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ABSTRACT

Transferring learned knowledge from one environment to another is an important
step towards practical reinforcement learning (RL). In this paper, we investigate
the problem of transfer learning across environments with different dynamics
while accomplishing the same task in the continuous control domain. We start
by illustrating the limitations of policy-centric methods (policy gradient, actor-
critic, etc.) when transferring knowledge across environments. We then propose a
general model-based value-centric (MVC) framework for continuous RL. MVC
learns a dynamics approximator and a value approximator simultaneously in the
source domain, and makes decision based on both of them. We evaluate MVC
against popular baselines on 5 benchmark control tasks in a training from scratch
setting and a transfer learning setting. Our experiments demonstrate MVC achieves
comparable performance with the baselines when it is trained from scratch, while
it significantly surpasses them when it is used in the transfer setting.

1 INTRODUCTION

While the achievements of deep reinforcement learning (DRL) are exciting in having conquored many
computer games (Go (Silver et al., 2016; 2017), Atari games (Mnih et al., 2015)), in practice, it is still
hard for these algorithms to find applications in real-world environments. Among the impediments, a
primary obstacle is that they could fail even if the environment to deploy the agent is slightly different
from where they were trained (Tan et al., 2018; Bousmalis et al., 2018; Tobin et al., 2017; Tamar
et al., 2016). In other words, they lack the desired ability to transfer experiences learned from one
environment to another. These observations motivate us to ask, (1) why are current RL algorithms
so inefficient in transfer learning and (2) what kind of RL algorithms could be friendly to transfer
learning by nature?

In this work, we explore the two questions and present a partial answer based on analysis and
experiments. Our exploration concentrates on control tasks due to its broad impact; in particular, we
further assume that across environments only their dynamics are not the same. Possible sources of
such dynamics discrepancy could be variation of physical properties such as object mass, gravity, and
surface friction. It is worth noting that our framework is general and we do not assume any specific
perturbation source or type.

Our investigation starts with understanding the limitation of transferring the policy function (which
maps a state to a distribution of actions) across environments. We analyze this transfer strategy because
the de facto DRL framework in the control domain (DDPG (Lillicrap et al., 2015), TRPO (Schulman
et al., 2015), A3C (Mnih et al., 2016), etc.) are policy-centric methods, which directly optimize
the policy function. As a result, these methods learn a precise policy function, and sometimes also
produce an imprecise value/Q-function as a side product. However, even if a perfect policy function
has been learned from the source environment, this policy could behave quite poorly, or even fail,
in the new environment, especially when the action space is hard-constrained (e.g., force or torque
usually has a maximal value). We illustrate this by a simple example: Imagine a child shooting
three-pointers when playing basketball. With a 600g ball, she can make the three-pointer. However,
she may hardly make the three with a 800g ball because it is too heavy. What will she do? Most
likely she will step forward, approach the basket, and make a closer jump-shot. We see that marginal
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dynamics variation can lead to drastic policy change, and direct policy optimization initialized from
the old policy would not be efficient. We will analyze this issue more systematically by theoretical
and experimental approaches throughout the paper.

The investigation implies that, instead of directly transferring policies, the swift transfer should be
grounded in richer and more structured knowledge of the task, so as to facilitate the judgment of
whether the agent is approaching the goal, which is critical for making the right decision. Enlightened
by the above intuition, we propose a simple model-based and value-centric framework for continuous
reinforcement learning.

Our method contains two disentangled components: a dynamics approximator (model-based) and
a state value function approximator (value-centric). The agent plans its action by solving an opti-
mization problem using both approximators. As side products, this design learns a precise transition
function, a precise reward function, and a precise value function on a subset of states. In particular,
knowledge from historical explorations have been stored in the value function. In comparison,
previous policy-centric methods can only produce a precise policy function, thus our framework
allows to transfer much more information. By fine-tuning the whole framework in a new environment,
our agent can adapt quickly with much lower sample complexity than state-of-the-art.

