streams. The internal network representation can then be used to
generate the desired output distribution and, as demonstrated below, this improves temporal coher-
ence and generates stable small-scale details in SR rendering. Fig. 2 demonstrates the quality that
is achieved by the proposed architecture. To enable the network to learn this internal representation,
we augment the generator network with aligned, temporal connections inside the residual blocks
(ResBlocks).

In order to demonstrate the advantages of our depth-recurrent architecture and the extensions for the
real-time setting, we build on a GAN-based video super-resolution architecture from previous work
(Chu et al., 2018). Here, the generatorG is trained on image sequences and processes the current LR
input as well as its warped previous output through a series of ResBlocks to produce a detailed and
temporally coherent output. The spatio-temporal discriminator Ds,t sees shorter 3-frame sequences
of the output as well as the LR input as condition. We also employ a perceptual feature loss via the
discriminator network. In addition to the adversarial and the feature loss, the generator is trained
with a Ping-Pong term for long-term coherence and an L2 loss in image space, the content loss, for
stabilization.

3.1 DEPTH-RECURRENT RESIDUALS

The residual blocks of frame t−1 and frame t are connected to pass the activations of a convolutional
layer from frame t−1 to t. As we work with video data, we align these activations by warping them
with the screen-space motions before they are concatenated to the ones in frame t and passed as
input to the next layer. We call this setup Depth-Recurrent Residuals, and it is visualized in Fig. 3,
DRR. In contrast to frame-recurrent networks, we employ connections in latent space, and different
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Figure 2: Our DRR model applied to 2 different test scenes. The comparisons show input LR color
images and the high-resolution outputs inferred by our method. The inputs exhibit strong spatial
aliasing, and a similar amount of temporal aliasing, as is visible in the videos of the supplemental
material. Despite these challenges, our model infers a stable and detailed output sequence.

to commonly used “feed-back” loops of recurrent architectures, we use a “feed-forward” design
that includes a warping step. Within a multi-layer CNN, a variety of possible recurrent connections
are imaginable. The goal of the specific variant we propose is that of temporal stability: with our
connections a receiving layer can compare an aligned set of activations from the previous frame with
the current activations. Hence, operations such as temporal derivatives are trivial to perform with
in-place differences.

The operations of a regular ResBlock at depth b can be summarized as follows: two convolutional
layers Fb,2 = Cb,2(Fb,1), and Fb,1 = Cb,1(Fb−1,+)

+ are followed by an addition, yielding the
final output Fb,+ = Fb,2 + Fb−1,+. Here, C<ResBlock>,<layer> denotes a convolution, and + ReLU
activation. For our depth-recurrent residual blocks, we replace the second convolutional layer with
the following operation: Ft

b,2 = Cb,2(Ft
b,1 ⊕W (Ft−1

b,1 )). This is followed by a summation as before
to produce the output Fb,+. Here, W applies warping for the current layer based on externally
computed velocities (either with another CNN, or via rendering as for our inputs), and ⊕ denotes
feature concatenation. Compared to regular ResBlock convolution, we use 18, 75% fewer features
for DRR blocks in order to keep the overall number of weights per ResBlock constant.

During our experiments, we apply the following curriculum learning steps, which typically help
to stabilize the training runs and lead to improved final results in our tests: The depth recurrent
connections are linearly faded in during training in a staggered fashion, beginning with fading in the
connection of first block, then the second block and so on. Similarly, the discriminator network is
faded in after a pre-training step of the generator (details are given in App. B).

ResBlock n

+

ResBlock n

+

DRR
DRR-in

RDA

WW
W

frame t− 1

frame t

Figure 3: We propose to connect the center latent-
space of ResBlock n at time t − 1 to the same
ResBlock n at time t, yielding our DRR connec-
tion. A variant of our approach is DRR-in, in addi-
tion to a recurrent connections similar to previous
work (RDA).

