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Abstract
Locally Rotation Invariant (LRI) image analysis was shown to be fundamental in many applications
and in particular in medical imaging where local structures of tissues occur at arbitrary rotations.
LRI constituted the cornerstone of several breakthroughs in texture analysis, including Local Bi-
nary Patterns (LBP), Maximum Response 8 (MR8) and steerable filterbanks. Whereas globally
rotation invariant Convolutional Neural Networks (CNN) were recently proposed, LRI was very
little investigated in the context of deep learning. We use trainable 3D steerable filters in CNNs in
order to obtain LRI with directional sensitivity, i.e. non-isotropic filters. Pooling across orientation
channels after the first convolution layer releases the constraint on finite rotation groups as assumed
in several recent works. Steerable filters are used to achieve a fine and efficient sampling of 3D ro-
tations. We only convolve the input volume with a set of Spherical Harmonics (SHs) modulated by
trainable radial supports and directly steer the responses, resulting in a drastic reduction of trainable
parameters and of convolution operations, as well as avoiding approximations due to interpolation
of rotated kernels. The proposed method is evaluated and compared to standard CNNs on 3D tex-
ture datasets including synthetic volumes with rotated patterns and pulmonary nodule classification
in CT. The results show the importance of LRI in CNNs and the need for a fine rotation sampling.
Keywords: Local rotation invariance, convolutional neural network, steerable filters, 3D texture

1. Introduction

Convolutional Neural Networks (CNNs) have been used in various studies to analyze textures. Or-
derless pooling of feature maps is used to discard the overall shape and layout information and, thus,
describe repetitive and diffuse texture patterns (Andrearczyk and Whelan, 2016; Cimpoi et al., 2016;
Zhang et al., 2016). By construction, CNN architectures provide translation equivariance, which is
particularly adapted to image analysis. This paper focuses on adding local rotation invariance in
the CNN architecture, which is known to be crucial for biomedical applications (Depeursinge and
Fageot, 2018).

Globally rotation equivariant/invariant CNNs have recently been extensively studied using group
theory in order to propagate rotation equivariance throughout the network. The 2D Group equiv-
ariant CNNs (G-CNN) introduced in (Cohen and Welling, 2016) uses rotated convolutional filters
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with right angle rotations of the p4 symmetry group. Invariance is obtained by pooling across ori-
entation channels after the last convolution layer. The G-CNN was recently extended to 3D images
in (Winkels and Cohen, 2018) showing a performance increase in the analysis of pulmonary nod-
ule detection. 3D G-CNNs were shown to improve classification of 3D textures (Andrearczyk and
Depeursinge, 2018), yet the results motivated the use of a finer rotation sampling than right angle
rotations from the Octahedral O group to capture realistic arbitrary 3D orientations of directional
patterns. It is important to remark that G-CNNs are adapted to equivariance with respect to finite
subgroups of the rotation group. In 2D, an arbitrary sampling of rotations can be used (Bekkers
et al., 2018; Zhou et al., 2017) in a group equivariant approach, while the number of 3D finite ro-
tation groups is restrained. The 2D harmonic network (Worrall et al., 2016) and 2D steerable CNN
(Weiler et al., 2017) present similarities with the method proposed in this paper although in the 2D
domain and not particularly designed for texture analysis. Finally, the 3D steerable CNNs (Weiler
et al., 2018) are very general architectures that implement the global equivariance to rotation on the
network, and the convolutional layer considered in this paper is covered by their characterization.
As detailed below, we differ from their works by making an angular max pooling after the first con-
volution layer, which exploits the steerability of the filters, and more importantly, focuses on local
invariances.