We call our method value-centric because it strives to learn a precise value function. The general
framework is inspired from the Value Iteration (VI) method, which is a classical approach for discrete
decision making. However, since control problems have a continuous action space, we cannot directly
enumerate over the action space as in the discrete setting but have to address the highly non-convex
optimization problem. To make it tractable, we leverage differentiable function approximators like
neural networks to learn the dynamics and the value function. By such an approximation, it is possible
to solve the optimization problem with state-of-the-art optimizers effectively.

We also theoretically analyze our value-centric framework and classical policy gradient algorithms
from an optimization perspective. To build an intuitive understanding, we create a simple and
illustrative example that clearly shows a local optimum in the policy space can prevent policy gradient
methods from transferring successfully, but will not affect our value-centric framework.

We summarize our contributions as below:

• We provide a theoretical justification to show the advantage of value-centric methods from an
optimization perspective.

• We propose a novel value-centric framework for continuous reinforcement learning of comparable
sample efficiency with popular deep RL methods in the training from scratch setting.

• Extensive experiments show the superiority of our method in a transfer learning setting

2 BACKGROUND

2.1 MDPS AND NOTATION

First, we introduce the standard reinforcement learning setting for continuous control. We assume
the underlying control problem is a Markov Decision Process (MDP), which is defined by a tuple
〈S,A, T ,R, ρ0, γ〉. Here, S and A are the continuous state space and action space, respectively, T
is the transition dynamics, R is the reward function, ρ0 is the distribution of the initial state, and
γ ∈ (0, 1] is the discounting factor for future rewards. For robot control tasks, it is reasonable to
assume a deterministic transition dynamics T : S × A → S, and a deterministic reward function
R : S ×A → R.

The policy π of an agent maps the state space to a probability distribution over the action space
π : S → P(A). The goal of reinforcement learning is to find an optimal policy π∗ that
maximizes the expectation of the accumulated future rewards according to the initial state dis-
tribution J(π) = Eρ0,π[

∑∞
t=0 γ

tR(st, at)]. We also define the value function V of a state s
as V (s) = Eπ[

∑∞
t=0 γ

tR(st, at)|s0 = s]. Finally, the optimal value function V ∗ satisfies
V ∗(s) = maxπ Eπ[

∑∞
t=0 γ

tR(st, at)|s0 = s] for any s ∈ S.

2



Under review as a conference paper at ICLR 2019

Low-dimensional Assumption We focus on control problems which usually have well-engineered
and low-dimensional state/action representations. Not rigorously, the assumption has two implica-
tions:

• Property 1: For a smooth function f(at) over A, we can find its approximate solution by
sampling over the domain and optimizing locally;
• Property 2: We can learn a network to approximate the transition and reward functions.

Empirically, we find evidence of both properties as in our experiment section (Sec 6).

2.2 TRANSFER LEARNING

Many differently posed transfer learning problems have been discussed in the reinforcement learning
literature (Taylor & Stone, 2009). In this work, we study the problem of the environment slightly
changing while the task remains the same. For example, in the pendulum swing-up problem, once
the agent learns how to swing up a 1kg pendulum, we expect that it could quickly adapt itself to
swing up a 2kg pendulum leveraging the learned knowledge. We formulate our setting by modifying
the aforementioned standard RL setting. We consider a pair of MDPs sharing state and action
spaces. Their transition dynamics T and reward functions R are parameterized by a vector ξ:
st+1 = T (st, at; ξ), rt = R(st, at; ξ). Each ξ defines a unique MDPMξ. The change ofR is only
caused by the change of T (instead of the goal of the task), so the change of reward function is
limited, though we parameterize it by ξ for rigor. After the agent learns how to perform well on a
source MDP, we expect it to solve the target MDP using few interactions with the new environment.

