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ABSTRACT

Graph neural networks have been adopted in numerous applications ranging from
learning relational representations to modeling data on irregular domains such
as point clouds, social graphs, and molecular structures. Though diverse in na-
ture, graph neural network architectures remain limited by the graph convolution
operator whose input and output graphs must have the same structure. Due to
this restriction, representational hierarchy can only be built by graph convolution
operations followed by non-parameterized pooling or expansion layers. This is
very much like early convolutional network architectures, which later have been
replaced by more effective parameterized strided and transpose convolution oper-
ations in combination with skip connections. In order to bring a similar change
to graph convolutional networks, here we introduce the bipartite graph convolu-
tion operation, a parameterized transformation between different input and output
graphs. Our framework is general enough to subsume conventional graph convolu-
tion and pooling as its special cases and supports multi-graph aggregation leading
to a class of flexible and adaptable network architectures, termed BiGraphNet.
By replacing the sequence of graph convolution and pooling in hierarchical ar-
chitectures with a single parametric bipartite graph convolution, we (i) answer
the question of whether graph pooling is necessary, and (ii) accelerate compu-
tations and lower memory requirements in hierarchical networks by eliminating
pooling layers. Further, with concrete examples, we demonstrate that the general
BiGraphNet formalism (iii) provides the modeling flexibility to build efficient
architectures such as graph skip connections, and graph autoencoders.

1 INTRODUCTION

Convolutional neural networks (CNNs) have been widely adopted in many applications from com-
puter vision to natural language processing. CNNs’ success stems from the flexibility of the convo-
lution operation and its adaptability to various applications with seemingly different objectives such
as localization and classification. Convolution operates on an implicit lattice representing uniformly-
sampled signals such as images and audio; thus, we refer to it as lattice convolution throughout this
paper. In classification tasks, feature maps are typically downsampled to achieve spatial invariance
by reducing the spatial dimensions of the representation while learning higher-level abstractions.
While neural networks initially used pooling layers to downsample the feature maps between convo-
lution layers, more recent architectures have incorporated downsampling into the convolution layers
by using strided convolution (He et al., 2016). Adding parameter-less “shortcut” or skip connections
allows for deeper networks to be trained increasing their accuracy (He et al., 2016). Conversely, tasks
such as super-resolution and semantic segmentation require the generation of details from coarser
representations; this is achieved by the use of transposed (or fractionally strided) convolutions (Long
et al., 2015). Furthermore, dilated convolutions can be used to aggregate information and provide
context over a larger receptive fields without increasing the number of parameters (Yu & Koltun,
2016). Non-local networks introduce a convolution-like operator that adds long-range connections
into the typical lattice convolution operation (Wang et al., 2018c).

Though it is natural for lattice convolution to exploit the inductive bias, namely translation-
equivariance, employed by all CNNs, it is not straightforward to generalize to irregularly sampled
data, such as point clouds, molecular structures, and social networks. One approach to deal with
such domains is to use a graph to describe the structure of the irregular domain and then apply graph
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neural networks (GNNs), a flavor of deep learning defined over graph-structured data for various
learning tasks. In particular, graph convolutional networks (GCNs), the graph counterpart of CNNs,
have been shown to be effective at exploiting the same translation-equivariance bias as the CNNs
over the neighborhoods induced by the graph.

Though existing GCNs share basic common features with lattice CNNs in terms of localized pa-
rameter sharing, the ways in which deep network architectures can be constructed based thereon are
more limited in comparison. In particular, current GCNs depend on stacking separate graph pooling
layers after graph convolution layers to build deep hierarchy, similar to early lattice CNN architec-
tures such as AlexNet and VGGNet (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014). Such
convolution-pooling layer stacks have serious drawbacks in constructing very deep networks, and
eventually gave way to modern lattice CNN architectures such as ResNets (He et al., 2016), which
use skip connections to enable much deeper architectures without accuracy loss. Analogously, exist-
ing GCNs using graph convolution-pooling stacks likely suffer from the same problems, leading to
inefficiency both in computation and in memory requirements that severely limit deeper graph CNN
architectures and consequently their applications to large scale data sets such as dense point clouds
or extensive relational databases.