Discussion To analyze whether the intuition
that the DRR connection support learning sta-
ble features is correct, we have evaluated alter-
native connectivities. One variant from previ-
ous work connects the outputs of a ResBlock
as inputs into the same ResBlock for the next
frame to produce a hidden state. This is in-
spired by the recurrent denoising autoencoders
Chaitanya et al. (2017), and shown as RDA in
Fig. 3. Note however, that this version in the
following uses our improved architecture and
warping operations, both of which are not em-
ployed in the original version. In terms of
the notation above, this variant is obtained via
Ft
b,1 = Cb,1(Ft

b−1,+ ⊕ W (Ft−1
b,+ ))+. It yields

spatially slightly worse but strongly flickering
results, as the layer now effectively has to com-
pare different feature sets: that of the previous
ResBlock, and the features of its own from the
previous frame.
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Figure 4: A visual comparison of the different types of recurrent connections with otherwise identi-
cal models (all three using our discriminator supervision, generator and warping). Our DRRs yield
an improved image quality and temporal stability, as shown in the supplemental material.

A variant of our recurrent ResNet architecture is to use an in-place connection instead. Thus, feed-
ing the outputs of the previous ResBlock of both the current and previous frame as input to each
ResBlock as shown in Fig. 3 DRR-in. I.e., Ft

b,1 = Cb,1(Ft
b−1,+⊕W (Ft−1

b−1,+))
+. This variant of our

DRR connections stabilizes the results, but does typically result in slightly lower quality inference.
Qualitative results for each variant are shown in Fig. 4.

We believe that the primary reason for the improved stability of our variant is that the proposed
connection is de-coupled from the regular flow of information along the residual blocks. Hence,
the learned temporal features change the way the latent-space within the ResBlock is shaped, but
it does influence and possibly impede the residuals added at the beginning and end of a ResBlock.
Therefore, the network can focus on learning suitable temporal features, instead of additionally
having to learn to work with a combination of spatial and temporal information (as with previous
work and the variants discussed above). Thus, our approach preserves the structure which led to the
success and widespread use of the original ResBlocks (He et al., 2015).

In all three variants, applying the W function, i.e. warping with the screen-space motion vectors,
improves the results. Otherwise, the networks easily converge towards solutions with noticeable
streak-like artifacts. It is also worth noting that the depth recurrent connections are substantially
different from the recurrent input to the generator network, i.e., the previously generated HR frame,
as they pass on learned latent-space features at the same location within the network. Thus, for new
inference tasks the network does not need to analyze again the information encoded in an image.
However, it is still challenging for the network to encode and transport coherent small-scale features
across frames. Removing the recurrent input, using only our depth recurrent connections leads
to temporally coherent results, but induces a significant loss of spatial detail. Hence, rather than
replacing it, the depth recurrent connections work best in conjunction with a recurrent input.

4 DATA

We use images rendered in real-time with a rasterization-based rendering pipeline with 1 sam-
ple/pixel as our training data. The network is trained with 15-frame sequences of matching HR-LR
image pairs, both rendered using Unity’s high-definition rendering pipeline (HDRP). From there, we
also capture the rendered screen-space motion that is used for warping. Details are given in App. A.

Typical super-resolution models for natural videos are trained with a down-sampled version of the
target. This gives the network a smooth, reliable average of the reference content. A generator
network can detect the changes and sharpen existing features to generate detail. As our synthetic data
exhibit strong aliasing artifacts, there are larger changes between adjacent pixels as well as temporal
aliasing. This makes the data much more difficult to analyze. In contrast to a spatio-temporally
integrated signal, as for natural video SR, sub-pixel features only show up rarely, and most of the
time do not have a signal at all in our setting. This makes it much harder to correlate image space
content in subsequent frames and achieve temporal coherence. Aliasing also makes it more difficult
to detect the actual, underlying edges over a larger area and correct the input accordingly. These
combined challenges make it necessary to introduce more temporal context, which we enable with
the DRR connections.
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Figure 5: Ablation study for the discriminator network: The top row shows different discriminator
setups: without adaptive balancing, with conditional LR color input, the standard size and our larger
variant. The bottom row shows the influence of different auxiliary losses.

5 SUPER-RESOLUTION ARCHITECTURE

In addition to the depth-recurrent residuals described above, our model is also subject to multiple
changes which we found crucial for dealing with the challenging input data from real-time render-
ers. First, we use the motion vectors generated by the renderer for all warping operations. These are
faster to compute and more accurate than the motion estimated by an auxiliary network. We also
found resize-convolutions (Odena et al., 2016) with bilinear interpolation instead of (strided) decon-
volutions important to reduce checkerboard artifacts. The specific task the network needs to perform
in our target application reveals the limits of the deconvolution approach, requiring to incorporate
resize-convolutions as described below.