3 WHY TRANFERRING POLICY CAN BE DIFFICULT? A SIMPLE ILLUSTRATION

In the RL community, most control tasks are solved by policy gradient-based methods. In this
section, we illustrate the limitation of transferring policy by a simple example and compare it with a
value-centric method.
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Figure 1: an MDP

We design an MDP with 5 states as in Fig. 1: an initial state (s0), two
intermediate states (s1, s2), a goal state (sg), and a failure state (sf ). sg
and sf are terminal states, so their state values are both 0. The task for the
agent is to reach the goal state through one of the two paths. We denote
the path passing s1 as path1, and the path passing s2 as path2. Let fi > 0
be environment parameters. At some state s, the agent takes an action
a ∈ [−1, 1]. The reward is designed in a goal-based style with penalties
to large |a|. If the agent transits from the initial state to an intermediate
state, it receives a reward r = 1 − |a|. Every time the agent visits the

failure state, it will be punished by a negative reward r = −5. The optimal policy for this task is
a∗0 = −f1 if f1 < f2; a∗0 = f2 if f1 ≥ f2; a∗1(s1) = −f1; a∗1(s2) = f2.

Figure 2: The training curve of π(s0) during fine-tuning.
π(s0) represents its mean µ(s0) for clarity.

Now we show the different behaviors of
the value- and policy-centric strategies in
a transfer learning setting. For the source
environment, f1 = 0.7 and f2 = 0.8. It
is not hard to find that the optimal path
is path1. Then we modify the transition
rule of the environment by slightly vary-
ing f1 and f2. We set f1 = 0.8 and
f2 = 0.7. While the variation of the en-
vironment is relatively small, the optimal
policy for s0 is completely different and
has changed to path2. The optimal state
value function and policy are shown in
Table 1 in the Appendix B.

To compare policy- and value-centric strategies, we run two representative algorithms on this game –
the Policy Gradient (PG) algorithm (Williams, 1992) (policy-centric) and the Value Iteration (VI)
algorithm (Sutton et al., 1998) (value-centric). We assume the value-centric methods have access
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to the oracle transition rules and the reward function, and we parameterize the policy π(si) with
Gaussian distribution. Details can be found in Appendix B. We compare the behaviors of PG and VI
to intuitively demonstrate their characteristics. PG gets stuck at the old optimum (Fig. 2 left) since
the distance between the old optimum and the new optimum is so large. To see why, we first point
out that PG optimizes in the policy space, restricting that the policy shifting from the old optimum to
the new optimum must be quite “continuous”. However, to reach the new optimum, π(s0) must flip
the sign of its mean µ(s0). Unfortunately, when µ(s0) approaches zero from the negative side (from
−0.7), its transition possibility to the failure state will increase, thus µ(s0) will bounce away from
0− to avoid punishment. Consequently, it is very unlikely to successfully reach the new optimum, a
positive value.

In contrast, the value function in VI algorithm continuously shifts and converges to the new optimum
(See Appendix B) and the policy deduced from the value function converges to the optimal policy in
10 episodes. Value function reuses the learned information more efficiently. It also allows sudden
change of the policy (Fig. 2 right), which could be beneficial for transferring.

4 MODEL-BASED AND VALUE-CENTRIC (MVC) REINFORCEMENT LEARNING

4.1 VALUE-CENTRIC METHOD IN TRANSFER LEARNING

Our objective is to make the agent learn faster in a new environment after trained in a similar
environment. From the above discussion, we know that instead of directly transferring policies, the
swift transfer should be grounded in richer and more structured knowledge of the task. It is worth
exploring transfer by value function since the value function contains more information than the
policy alone. A straight-forward idea is to utilize the value/Q function from actor-critic algorithms
such as DDPG to facilitate transfer learning. However, the value/Q function learned from the actor-
critic algorithm is usually imprecise, and it does not capture so much knowledge in the original
environment. To address this issue, we propose an algorithm to directly train a precise value function
in the original environment. We call it a value-centric method. Then, we just need to fine-tune this
value function to help the agent adapt to the new environment. In the following subsections, we
explain how to train this precise value function from scratch.