How can one generalize graph convolution operations to construct analogous building blocks em-
ployed by modern lattice CNN architectures, such as strided, transpose and dilated convolutions,
as well as skip connections? To address this question, we present a novel learnable graph convolu-
tion architecture defined over bipartite graphs that allows the input and output vertex sets and the
edges between them to be specified in a flexible and learnable manner. We claim the following
contributions:
1. Does graph pooling matter? We show that deep hierarchical GCN architectures built with the

proposed learnable fully convolutional bipartite graph convolution layers in place of the sequence
of graph convolution and non-parametric pooling layers retain or improve the performance of the
original networks on numerous popular benchmarks.

2. Furthermore, by eleminating explicit pooling layers, the resulting bipartite graph convolutional
architecture offers reduced computational and memory load.

3. Then, we demonstrate through concrete examples that the proposed bipartite graph convolution
layer provides a flexible primitive for building various architectures such as: graph skip connec-
tions, and graph encoder-decoder architectures leading to superior performance.

Since our proposed architecture is made up entirely from learnable (parameterized) graph convolu-
tional layers, we refer to it as being fully convolutional.

2 RELATED WORK

Graph neural networks (GNNs): introduced by F. Scarselli & Monfardini (2009), GNNs have
recently become an active area of research especially GCN that extend localized parameter sharing
(Bronstein et al., 2017; Battaglia & et. al., 2018; Wu et al., 2019). Bruna et al. (2014) introduced
spectral methods that compute graph convolution in the Fourier domain through the decomposition
of the graph Laplacian. This was later simplified by Kipf & Welling (2017) to operate on the 1-hop
spatial neighborhoods of the graph. Since then, significant progress has been made on extending
graph convolution on the neighborhoods induced by the graph structure (Monti et al., 2016; Si-
monovsky & Komodakis, 2017; Hamilton et al., 2017), such as adding graph attention (Veličković
et al., 2018), and providing general frameworks such as neural message passing (Gilmer et al., 2017).

Hierarchical GCNs: typically achieved through statically pooling and expansion; however, a
number of recent studies proposed dynamical hierarchical GNN operations that go beyond the sim-
ple graph pooling. These are described in more detail in sections 3.2 and 3.3.

Bipartite Graph Representation Learning: deals with applying GNNs to learn representations
of bipartite graphs. While limited in quantity, He et al. (2019) recently proposed using adversarial
GNN techniques to tackle this problem. It should be noted that this is a fundamentally different
problem than the one addressed in this paper. This paper casts a hierarchy of two related graphs of
any type into a single bipartite graph to improve GCN architectures in general.

Continuous Point Convolutions: were introduced by Wang et al. (2018b) as a learnable operator
that can operate on point clouds in metric spaces and applied to LIDAR data. This was later extended
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(a) (b)

Figure 1: Given a graph clustering, two approaches to construct hierarchical graph convolution from
v-nodes to u-nodes: (a) a parametric graph convolution followed by non-parametric pooling based
on edges {(vk, uj)}k∈Gj

, (b) the proposed parametric bipartite graph convolution layer directly
connects v-nodes to clustered u-nodes.

in Engelmann et al. (2019) to include dilatation. Both of these are special cases of our proposed
architecture which generalizes the concept to more general graphs and convolution kernels.

3 HIERARCHICAL GRAPH CONVOLUTION NETWORKS

Hierarchy is typically achieved through two operations: (i) pooling or downsampling and (ii) un-
pooling or expansion. Figure 1(a) shows how conventional GCNs employ a two-layer approach to
construct network hierarchy: a parametric graph convolution followed by a non-parametric graph
pooling or expansion. The following section describe each component in more detail.