In the above approaches, global rotation equivariance is maintained all along the layers (see Fig.
1, left), and invariance is obtained by using orientation pooling at the end of the network after spatial
average pooling. Global rotation invariance is fundamental in various applications. However, some
images are composed of well-defined structures with arbitrary orientations. For instance, 3D tex-
tures observed in Computed Tomography (CT) and in Magnetic Resonance Imaging (MRI) exhibit
diverse tissue alterations, including necrosis, angiogenesis, fibrosis, or cell proliferation (Gatenby
et al., 2013). These alterations induce imaging signatures such as blobs, intersecting surfaces and
curves. These local low-level patterns are characterized by discriminative directional properties and
have arbitrary 3D orientations, which requires combining directional sensitivity with LRI. How-

Figure 1: Illustration of global rotation equivariance and LRI in 2D. Rotating local structures (i.e.
three white segments) in the input I results in the input I′ on the right. The green dots
illustrate the equivariant/invariant responses. Local and global rotations are shown in red
and the local support G of the operator G (see Section 2.1) is represented as a dashed red
line. It is worth noting that our CNN architecture will both present a global equivariance
and a local invariance to rotations. Best viewed in color.
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ever, rotation invariance is often antagonist with the will of being sensitive to directional features.
The latter is required to avoid mixing blobs, edges and ridges. For instance, a spatial convolutional
operator is equivariant to rotations if and only if the filter is isotropic, therefore insensitive to the
directional features of the input signal. It follows that operators combining LRI and directional
sensitivity require using more complex designs such as MR8 (Varma and Zisserman, 2005), local
binary patterns (Ojala et al., 2002), 3D Riesz wavelets (Dicente Cid et al., 2017) and Spherical
Harmonic (SH) invariants (Depeursinge et al., 2018) widely used in hand-crafted texture analysis
(Depeursinge and Fageot, 2018).

In this paper, we exploit the steerability of SHs to obtain a CNN architecture which is both
globally equivariant and locally invariant to rotations (see Fig. 1 for a 2D illustration). This is
achieved with a fine rotation sampling and controlled operator support. The local support for the
rotation invariance is set by the kernel size of the first layer. LRI is then obtained by pooling across
orientations after this first layer. The implementation will be made publicly available.

2. Methods

We first introduce the framework in the continuous domain, hence voxel images, filters, and re-
sponse maps are functions defined over the continuum R3. The discretization is then presented
in Section 2.4. Spherical coordinates are defined as (ρ,θ ,φ) with radius ρ ≥ 0, elevation angle
θ ∈ [0,π], and horizontal plane angle φ ∈ [0,2π). The set of 3D rotations is denoted by SO(3). A
3D rotation transformation R can be decomposed as three elementary rotations around the z, y′ and
z′′ axes as R = RαRβ Rγ , with the (intrinsic) Euler angles α ∈ [0,2π), β ∈ [0,π], and γ ∈ [0,2π)
respectively. We will use interchangeably R as a rotation transformation acting on R3 and on the
two-dimensional sphere S2. Finally, the function x 7→ f (Rx) is denoted by f (R·).

2.1. Equivariant Local Texture Operators

We introduce the class of texture operators of interest that will be used in the first layer of our neural
network. We consider a filter f : R3→ R, whose support G is assumed to be finite. For an image I
and a position x ∈ R3, we define the operator

G {I}(x) = max
R∈SO(3)

|(I ∗ f (R·))(x)| . (1)

The operator combines a convolutional operator together with a max-pooling operation over the
rotations R, and is an example of texture operator as presented in (Depeursinge and Fageot, 2018).
Note that (I ∗ f (R·))(x) can be identified as a lifting group-convolution (Bekkers et al., 2018),
followed by sub-group pooling (maximum over rotations). Then, G has the following properties:

• It is globally equivariant to translations and rotations, in the sense that, for any position
x0 ∈ R3 and rotation R0 ∈ SO(3),

G {I(·−x0)}= G {I}(·−x0) and G {I(R0·)}= G {I}(R0·). (2)

The proof is provided in Appendix A. In particular, if Rx0 is a rotation around x0 ∈ R3, we
have that G {I(Rx0 ·)}= G {I}(Rx0 ·), as illustrated on the left part of Fig. 1.

• It is local in the sense that the filter f has a finite support G = {x ∈ R3,‖x‖ ≤ ρ0}. As a
consequence, G {I}(x) only depends on the values I(y) for ‖y−x‖ ≤ ρ0.
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The global equivariance to translations and rotations together with the locality create an invariance
to local rotations (i.e. LRI) in the following sense: the rotation of an object or localized structure
of interest in the image I around a position x does not affect the value of G {I}(x), as illustrated on
the right part of Fig. 1.