4.2 CONTINUOUS VALUE ITERATION

To better explain our main algorithm, we first propose a Continuous Value Iteration algorithm, which
is possible to make use of Property 1 in Sec 2.1 to build a value-centric method. Theorem 2 in the
Appendix suggests it always converges.
Definition 1. At the i-th iteration, we update the value function by the following rule:

V i+1(s) = (1− α)V i(s) + α(max
a

[R(s, a, T (s, a)) + γV i(T (s, a))]),∀s ∈ S (1)
where α ∈ (0, 1] is the step size, and V 0(s) is some initialization value. Note that by Property 1 in
Sec 2.1, the maximization algorithm over a is accessible. We call this algorithm Continuous Value
Iteration.

4.3 ALGORITHM

The CVI algorithm mentioned in Sec 4.2 assumes the oracle of dynamics, rewards, and an algorithm
to solve the optimization problem w.r.t. a. In addition, it assumes the ability to sweep over the state
space. To make it practical, we propose a model-based and value-centric(MVC) framework. We
approximate the value function V , transition dynamics T , and the reward function R by function
approximators like neural networks. Any differentiable function approximators not restricted to
neural networks may be applicable. Let us denote the three parameterized function approximators
we use as fV (s; θ), fT (s, a;φ), fR(s, a;ψ), where θ, φ, and ψ are parameters. To efficiently use
the sampled data, we store the agent’s experience (st, at, rt, st+1) in a replay buffer B. Then fT is
trained to minimize the following L2 loss function:

LT =
1

|D|
∑

(st,at,st+1)∈D

‖fT (st, at;φ)− (st+1 − st)‖2 (2)
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Algorithm 1 Model-based Value-Centric (MVC) Reinforcement Learning

Require: An MDPM, a maxmimum timestep number N
1: For train from scratch: initialize fV (s; θ), fT (s, a;φ), fR(s, a;ψ) randomly.

For transfer learning: initialize fV (s; θ), fT (s, a;φ), fR(s, a;ψ) with the learned parameters.
2: Initialize an empty replay buffer B.
3: for i = 1 : N do
4: At state st, compute action at with Eq. 4. Add exploration noise to at.
5: Execute at in the environment, receive rt and st+1. Store (st, at, rt, st+1) in B
6: Update fV (s; θ) with Eq. 5.
7: Update fT (s, a;φ), fR(s, a;ψ) with Eq. 2 and Eq. 3
8: Soft update target network fV (s; θ−): θ− = αθ + (1− α)θ−

9: end for

Here,D is the training dataset extracted from B and | · | refers to the cardinality of a set. Like previous
works (Kurutach et al., 2018; Nagabandi et al., 2017), the supervision signal for fT is the increment
of the state to release its burden of memorizing the last state. We also train the reward approximator
in a similar supervised learning way:

LR =
1

|D|
∑

(st,at,rt)∈D

‖fR(st, at;ψ)− rt‖2 (3)

At time step t, the agent samples data under a deterministic policy:

π(st) = arg max
a

(fR(st, a) + γfV (fT (st, a) + st)) (4)

Unlike the tabular case, the right-hand side of Eq. 4 is a complicated non-convex optimization
problem. Fortunately, we can take the advantage that fV (s; θ), fT (s, a;φ), fR(s, a;ψ) are differ-
entiable w.r.t the action vector a. We use Adam optimizer (Kingma & Ba, 2015) to solve the r.h.s
optimization problem. To make sure that the optimizer finds a local maximum that is good enough to
approximate the global maximum, we randomly select multiple initializations. Due to the superior
parallel computing ability of modern GPUs, the optimization with different initial seeds can be
operated simultaneously so that additional time consumption is limited. For exploration purpose, we
also add noise (e.g. Ornstein-Uhlenbeck process) to the optimal action. While it is possible to expand
the r.h.s. to a multi-step planning, notoriously, a learned model is inclined to diverge in long-horizon
predictions. Consequently, we only use the one-step version for policy search.