3.1 GRAPH CONVOLUTION OPERATOR

A graph G ∈ G is a tuple (V, E) denoted by G(V, E) consisting of a vertex set V = {vi}NV
i=1 and

an edge set E = {ej}NE
j=1. In weighted directed graphs, each edge ej is in turn a 3-tuple (v, u, r)

where v is the source node, u is the destination node, and r is the edge label, whereas each edge in
an undirected graph can be represented as a 2-tuple ({v, u}, r).
A graph signal is a mapping s : V → RN such that fi = s(vi) where fi is referred to as the node
feature of vertex vi. A graph convolution operator g : G× R|V|×N → G× R|V|×M uses the graph
structure and locally aggregates the graph signal as follows:

gG(vi) = red ({Wi,jfj |vj ∈ δG(vi), fj = s(vj)}) , (1)

where red is a permutation-invariant reduction operation such as max, mean, or sum. δG(vi) is
the neighborhood of the node vi in G. Wi,j ∈ RM×N is a feature weighting kernel transform-
ing the graph’s N -dimensional features to M -dimensional ones. Figure 1(a) illustrates a graph
convolution performed on node v1 (in red): the features of the nodes in the v1’s neighborhood
δ(v1) = {v2, v3, v4, v5} are multiplied by a kernel followed by a reduction operation.

The form of the weighting kernel Wi,j depends on the particular flavor of the GCN model:

Edge Conditioned Kernel: Wi,j is a parameterized function dependant on the label of the edge
between two nodes vi and vj denoted by ri,j , i.e. Wi,j = kθ(ri,j), where θ are learnable parameters.
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The edge labels, ri,j , represent the relationship between the nodes connected by the edge. The
parameterization of the kernel generation function varies: (i) in Simonovsky & Komodakis (2017),
kθ(·) is chosen to be a neural network (typically an mlp); (ii) in Monti et al. (2016) kθ(·) is a mixture
of Gaussians parameterized by their means and covariance matrices.

Graph Attention Kernel: Veličković et al. (2018) uses an attention mechanism (Vaswani et al.,
2017) on the node features to construct the weighting kernel as Wi,j = αi,jW , where αi,j =
softmax (mlp([Wfi,Wfj ])). In contrast, (Shang et al., 2018) uses the edge labels ri,j to steer the
attention mechanism; i.e. αi,j = softmax (mlp(ri,j)).

3.2 GRAPH CLUSTERING AND EXPANSION

The clustering operation constructs (or learns as in Ying et al. (2018)) a membership relationship
mapping from each vertex vi ∈ G into a set of groups C = {Gk}k∈K , defining the relationship
between the two graph hierarchies. If K ≤ |V |, then a coarser hierarchy with fewer nodes is created
analogous to strided CNNs. If K ≥ |V | then an expanded graph is created analogous to transposed
CNNs. The set C is analagous to the implicit down-sampled/upsampled grid in CNNs.

The clustering can be static: depending only on the input graph. Then, C can be pre-computed as
part of the data pre-processing. The clustering algorithm used depends on the type of graph data be-
ing processed, e.g. VoxelGrid (Simonovsky & Komodakis, 2017) and Self Organizing networks (Li
et al., 2018) for point cloud data, and Graclus (Dhillon et al., 2007) for general weighted graphs.
Recently, a new class of data-driven dynamic graph pooling architectures have been proposed. Wang
et al. (2018d) dynamically rebuild their graph structure by clustering features computed by the pre-
ceding graph convolution. A more direct approach to dynamic pooling is to predict soft cluster
membership for each node using a neural net followed by clustering as is proposed by Ying et al.
(2018). Another computationally efficient method is to simply drop a fraction of the nodes based on
a computed score as used in Gao & Ji (2019) and Cangea et al. (2018).

Graph expansion is less ubiquitous with applications in upsampling of point clouds as described by
Fan et al. (2017), Yu et al. (2018), and Wang et al. (2018a). A common expansion pattern is simply
to reverse the clustering maps obtained during encoding for decoding; such as the gUnpool layer in
Graph U-Net (Gao & Ji, 2019).

3.3 GRAPH POOLING AND UNPOOLING

This is a non-parametric (not learned) layer that takes as input cluster assignments given by C de-
termined by a clustering/expansion algorithm. Figure 1(a) illustrates the pooling procedure: given
a cluster assignment Gk, propagate features along all edges (vj , uk) where vj ∈ Gk followed by a
reduction to get the feature vector at uk as:

pG(uk) = red({fj |vj ∈ Gk, fj = s(vj)}) (2)

where red is the chosen reduction operation (max or mean). Given that the pooling has to traverse
all edges the complexity required is on the order O(|E| =

∑
k |Gk|) which is comparable to the

graph convolution layer. For unpooling, typically a common feature is broadcast to all connected
nodes instead of the reduction operation.