Providing depth as LR input to the generator also slightly enhances edges and reduces aliasing
artifacts such as staircasing. This effect is stronger near the camera, which suggests that it is related
to the non-linear dependency of depth to view-space distance. Introducing additional data fields
from the rasterization pipeline, such as surface normals, did not yield improvements.

Previous work proposes to let the generator output be a residual that is added to the bicubically up-
scaled LR input color, instead of directly generating the final output. Interestingly, for our strongly
aliased data we found it beneficial to instead use bilinear interpolation for up-scaling the inputs, as
bicubic interpolation often leads to overshooting near edges. This caused difficulties for the gen-
erator and did not yield any improvements in terms of image quality. However, also the bilinearly
up-scaled LR color, to which the residual is applied, still contains strong aliasing. To perform the
necessary anti-aliasing, the network has to detect structures based on single samples in the LR input,
as it does not have direct access to the up-scaled version in this case, and then perform the neces-
sary correction via the residual addition to the HR version on the other end of the network. This is
sufficient for the smoother data of natural videos, where detail enhancement and sharpening oper-
ations can be less accurate and still yield good results. Replacing the final addition of the residual
with 2 additional convolutional layers further improves image quality. For these convolutions, we
concatenate the up-scaled color after the resize convolutions (details in App. B). With this modifica-
tion, the network does not need to transport the LR color through the LR ResBlocks and can choose
based on the up-sampled LR color what parts of it to use. This adds ca. 1% additional weights
compared to the standard setup, but is computationally more expensive as high-res tensors are con-
volved. Nonetheless, the gain in image quality outweighed the slight increases in computations and
memory.

The concatenation of the DRRs increases the number of input channels and, therefore, the number of
weights of the receiving layer. Thus, to keep the overall amount of weights consistent with previous
versions and allow for a fair comparison, the number of base channels of the ResBlocks is reduced
when using these recurrent connections.
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6 ABLATION STUDIES

Discriminator The discriminator facilitates the generation of sharp and detailed images. While
a network trained with only L2 supervision produces a more blurred output, “L2 only” in Fig. 5,
activating the spatio-temporal discriminator yields a significant improvement, see “D	

s,t”. As visible
in Fig. 5, we found it important to use a discriminator without conditional input in order to balance
the networks. As a large part of the loss function employs the discriminator (both adversarial and
feature losses), its quality is crucial. E.g., by increasing the size, i.e., adding layers or channels,
and therefore complexity of the discriminator, further improvements are achieved. Increasing depth
values allows D to detect more complex features, thus providing gradients towards more complex
image content. This also avoids that the generator quality is limited by the lack of discriminator
gradient information. The feature loss similarly profits from more complex features, and while a
larger discriminator is slower to train, it does not affect performance during inference. However, a
larger discriminator can make the training more unstable, and eventually become unbalanced. We
found a discriminator with 14 layers and 3.7M weights (Ds,t), and a generator with 26 layers and
769k weights to be a stable combination that yields high quality results, as long as adaptive balancing
is used as outlined in App. B.

Depth-Recurrent Residuals A generator with Depth-Recurrent Residuals (DRRs) gives good re-
sults, even when trained with the largest discriminator where a generator without DRRs tends to
produce strong artifacts, Fig. 5 (Ds,t). The generator network can process the detailed gradient
feedback it receives from the large discriminator network, and use it to generate a large amount
of image-space detail. Letting the DRR connections fade into the network further improves the re-
sults. When the connections are activated right from the beginning of the training process, the image
quality is typically reduced.

Loss Functions Despite the stabilization via DRR connections, the proposed learning setup re-
quires careful balancing. The additional details provided by a larger discriminator, combined with
the strong learning objective to produce detail, yields overall better results but more small-scale
differences to the target. This in turn increases the L2 content loss, which however is needed to sta-
bilize the training. In practice, a parameter is introduced to choose between temporal stability and
large amounts of image-space detail. An important source of detail seems to stem from the discrim-
inator feature loss, i.e., by using only the regular adversarial loss, details are noticeably reduced. In
practice, a strong feature loss effectively reduces the smoothing caused by the content loss and gives
the best results.