2.2. Steerable Filters and Spherical Harmonics

Computing the texture operator (1) requires to maximize over any 3D rotation R for every position
x of the image I, which can be computationally discouraging. To overcome this issue, we propose
to use steerable filters, which have the advantage to allow for fast and efficient max pooling rota-
tions (Chenouard and Unser, 2012; Fageot et al., 2018). A filter is steerable if any of its rotated
version can be written as a linear combination of finitely many basis filters (Freeman and Adelson,
1991; Unser and Chenouard, 2013).

We consider filters f that are polar-separable, in the sense that they can be written as f (ρ,θ ,φ)=
h(ρ)g(θ ,φ) with h : R+→R and g : S2→R. One can expand such steerable polar-separable filters
in terms of the family of SHs (Yn,m)n≥0, m∈{−n···n}, where n is called the degree and m the order,
and which form an orthonormal basis for square-integrable functions g(θ ,φ) on S2. We consider
finitely many degrees, N ≥ 0 being the maximal one. In particular, the number of elements of a SH
family of maximum degree N is ∑

N
n=0(2n+ 1) = (N + 1)2. The definition of SHs can be found in

Appendix B.
The general form of a polar-separable steerable filter with maximal degree N ≥ 0 is

f (ρ,θ ,φ) = h(ρ)g(θ ,φ) = h(ρ)
N

∑
n=0

n

∑
m=−n

Cn[m]Yn,m(θ ,φ), (3)

where h(ρ) is the radial profile of f and the coefficients Cn[m] determine the angular profile g(θ ,φ).
The condition of f being real is translated into the conditions that h itself is real and that the SH
coefficients satisfy Cn[−m] = (−1)mCn[m] (see Appendix C).

For any R ∈ SO(3), the rotated version Yn,m(R·) of a SH can be expressed as

Yn,m(R·) =
n

∑
m′=−n

DR,n[m,m′]Yn,m′ . (4)

where the DR,n ∈ C(2n+1)×(2n+1) are the Wigner matrices (Varshalovich et al., 1988). Then, the
steerable filter f can then be rotated efficiently with any R ∈ SO(3) to obtain a set of steered coeffi-
cients CR,n = DR,nCn of f (R·), with Cn = (Cn[m])m∈{−n,...,n}. Then, the rotated filter f (R·) is given
by

f (R·)(ρ,θ ,φ) = h(ρ)
N

∑
n=0

n

∑
m=−n

n

∑
m′=−n

DR,n[m,m′]Cn[m′]Yn,m(θ ,φ). (5)

From (5), we see that any rotated version of f can be computed from the coefficients (Cn[m])0≤n≤N,−n≤m≤n.

2.3. 3D Steerable Convolution and Max Pooling

Exploiting (5), the convolutional operator I ∗ f (R·) in (1) is then computed as

I ∗ f (R·) =
N

∑
n=0

n

∑
m=−n

(
n

∑
m′=−n

DR,n[m,m′]Cn[m′]

)
(I ∗hYn,m) . (6)
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Therefore, one accesses the convolution with any rotated version of f by computing ∑n(2n+1) =
(N + 1)2 convolutions (I ∗hYn,m), which we shall exploit for computing the response map G {I}
of the texture operator (1). It is worth noting that the case N = 0 corresponds to filters f that
are isotropic, i.e. f (R·) = f for any R ∈ SO(3) (Depeursinge et al., 2018). As low degrees (e.g.
N = 1,2) are sufficient to construct small filters (see Section 2.4), the gain becomes substantial over
a G-CNN approach for a fine sampling of orientations with a drastic reduction of the number of
convolutions.

In practice, one has a set of steerable filters fi of the form (3) with radial profiles hi and coeffi-
cients Ci,n[m]. The number of trainable parameters is reduced to the coefficients Ci,n[m], the radial
profiles hi and the biases (one scalar parameter per output channel i).