4 BIPARTITE GRAPH CONVOLUTION

Here, we introduce the bipartite graph convolution (BGC) operation illustrated in figure 1(b). We
show that stacked BGC layers generates fully convolutional hierarchical graph neural networks and
describe their computational and architectural advantages.

4.1 BIPARTITE GRAPH CONVOLUTION (BGC)

A bipartite graph BG(V,U , E) is a graph G(V ∪U , E) where all the edges are strictly between V and
U ; i.e. the set of all edges E = {(v, u)|v ∈ V, u ∈ U}.
If we set the two sets of nodes V and U as the inputs and outputs of the model, respectively, we can
define the following graph convolution operator as

gBG(u) = red ({Wo,ifi|v ∈ δBG(u), fi = s(v)}) , (3)

4



Under review as a conference paper at ICLR 2020

∀u ∈ U where red is a reduction operation, Wo,i ∈ RM×N is a feature weighting kernel and
δBG(u) = {v ∈ V|(v, u) ∈ E} is the neighborhood of the node u in BG (note that δBG(u) ⊂ V).
Equation 3 can be interpreted as a function whose domain is given by the set V , while its co-domain
is given by the set U (see figure 2(b)). As a result, the bipartite graph convolution computation
is driven by the edges connecting the output set U nodes to the input nodes in set V . As shown
in figure 2(b), these edges are provided by an external clustering algorithms (static or dynamic) as
discussed in section 3.2. For example, the feature f1 of node u1 ∈ U in figure 2 (f1 = gBG(u1))
is a function of the features of nodes {vi}5i=1. A key feature of the bipartite graph convolution as
defined in equation 3 is that the input and output nodes are effectively disentangled allowing for
the implementation of any relationship between the two sets in a single operation just by specifying
the edge set E . Furthermore, unlike the static pooling and unpooling, there is no restriction on
the operation performed and in fact this operation can perform a learnable combination of features
through an appropriate choice of the kernel (see Section section 3.1).

Graph Convolution using BGC: By defining the graph convolution on the bipartite graph, BGC
makes both graphs explicit through the two sets U and V . As a result, any typical graph convolution
defined on G(V, E) can be written as a bipartite graph convolution defined over BG(V,V, E).

Computational and Memory Complexity: A bipartite graph convolution operating on
BG(V,U , E) will require O(max{|V|, |U|} + |E|) memory and computational resources. This is
similar to a regular graph convolution and is exactly the same when the bipartite graph convolu-
tion is used to implement a regular graph convolution (U=V). However, since a bipartite graph
convolution can replace a sequence of graph convolution and graph pooling layer, it is fair to com-
pare the requirements of a single bipartite graph convolution layer to the combination of the both a
graph convolution and pooling graph layers. Roughly, the sequence of graph convolution and graph
pooling will have a complexity of 2O(max{|Epool|, |Econv|} + max{|V, |, |U|}), while that of the
bipartite graph convolution will be O(max{|Epool|, |Econv|} + max{|V, |, |U|}). Thus, by replac-
ing the pooled graph CNNs by BiGraphNet , we save on computational resources and accelerate
inference as will be demonstrated in the experiments.

4.2 HIERARCHICAL FULLY CONVOLUTIONAL BIPARTITE GNNS

Fully convolutional graph neural networks (FullConvGNNs) are composed only from graph con-
volution layers without explicit pooling operations. Using the proposed parametric bipartite graph
convolution, conventional hierarchical (containing non-parametric pooling or unpooling) GCN, la-
beled pooled GCN (PoolGCNN), can be converted to a FullConvGNN version.