Similar to a spatial L2 loss, we found that a temporal L1 loss, as employed by Chaitanya et al.
(2017), leads to an undesirable smoothing in our GAN setting. Even worse, when using a temporal
L1 loss without warping, it produces strong streak-like artifacts. Modifications such as additional
edge loss terms did not alleviate this behavior. While others have reported improvements by using
perceptual losses with pre-trained networks (such as VGG), we likewise found that this yields differ-
ent, but not necessarily better outputs. Presumably, the different nature of the images produced by
the rasterization pipelines is less amenable to the VGG features. The loss variants used in previous
works are shown in the bottom row of Fig. 5.

7 EVALUATION

We compare our model with and without DRR connections to state-of-the-art methods from previous
works. Specifically, we compare to supervised approaches (DUF (Jo et al., 2018), Enet (Sajjadi
et al., 2017), FRVSR (Sajjadi et al., 2018)), and TecoGAN (Chu et al., 2018) as a GAN-based
alternative. As shown by the qualitative comparison in Fig. 6 and the supplemental videos, all
existing approaches have difficulties to stabilize the input data and produce strong artifacts. We also
re-trained a TecoGAN model with our data set, which also leads to undesirable results.

Standard metrics for image quality often fail to relate to the image quality perceived by humans.
PSNR values fluctuate during training and across results and in practice have very limited signifi-
cance. We thus use perceptual metrics, measuring LPIPS for perceptual similarity to single target
images, i.e. LPIPS(G(xt), yt) (Zhang et al., 2018b). As measure for temporal coherence we evalu-
ate tLP = |LPIPS(G(xt−1), G(xt)) − LPIPS(yt−1, yt)| (Chu et al., 2018), which suffers from the
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Figure 6: Models trained with natural video all enhance aliasing as the larger changes between
adjacent pixels are detected as edges. Also, re-training a model such as TecoGAN with our data set
yields undesirable results.

Table 1: Quantitative evaluation: LPIPS yields single-image (spatial) perceptual similarity to GT, tLP mea-
sures differences in perceptual temporal coherence to GT, while T-diff computes the absolute difference of
warped subsequent frames (not accurate, only shown for completeness). D	

s,t and D∗
s,t are models using nor-

mal ResBlocks instead of DRRs, while D	
s,t uses a smaller discriminator. The best two scores for LPIPS and

tLP rows are highlighted in bold.

Models: GT TecoGAN L2 D	
s,t D∗

s,t RDA DRR-in DRR
LPIPS×10 ↓ - 3.089 4.129 3.426 3.210 2.904 2.888 2.686
T-diff×100 ↓ 4.853 8.108 4.850 5.673 5.550 5.677 5.672 5.796
tLP×100 ↓ - 4.258 2.015 4.329 3.521 4.353 3.586 2.752

common problem that the temporal coherence of blurry data is generally better, as can be seen from
“L2”. Thus, it should be viewed in conjunction with the spatial LPIPS for assessing the overall video
quality. For completeness, we also compute the in-place metric T-diff = ||W (G(xt−1))−G(xt)||2)
(Chen et al., 2017), using the captured HR motion for increased accuracy. The results are given in
table 1, and confirm the qualitative comparisons so far: our method yields the best temporal coher-
ence in terms of tLP score. In addition, our generators with warped connections all yield excellent
LPIPS scores around 2.7 (last three columns), but the DRR connections are crucial to obtain good
temporal changes in addition to the details. The DRR tLP score is only surpassed by L2, which,
however, yields clearly sub-optimal image details.

8 DISCUSSION AND CONCLUSIONS

As we focus on real-time rendering as our use case scenario, ideally the performance of the inference
step needs to surpass the performance of the renderer. For a desired output resolution of 1920×1080,
our pre-trained model takes 113ms per frame on average.2 Although this is not yet fast enough
for real-time applications, we expect that techniques such as network compression (Choi et al.,
2018; Molchanov et al., 2016) and evaluation of the models with dedicated hardware (NVIDIA
Corporation, 2017) will easily yield very significant performance improvements.