To approximate the value function, we update the value approximator by the supervision of temporal-
difference error (TD-error). Since updating the value function across the whole state space is
unrealistic, we update the value approximator only by the data sampled from the environment in the
current time step like policy gradient algorithms. Suppose at timestep t, the agent takes action at
(following Eq. 4), then receives reward rt and transits to state st+1. We minimize the following loss:

LV = ‖fV (st; θ)− (rt + γfV (st+1; θ−))‖2. (5)

Online training makes the whole framework more light-weight while sacrificing the guarantee of
convergence. One can improve the training paradigm with past experience from the replay buffer or
advanced sampling skills on the state space, but we leave them as future work.

Like DDPG, we employ a target network parameterized by θ− to stabilize the training. To speed up
computation, we also fork multiple agents to run in parallel and synchronize them by a global agent.
Algotihm 1 recaptures the whole algorithm paradigm.

5 A THEORETICAL JUSTIFICATION FROM THE OPTIMIZATION PERSPECTIVE

We will show the limitation of policy-centric methods and the nice properties of value-centric method.
We narrow the analysis of policy-centric frameworks down to the landscape of J(π). To save space,
we leave the theorems and detailed proofs in Appendix A. We explain the intuitions here:

First, we show in Theorem 1 that, for an arbitrary MDP with a deterministic transition function, a
local optimum of J(π) that traps gradient-based methods could exist under a weak condition. In fact,
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the local optimum issue is introduced by the parameterization of π’s output space, e.g., a Gaussian
distribution. If we allow π to be an arbitrary distribution, the local optimum will vanish (Proposition
1). The example in Sec 3 exactly shows a failure case of transferring policy due to a local optimum.

Second, we show in Theorem 2 that, for the same type of MDPs, the Continuous Value Iteration
algorithm leveraging Property 1 in Sec 2.1 can share the favorable converge property of classical
value iteration. That is, the distance between a current value function and the optimal value function
will be squeezed at linear rate, thus it always converges. In addition, Proposition 2 implies that a
small perturbation to the environment is only likely to cause a marginal change to the optimal value
function; therefore, the old value function would serve as a good initialization point.

6 EXPERIMENTS

We first compare our value-centric method against the policy gradient baselines in the training from
scratch setting. We also show that our value-centric method beats baselines in the transfer learning
setting. Finally, we conduct ablation study over method parameters and diagnose the components.

6.1 SETUP

We evaluate our algorithm and two prevalent continuous RL methods, Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al., 2015) and Trust Region Policy Optimization (TRPO) (Schulman
et al., 2015), on five control tasks in the OpenAI Gym (Brockman et al., 2016):HalfCheetah-
v1,InvertedPendulum-v1, InvertedDoublePendulum-v1, Pendulum-v0, and Reacher-v1. For baselines,
we use the code from OpenAI Baselines (Dhariwal et al., 2017) and fine-tuned their hyper-parameters
as much as we can. More details can be found in the Appendix D.

6.2 MAIN RESULTS

We compare the sample complexity and the performance of the three algorithms (MVC, DDPG,
and TRPO) on the aforementioned five environments, for both the training from scratch setting and
transfer learning setting. We also compare with PPO (Schulman et al., 2017) and SQL (Haarnoja
et al., 2017) on HalfCheetah and show the results in Appendix F.

Train from Scratch The reported results (Fig. 8(a)) show the mean and standard deviation of 3
runs with different random seeds. In four of the environments (InvertedPendulum-v1, HalfCheetah-v1,
Pendulum-v0, Reacher-v1), our method achieves comparable performance as the better baseline.
In InvertedDoublePendulum-v1, though there is a significant gap between MVC and TRPO, MVC
performs at the same level with DDPG.

Transfer across environments We demonstrate the superiority of our method when transferring
across environments. For each of the above five environments, we change one or several physical
properties, like the mass of pendulum, to create two new environments with novel dynamics. In
one of the new environments, the change is relatively small (we call it ’Hard’ in the plot), while
the other is more intensively perturbed (we call it ’Harder’ in the plot). We first train standard
agents on the original environment. For fair comparison, we pick the agents that achieve comparable
performance for all methods in the original environment. Please refer to Appendix D for the details of
the modification and the agents. To avoid the possibility of under-exploration in the new environments,
we reset the exploration noise of all the algorithms. We directly fine-tune all the agents with the same
number of simulation steps. The results are shown in Fig. 8(b).