Each basic block of a PoolGCN can be represented by two sequential layers (see figure 2(a)): a
parametric graph convolution layer operating on a graph Gconv(V, Econv) followed by a graph pooling
layer that depends on some computed clustering (either static or dynamic), resulting in an output
graph Gpool(U , Epool). A similar graph connectivity structure can be induced by using the bipartite
graph whose input nodes are given by V and output nodes are given by U (BG(V,U , E ′

)) (see
figure 2(b)). To ensure the same connectivity, we set E ′

= Epool ◦ Econv where ◦ operation denotes a
direct path; i.e. (v, u) ∈ E ′

iff ∃v′
st.(v, v

′
) ∈ Econv and (v

′
, u) ∈ Epool. It should be noted that, in

general, a graph convolution followed by pooling is not equivalent to a bipartite graph convolution
due to the presence of the max in pooling. In practice, the BG(V,U , E ′

) can be constructed directly
by connecting the edges in E ′

according the pooling relationship instead of tracing the graph and
pool domains. For example, in point cloud data the pooling can be done by downsampling using
VoxelGrid and thus a k-d tree algorithm can construct BG directly.

Similar to downsampling, BiGraphNet can easily support expansion to any arbitrary graph by
defining its output graph and the connecting edges. This is particularly powerful as it allows the
connection of arbitrary node domains though a single learnable layer. Examples of this mixed-
domain graph processing can be the projection of abstract relationship graphs into 2D arrays, or
connecting points across different related domains as shown in Section 5.2.

4.3 BIGRAPHNET ARCHITECTURES AND OPERATIONS

In this section, we describe some interesting architectures that can be constructed using the
BiGraphNet architecture. Additional architectures are given a supplementary material.
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Figure 2: Aggregation of two input graphs with vertex sets V1 and V2 into a same output graph with
vertex set U . Each of the two input graphs can contain information from different graph domains or
scales producing a mixed fusion of information.

Multi-graph 
Aggregation

Skip Connection

Bipartite Graph
Convolution

Bipartite Graph
Convolution

Figure 3: A conceptual representation of a graph autoencoder with both down-sampling and up-
sampling strided BGC layers and a skip connection to implement a ResNet/U-Net style architecture.

Multiple Graph Aggregation Convolution: The output nodes U determine the output domain
of the graph convolution; however, there is no restriction on the input domain V . In fact, there is no
restriction on the number of input sets that connect to the output set. Given this fact, we can now
define multiple graph aggregation convolution on a fixed output vertex set U from a collection of
bipartite graphs {BGk(Vk,U , E1)}k as

gaggr(u) =
1∑
k |Vk|

(∑
k

|Vk| × gBGk
(u)

)
. (4)

An example with two input graphs is shown in Fig. 2. This examples can be used to implement skip
connection to produce graph ResNet equivalents. Furthermore, the multiple aggregation convolu-
tions can be used to fuse mix domain graphs.

Graph AutoEncoders and BiGraphNet U-Net: Fig. 3 illustrates how to use the multi-graph
aggregation to combine multi-scale graphs from different layers. This can be used to produce
ResNet (He et al., 2016) and U-Net (Ronneberger et al., 2015) style graph networks.

5 EXPERIMENTS

In this section, we perform experiments to demonstrate our main claims presented in section 1.
Towards that goal, we tackle a suite of tasks that typically employ hierarchical graph representations.
Since these benchmarks typically employ pooling we refer to them as PoolGConvNet while our
proposed architecture is denoted as either FullConvGNNs (highlighting the fact that they are fully
convolutional) or BiGraphNet . See Appendix A for detailed experimental setup.
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Pooled (ECC) FullConv

ModelNet10 90.0 92.4± 0.5
ModelNet40 87.0 89.0± 0.4

NCI1 76.8 76.8± 0.4
Enzymes 45.6 45.8± 1.2
D&D 72.5 78.6± 0.6
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Figure 4: (a) 3D point cloud classification and graph classification results. Instance precisions of
graph-based ModelNet classifiers are shown for ModelNet10 and ModelNet40, and classification
accuracies for the graph kernel benchmark data sets (b) Comparison of forward and backward run
times (lines, left axis) and the memory consumption (bars, right axis) for the DD dataset as a function
of batch size for FullConvGNN and PoolGConvNet.