We have demonstrated how depth-recurrent residual connections can be leveraged to learn stable
internal latent-space representations in conditional generator architectures. The DRR connections
are particularly promising for iterative models with strongly aliased data, such as low-resolution
inputs from a real-time renderer. We have additionally shown how to achieve high quality synthesis
in the context of real-time rendering by carefully analyzing and adjusting the network architecture.
We anticipate that DRRs could be beneficial for a variety of other tasks such as object tracking (Ning
et al., 2017) and physics predictions (Li et al., 2019).

2Measured on an NVidia GeForce RTX 2070 GPU.
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Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Universal deep neural network compression.
arXiv preprint arXiv:1802.02271, 2018.
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Figure 7: Top row: Examples of input (LR) and target (HR) data used for training. Natural VSR
uses a smooth input, illustrated with down-sampling on the right. The bottom row shows additional
data captured from the renderer: diffuse color, depth, roughness, surface normals and motion.

A DATA

As source of our data we use the projects “FPS Sample” and “Book of the Dead: Environment”
(Unity Technologies, 2019b;a) for the Unity engine, both use the HDRP. We captured a total of
57 120-frame sequences, split 50-5-2 for training, validation and testing. For each frame we have
lit color (the final image), unlit diffuse color, view-space surface normals, roughness, screen-space
motion and depth for both HR and LR. This data is easy to acquire as it can be inferred from the
scene, geometry and materials and is rendered by default in Unity’s HDRP. However, the use of
unlit color, normals or roughness had no tangible effects during our tests. Most post-processing
effect have been turned off, but the HR color is augmented with TAA. HR is rendered and captured
at a resolution of 512× 512, LR at 128× 128.

B NETWORK ARCHITECTURE AND TRAINING

The details of our network architecture are given in figures 8 and 9. Our generator network represents
a modified TecoGAN� generator, and a lager version of TecoGAN’s discriminator is likewise used.

A typical training takes 400,000 iterations (ca. 287 epochs). All discriminator related losses, the
loss for the discriminator itself as well as the adversarial and feature loss to the generator, are lin-
early faded in over the first 40k iterations starting from 0. When training with DRR the temporal
connections are faded in later during training in a staggered fashion, beginning at 60k iterations with
the first block and 8k iterations between each. Every block takes 10k iterations to fully fade in. We
also use an exponential learning rate decay during the last 150k iterations, decaying to 65% every
30k iterations. The most dominant losses are the L2, the feature loss and the ping-pong loss.

To balance the adversarial and feature loss during training, the discriminator is only trained if it is
not too strong to keep it from overwhelming the generator. We train the discriminator only if the
EMA of the sum of bdisc = −

∑
log(D(y))−∑ logD(G(x)), is below a threshold. For our setting,

0.4 yields stable GAN training runs.

For our final DRR version we use use following weights for the terms of our loss function. L2
content loss: 1.0, ping-pong loss: 0.5, feature loss: 3.6, and adversarial loss: 0.1. In addition,
we use the following hyper-parameter settings. discriminator learning rate: 3.5e-5, discriminator
balancing threshold: 0.4, learning rate: 5e-5, adam beta: 0.9.
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Figure 8: Our modified generator: in addition to the LR color and frame-recurrent input (gener-
ator output of the previous frame encoded in 3 ∗ 16 channel) we also add the LR depth. After
an initial convolution most work is done in the 10 sequential ResBlocks (same as TecoGAN�, 9
omitted for visibility). The latent image is then scaled to output resolution by 2 resize convolutions
and fine-tuned by another 3 convolutions after the bilinear interpolated LR color is appended. All
convolutions have 3× 3 kernel size and ReLU or no activation.
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Figure 9: The extended discriminator: 3-frame sequences of HR color are provided as input from
the left. The down-scaling is done by strided convolutions with a stride of 2. All convolutions have
4 × 4 kernel size and lReLU activation with leak 0.2. The dense layer for the final score has σ
activation.

C ADDITIONAL RESULTS

To highlight the range of content our trained model can produce, we show additional sequences in
terms of their low-resolution input and inferred output in figures 10 and 11. In order to fully assess
the quality, please check the supplemental material document, which contains animated sequences.
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Figure 10: Several example sequences from our test data set (each top row shows the input, the
bottom row the result inferred by our model).
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Figure 11: Additional example sequences from our test data set (each top row shows the input, the
bottom row the result inferred by our model).
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