2.4. Discretization

The radial profiles hi, and hence the filters fi, have a compact spherical support G = {x∈R3,‖x‖≤
ρ0}, where ρ0 > 0 is fixed. For any i, we consider the voxelized version of the radial profile hi(ρ).
The size of the support of the voxelized version is linked to the radius ρ0 of the filter in the con-
tinuous domain and the level of voxelization. Due to the isotropic constraint, for a support of c3

voxels, the number of trainable parameters for each hi is then
⌈
(c−1)

2 ×
√

3
⌉
+1. The values of the

filter fi(ρ,θ ,φ) over the continuum is deduced from the discretization using linear interpolation
(Fig. 2). Note that the corner effect (radial values for ρ > (c−1)

2 ) has a limited impact on the ap-
proximated rotation invariance and the freedom is maintained for these parameters to be set to zero
during training.

The maximal frequency N cannot be taken arbitrarily large once the radial profiles are vox-
elized (Weiler et al., 2017). Indeed, the discretized filters fi are defined over c3 voxels, which
imposes the upper bound N ≤ ρ0c/2, where ρ0 is the radius of the spherical support of hi. This can
be interpreted as the angular Nyquist frequency.

Figure 2: Illustration of a 2D slice of the isotropic
radial profile hi. The blue voxels repre-
sent the trainable parameters. The rest
of the cube is linearly interpolated.

To sample the rotations, we uniformly sam-
ple points on the sphere using a triangulation
method that iteratively splits octahedron faces
to obtain the (α,β ) Euler angles around z and
y′ respectively. We then sample the last angle
γ around z′′ uniformly between 0 and 2π . The
Octahedral group, for instance, is obtained by
sampling 6 points on the sphere (i.e. six (α,β )
pairs) and four values of γ to obtain 24 right an-
gle rotations. In this paper, we evaluate the fol-
lowing sets of rotations: single rotation, Klein’s
four rotations, octahedral 24 rotations and 72
rotations (18 points on the sphere and 4 values
of γ). In the sequel, we denote by M the number
of tested rotations.

2.5. Datasets

We evaluate the proposed method on two experiments described in the following. In the first ex-
periment, we built a dataset containing two classes of 500 synthetic volumes each. The volumes of
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size 32× 32× 32 are generated by placing two 7× 7× 7 patterns, namely a binary segment and a
2D cross with the same norm, at random 3D orientations and random locations with overlap. The
number of patterns per volume is randomly set to bd( sv

sp
)3c, where sv and sp are the sizes of the

volume and of the pattern respectively and the density d is in the range [0.2,0.4]. The two classes
vary by the proportion of the patterns, i.e. 10% segments with 90% crosses for the first class and
vice versa for the second class. 800 volumes are used for training and the remaining 200 for testing.
Despite the simplicity of this dataset, some variability is introduced by the overlapping patterns and
the linear interpolation of the 3D rotations, making it challenging and more realistic.

The second dataset is a subsample of the American National Lung Screening Trial (NLST)
that was annotated by radiologists at the University Hospitals of Geneva (HUG) (Martin et al.,
submitted). The dataset comprises 485 pulmonary nodules from distinct patients in CT, among
which 244 were labeled benign and 241 malignant. We pad or crop the input volumes (originally
ranging from 16×16×16 to 128×128×128) to the size 64×64×64. We use the balanced training
and test splits with 392 and 93 volumes respectively. Examples of 2D slices of the lung nodules are
illustrated in Fig. 3. The Hounsfield units are clipped in the range [−1000,400], then normalized
with zero mean and unit variance (using the training mean and variance).

(a) Benign nodule (b) Malignant nodule

Figure 3: 2D slices from 3D volumes of benign and malignant pulmonary nodules.

2.6. Network Architecture

The first layer of the networks is the LRI layer (1). Global average spatial pooling is then used
similarly to (Andrearczyk and Whelan, 2016). This pooling aggregates the locally invariant texture
responses into a single scalar per feature map and is followed by fully connected layers. For the
nodule experiment, we average the responses inside the nodule masks instead of across the entire
feature maps. For the synthetic experiment, we connect directly the final softmax fully connected
layer with a cross-entropy loss. For the second, more complex experiment, we use an intermediate
fully connected layer with 128 neurons before the same final layer. Standard ReLU activations
are employed. The networks are trained using Adam optimizer with β1 = 0.99 and β2 = 0.9999
and a batch size of 8. Other task-specific parameters are: for the synthetic experiment (kernel size
7×7×7, stride 1, 2 filters and 50,000 iterations), for the nodule experiment (kernel size 9×9×9,
stride 2, 4 filters and 10,000 iterations).