5.1 DOES GRAPH POOLING MATTER? AND AT WHAT COST?

In this section, we pick tasks from 3D computer vision and general graph learning. These tasks
involve the classification of certain 3D shapes and different molecular compounds. We choose the
ECC network architectures given in (Simonovsky & Komodakis, 2017) (referred to as Pooled in
figure 4a) and convert them a BiGraphNet architecture as described in section 4.2. Both the
original and derived architectures share the same number of parameters and are described in the
Appendix A.

We compare the performance of BiGraphNet (FullConv) against PoolGConvNets (ECC) on the
ModelNet10/40 data sets and the graph classification tasks in Figure 4a. We directly compare only
with PoolGConvNets since the architectural primitives are maintained in order to measure the ef-
fectiveness of removing pooling layers. Also, no augmentations are used so that the comparison is
only across architectural primitives. With an equal number of parameters, the BiGraphNetmodel,
which has no pooling layers, achieves improved performance over PoolGConvNets. This may be
due to the model learning a better aggregation through the parametrized convolutional layers.

Furthermore, we demonstrate the computational and memory saving resulting from using
BiGraphNet fully convolutional architecture (FullConvGNN) vs. a comparable pooled graph
ConvNet (PoolGConvNet). As discussed in Section 4.1, we expect FullConvGNN to outperform
PoolGConvNet. We run this experiment on the D&D dataset which has significant pooling layers.
Fig.4b shows the runtime of the forward/backward pass and memory requirements of both of these
networks at different batch sizes. The figure shows that the FullConvGNN significantly outperforms
the typical PoolGConvNet.

These experiments suggest that explicit non-parametric pooling layers typically used on hierarchical
GCN might not be necessary and are leading to increased computational and memory loads.

5.2 FUNCTIONAL AUTOENCODER

Next we present an example of how can the proposed bipartite graph convolution layer offer in-
creased modeling and architectural flexibility in deploying GNNs. In particular, we apply GNNs to
a functional approximator presented in Garnelo et al. (2018) called Conditional Neural Processes
(CNP). In their work a neural network was used to replace the computationally expensive process
of inferring the values of a Gaussian process (GP) at a set of target points using contextual observa-
tions of the process. An autoencoder-like network was able to learn a synthetic data set composed
of random realizations of a GP to predict the functional form of novel GP realizations and do so effi-
ciently. Due to aggregation of the latent encoding over the whole context set, this model suffers from
under-fitting at the context points where the function value is known. A GNN0-based autoencoder
could preserve the local information from the the context points and generate better predictions at
the target points. Here we show that a bipartite graph neural network can achieve better accuracy
and the bipartite layers naturally allow for the input of context points and the output of prediction
at a different set of target points. Fig. 5 shows the autoencoder style model design taking a set of
context points and encoding those observations into a latent representation. The decoder generates
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Encoder BiGraphNet
bridge

Decoder

Figure 5: Irregularly sampled points (circles) from an underlying realization of a GP (red line) are
processed by a GNN encoder which performs graph convolution over neighborhoods of the input
(dashed outlines). A BiGraphNet bridge transforms the representation from the input to output
graph, and then “decoded” by a GNN to generate an approximation of the function at the target
points. For validation, the model output is estimated on a uniformly sampled grid of points (blue
line) to determine how well the underlying process (red dashed line) is captured.

Model #Params Test NLL Test MSE

CNP (d = 64) 37, 826 −0.3271 0.06422
CNP (d = 96) 84, 386 −0.5602 0.04398

CGNP (d = 64, ρ = 0.3) 75, 520 −0.5343 0.05272
bCGNP (d = 64, ρ = 0.3) 83, 712 −0.7652 0.03286

Model #Params Test MSE

MLP 222, 384 0.089
ConvNet 4, 385 0.095
Graph-AE 4, 876 0.087

Graph U-Net 4, 876 0.066

Table 1: Left: Parameter count, test NLL and MSE of CNP, CGNP and bCGNP models; Right:
Parameter count and test MSE for graph encoder-decoder.

prediction of the function across the domain range (blue line) to test the performance against the
ground truth (red dashed line). The left panel of table 1 compares the BiGraphNet (bCGNP)
results to the CNP results presented in Garnelo et al. (2018). In particular, the bipartite graph conv
layer further improves the performance of our graph based aggregator by adding the extra flexibility
of connecting targets to context points.

5.3 GRAPH ENCODER-DECODER ARCHITECTURES

Finally, we demonstrate the flexibility of the fully convolutional BiGraphNet by implementing a
graph autoencoder on MNIST images.

The results are given in the right half of Table 1. The Graph-AE performs significantly better than
the ConvNet and on par with the MLP that has an order of magnitude more parameters. The U-Net
architecture performs even better by utilizing the multiscale encoder feature maps. This implies
that edge and location based encoding of features is very useful in image recovery. In particular,
an edge-based graph autoencoder (Graph-AE) achieves the same performance as fully connected
autoencoder (MLP) at fraction of the parameters (2 orders of magnitude); alternatively, for the same
number of parameters (≈ 4800), the edge-based graph autoencoder (Graph-AE) significantly im-
proves the performance (≈ 10% reduction in test mean squared error).

6 CONCLUSIONS

Here we show a novel form of graph neural network, called the BiGraphNet , that splits the graph
into two parts: an input and an out graph. This innovation allows for development of computa-
tional layers for the graph that are analogues to layers used in lattice convolutional networks such
as strided convolutions, deconvolution and skip connections. Such modules are critical components
for building hierarchical representations of graph based data sets. We compare BiGraphNet based
networks on some common applications to show that they can generate comparable or better perfor-
mance.
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A EXPERIMENTAL DETAILS

A.1 MODEL ARCHITECTURES

Model architectures of PoolGConvNets and corresponding FullConvGNNs are listed in Table 2.

Table 2: Experimental data sets and model architectures based on Simonovsky & Komodakis
(2017). GC,BGC correspond to a graph convolution and a bipartite graph convolution, respectively;
MP,GMP,GAP correspond to a max-pooling layer, global max-pooling and global average-pooling
layers, respectively; while mlp indicate a multi-layer perceptron network (i.e. fully connected lay-
ers). The [·] indicates the feature dimensions with × indicating multiplicity.

DATASET ARCHITECTURE SPECIFICATION

MODELNET10 POOLGCONVNET GC[16, 32]− MP−GC[32]× 2− MP−GC[64]− GMP− MLP[64, 10]
FULLCONVGNN BGC[16, 32× 3, 64]− MLP[64, 10]

MODELNET40 POOLGCONVNET GC[24, 48]− MP−GC[48]× 2− MP−GC[96]− GMP− MLP[64, 40]
FULLCONVGNN BGC[24, 48× 3, 96]− MLP[64, 40]

NCI1 POOLGCONVNET GC[48]× 3− MP−GC[48, 64]− MP−GC[64]− GAP− MLP[64, 2]
FULLCONVGNN BGC[48× 4, 64× 2]− MLP[64, 2]

ENZYMES POOLGCONVNET GC[64, 64, 96]− MP−GC[96, 128]− MP−GC[128, 160]− MP
−GC[160]− GAP− MLP[192, 6]

FULLCONVGNN BGC[64× 2, 96× 2, 128× 2, 160× 2]− MLP[192, 6]

D&D POOLGCONVNET GC[48]× 3− MP−GC[48]− MP−GC[64]− MP−GC[64]− MP
−GC[64]− MP−GC[64]− MP−GAP− MLP[64, 2]

FULLCONVGNN GC[48× 4, 64× 4]− MLP[64, 2]

MNIST POOLGCONVNET GC[16]− MP−GC[32]− MP−GC[64]− MP−GC[128]− MLP[10]
FULLCONVGNN GC[16, 32, 64, 128]− MLP[10]

A.2 3D POINT CLOUD CLASSIFICATION

We test the performance of the BiGraphNet architecture applied to classifying dense point clouds.
For classification invariance, a graph neural network classifier needs to construct a hierarchy of down
sampled signals down to a vector representation used for classification (Simonovsky & Komodakis,
2017). The down sampling is also crucial for practical concerns such as GPU memory constraints
that limit the model size. In typical graph NNs, such as PoolGConvNets, the down sampling is
composed of a graph convolution followed by a graph pooling layer, while in BiGraphNet this is
performed using just one bipartite graph convolution layer.