We refer to the developed architecture as LRI-CNN and compare it to a network with the same
architecture but with a standard 3D convolution layer, referred to as Z3-CNN.
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2.7. Weights Initialization

The SHs are normalized to ‖Yn,m‖2 = 1. The coefficients are then randomly initialized by a normal
distribution with Var[Ci,n[m]] = 2

nin(N+1)2 , where nin is the number of input channels (generally
1), the radial profiles are initialized to Var[hi(ρ)] = 1 and the biases to zero. This initialization
is inspired by (He et al., 2015; Weiler et al., 2017) in order to avoid vanishing and exploding
activations and gradients.

3. Experimental Results

The results for the synthetic experiment (3D textures of synthetic rotated patterns) are summarized
in Table 1. Fig. 4 shows a comparison of standard 3D kernels (Z3-CNN) and SH parametric
representations (LRI-CNN).

Table 1: Average accuracy (%) on the synthetic 3D local rotation dataset with N = 2.

model # orient. (M) # filters # param. accuracy±σ

Z3-CNN - 2 694 81.7±4.4

Z3-CNN - 144 49,826 96.0±0.3

LRI-CNN 1 2 40 74.6±3.2

LRI-CNN 4 2 40 85.4±4.7

LRI-CNN 24 2 40 88.2±2.9

LRI-CNN 72 2 40 90.0±1.3

0 1 2 3 4 5
50

60

70

80

ac
c.

LRI-CNN M = 1
Z3-CNN 694 param.

random 50%

24 30 40 54 72 94
N
# param.

Figure 4: Comparison of standard 3D kernels (Z3-CNN) and SH parametric representation (LRI-
CNN) with varying maximum degree N with a single orientation M = 1 (i.e. not using
the steering capacity) on the synthetic 3D local rotation dataset. When N ≥ 2, the perfor-
mance of the SH parametric representation is very close to the Z3-CNN while using 15×
fewer parameters.

Results for the nodule classification experiment on the pulmonary nodules classification (NLST)
are summarized in Table 2. The results are averaged over 10 repetitions.
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Table 2: Average accuracy (%) on the pulmonary nodule classification with N = 2.

model # orient. (M) # filters # param. accuracy ±σ

Z3-CNN - 4 3,818 80.0±1.7

Z3-CNN - 96 82,754 81.3±2.2

LRI-CNN 1 4 970 76.3±3.8

LRI-CNN 4 4 970 79.0 ±3.0

LRI-CNN 24 4 970 81.9±3.3

LRI-CNN 72 4 970 80.7±7.4

4. Discussions and Conclusion

The results on the synthetic dataset (Table 1) show that increasing the number of orientation chan-
nels significantly improves the performance (74.6% with a single orientation vs 90.0% with 72
orientations) and outperforms a standard Z3-CNN with the same number of filters (81.7%). Despite
the increased number of orientation channels, the number of trainable parameters remains extremely
low (40 parameters). Note that using data augmentation with random rotations of the training sam-
ples would not help the Z3-CNN as its architecture is simply inappropriate for LRI and patterns are
already present at many random orientations in the training set. Adding more filters to the Z3-CNN
(2×72 = 144 filters) allows to learn filters at different orientations and achieves 95.9% accuracy, at
the heavy cost of parameters and convolution operations. As shown in Fig. 4 with a single orienta-
tion channel, i.e. without using the steering capacity, the degree N = 0 of the SH cannot differentiate
well patterns (63.9% accuracy) as it is isotropic. The performance then increases with N and nearly
reaches the standard Z3-CNN accuracy for N ≥ 2 with a significantly lower number of parameters,
underlining the compression power of the parametric SH representation.

Note that LRI can be obtained with a G-CNN implementation (Cohen and Welling, 2016) by
pooling across orientation channels after the first layer, yet it is limited to M=24 and requires to
convolve the input with every rotated filter.