We choose two point cloud data sets: the ModelNet10 and ModelNet40 benchmarks (Z. Wu & Xiao,
2015). These are two commonly used data sets comprised of mesh surfaces of 10 and 40 different
categories of objects, respectively. See https://github.com/mys007/ecc and Simonovsky
& Komodakis (2017) for details.

A.3 GRAPH CLASSIFICATION

We focus on 3 data sets typically used to verify the performance of graph classification networks:
Enzymes, D&D, NIC1. NCI1 consist of graph representations of chemical compounds screened for
activity against non-small cell lung cancer. ENZYMES contains representations of tertiary structure
of 6 classes of enzymes. D&D is a database of protein structures classified as enzymes and non-
enzymes.

A.4 FUNCTIONAL AUTOENCODER

Given a family of functions F = {fθ} (fθ : X → Y ) parameterized by some parameters θ, we gen-
erate a data set of samples from these functions D = {Dk}, where Dk = {(xi, yi = fθk(xi))}

Nk
i=0

for some valid parameter θk. Using this data set of observations, we train a neural network to learn a
representation summarizing each sampleDk by a representation rk, a representation that can be used
to interpolate the functional values at other points (x) and function parameters (θ) not sampled in the
data set (D). The input data is irregularly sampled and areas with higher sample density will provide
more context for estimating the function near those points. Functional approximation with these
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constraints naturally fits into a bipartite graph ConvNet since GNNs allow for efficient exploitation
of the induced metric as a relationship between two samples. We use an autoencoder (Fig. 3) archi-
tecture and test the encoded representation rk by using it to estimate the values of the function at
target points (1D regression task). This work is analogous to the Conditional neural process (CNP)
model Garnelo et al. (2018) and we show the advantages of BiGraphNet over CNP.

A Gaussian process (GP) is used to generate the training data set, a family of functions with shared
statistical properties. GPs are very powerful for fitting observed data for which the underlying
process may not be known, but do so with a heavy computational price.

Our graph based model for this application is called a Conditional Graph Neural Process (CGNP).
Our final functional auto-encoder architecture is illustrated in Fig. 5. The BiGraphNet is particu-
larly well suited to implement this as a fully convolutional architecture from the context all the way
to the targets. The parameter d represents the dimensionality of the latent representation r. Further-
more, we added pre-activation batch-normalization layers, which improved model performance.

The CNP model, which will be used as a baseline against which we compare the BiGraphNet per-
formance, CNP uses the following to compute its representation: ri = mlp (xi, yi); r =
red {ri}N ; µi, σi = mlp (xt, r). Each point of the input is processed independently, then all
the encoded points (ri) are aggregated. The function is approximated at the target points (xt) by
the decoder which takes the aggregated signal (r) concatenated with the target points as input. The
baseline CNP model is taken from DeepMind (2018) with the encoder and decoder composed of
3-layer and 2-layer multi-layer perceptron (MLP), respectively.

Our CGNP model follows the published CNP architecture in terms of the encoder and decoder
depths (3 and 2) and width (d), but replaces the MLP networks with bipartite graph convolutional
networks. The radius of graph connection neighborhood is set to be ρ = 0.3.

A.5 IMAGES AS GRAPHS

Each image (I) can be interpreted as a signal (given by the pixel intensity) defined over a set of
coordinate nodes P = {(x, y)|x, y ∈ {0, · · · , 27}}. We follow the experiments described in Si-
monovsky & Komodakis (2017) and use the spatial neighborhood to define a relationship between
two (abstract) nodes vi, vj as follows

vi
rij−−→ vj with rij = pi − pj iff pj ∈ δρ(pi). (5)

where δρ(·) represents the spatial neighborhood of radius ρ = 2.9. Graph coarsening is implemented
using the VoxelGrid algorithm Simonovsky & Komodakis (2017).

We try encoder-decoder architectures as described in Section 4.3. In particular, we implement an
autoencoder (AE) and a graph U-Net with skip connections. We use the MNIST BiGraphNet net-
work (without the mlp layer) given Table 2 as the encoder and its inverse as the decoder. We also
compare against the typical MLP and ConvNet autoencoder.
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