The results on the pulmonary nodule classification experiment (see Table 2) confirm the impor-
tance of LRI and of the proposed approach in a real medical imaging application. Despite the lack
of directional texture patterns in the data which may reduce the performance gain over the baseline,
an increase in accuracy is obtained with the LRI-CNN as well as a reduction of trainable parameters
by a factor of four.

In conclusion, we developed a 3D LRI convolutional network using steerable filters. The main
benefits are the low number of trainable parameters, the limited number of convolutions as we only
convolve with the limited set of SHs and steer the responses for an arbitrary number of rotations,
and the exactness of the steerability, avoiding approximation for kernel rotations. The results on
synthetic 3D textures and 3D pulmonary nodule classification confirmed the importance of LRI
with directionally sensitive steerable filters and the compression power of the proposed approach.
While the reduction of trainable parameters also comes with an increase of time and memory as
compared with a standard 3D CNN, the proposed efficient and precise LRI design may be preferred
over data augmentation or group equivariant networks in various scenarios. In future work, we
will look into finding the maximum orientation responses and/or powerful invariant descriptors
without recombining the responses for all orientations which is a current bottleneck for memory
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consumption on the GPUs. We will also explore the benefit and cost of using non-polar-separable
filters.
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Appendix A. Equivariant Texture Operator

We prove the following result.

Proposition 1 A texture operator of the form (1) is equivariant to translations and rotations in the
sense of (2).

Proof The equivariance to translations uses that (I(·−x0)∗g)(x) = (I ∗g)(x−x0). Applying this
to g = f (R·), we deduce

G {I(·−x0)}(x) = max
R∈SO(3)

|(I ∗ f (R·))(x−x0)|= G {I}(x−x0), (7)

as expected. For the rotation, we use (I(R0·)∗g)(x) = (I ∗g(R−1
0 ·))(R0x) applied to g = f (R·), to

deduce

G {I(R0·)}(x) = max
R∈SO(3)

|(I ∗ f (RR−1
0 ·))(R0x)|= max

R∈SO(3)
|(I ∗ f (R·))(R0x)|= G {I}(R0x), (8)

where the second equality simply exploits that RR−1
0 describes the complete space SO(3) of 3D

rotations when R varies.

We remark that the equivariance to translations is simply due to the use of the convolution, while
the equivariance to rotations requires the presence of the pooling over 3D rotations in (1).

Appendix B. Spherical Harmonics

The family of SHs is denoted by (Yn,m)n≥0,m∈{−n,...,n}, where n is called the degree and m the order
of Yn,m. SHs form an orthonormal basis for square-integrable functions in the 2D-sphere S2. They
are defined as (Driscoll and Healy, 1994)

Yn,m(θ ,φ) = An,mPn,|m|(cos(θ))ejmφ , (9)

with An,m = (−1)(m+|m|)/2
(

2n+1
4π

(n−|m|)!
(n+|m|)!

)1/2
a normalization constant and Pn,|m| the associated Leg-

endre polynomial given for 0≤ m≤ n by (Abramowitz and Stegun, 1964).

Pn,m(x) :=
(−1)m

2nn!
(1− x2)m/2 dn+m

dxn+m (x2−1)n. (10)

Appendix C. Real Steerable Filters

A filter f is real if f (ρ,θ ,φ) = f (ρ,θ ,φ) for every (ρ,θ ,φ). For filters given by (3), this means
that

h(ρ)∑
n,m

Cn[m]Yn,m(θ ,φ) = h(ρ)∑
n,m

Cn[m]Yn,m(θ ,φ), (11)

We use the symmetry of the spherical harmonics, Yn,m = (−1)mYn,−m, on the left-hand side and
change the sign of m on the right-hand side to get

∑
n,m

h(ρ)Cn[m](−1)mYn,−m(θ ,φ) = ∑
n,m

h(ρ)Cn[−m]Yn,−m(θ ,φ), (12)
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The Yn,m being linearly independent, we deduce that the filter is real if and only if, for any ρ,n,m,
h(ρ)Cn[m](−1)m = h(ρ)Cn[−m]. By imposing that h is real, i.e., h = h, we obtain the expected
criterion on the Cn[m] coefficients, which is

Cn[−m] = (−1)mCn[m], (13)
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