On all the environments, we observed that TRPO has the worst overall transfer performance. DDPG
and MVC have similar transferrability on simple tasks like Reacher-v1 and Pendulum-v0. However,
on more complicated tasks like HalfCheetah-v1,the performance of DDPG is significantly worse than
MVC. Further investigation shows that DDPG can actually learn a high-quality Q function for simple
environments, which serves a similar role as our value function. However, on more challenging
games such as HalfCheetah-v1 and InvertedDoublePendulum-v1, as a policy-centric algorithm, the
learned Q function is far from the true one (Fig. 7 in Appendix E), thus the transfer is significantly
slower. The success and failure of DDPG again shows the central role value plays in transfer learning.
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Figure 3: The training curves of training from scratch and transfer learning of MVC, TRPO, and
DDPG. Thick lines correspond to mean episode rewards, and shaded regions show standard deviations
of 3 random seeds. Our method (MVC) achieves comparable performance with the baselines while
significantly outperforms them on transfer learning.

Note that, in HalfCheetah-v1-Harder, MVC achieves 3000 points in about 50k steps, while TRPO
and DDPG only get around 1000 points after 200k steps.

6.3 ABLATION STUDY AND DIAGNOSIS OF COMPONENTS
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HalfCheetah-v1 Validation of Property 1 Empirically, we find evidence for Property 1
and 2. Take HalfCheetah-v1 for example. For Property 1, we compare the
optimization result of gradient-based method against random sampling
with 106 points. Figure on the left demonstrates that Adam achieves
comparable results with random sampling while being tens of times faster
on our computer (a 48-core Xeon CPU with 2 Titan XP GPUs).
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Figure 5: Transfer learning

Hyperparameters We verify the influence of the initialization and the number of optimization
steps in the action search process. Fig. 4 shows that calling Adam optimizer is critical to stabilize the
training. In transfer learning scenario (Fig. 5), the optimization shows a more significant impact on
the performance and sample complexity. The agent that searches action with 200 initial points and 4
optimization steps is enough to win the agent using only 1000 initial points by a large margin.

7 RELATED WORK

Reinforcement Learning in Continuous Control Domain. Solving continuous control problems
through reinforcement learning has been studied for decades (Sutton et al., 1998; Williams, 1992).
Policy-based methods (Schulman et al., 2015; Mnih et al., 2016; Lillicrap et al., 2015) are more
widely used. One exception is the NAF (Gu et al., 2016) method under the Q-learning framework
which models the action space as a quadratic function.

Value-based Reinforcement Learning. The most relevant work in literature are perhaps the very
recent Value Iteration Network (VIN) and Value Prediction Network (VPN) (Tamar et al., 2016; Oh
et al., 2017). Though demonstrated better environment generalizability, VIN is specifically designed
and only evaluated on the 2D navigation problem. VPN learns a dynamics model together with a
value function and makes plans based on Monte Carlo tree search. In contrast to our work, VPN
neither considered the continuous control problem nor thoroughly investigated their algorithm under
the transfer learning setting.

Model-based Reinforcement Learning. For purposes such as increasing sample efficiency and
designing smarter exploration strategies (e.g., curiosity-driven exploration), it can be beneficial to
incorporate a learned dynamics model. Some very recent works have demonstrated the power of such
model-based RL algorithms (Levine & Koltun, 2013; Nagabandi et al., 2017; Kurutach et al., 2018;
Pathak et al., 2018; Feinberg et al., 2018; Pathak et al., 2017). However, to our knowledge, none
of them has yet combined the value function with a learned dynamics model to solve continuous
decision making problems.

Transfer Learning in Deep Reinforcement Learning. In this work, we study knowledge transfer
problem across different MDPs.(Kansky et al., 2017) proposed the SchemaNetwork which learns the
knowledge of the Atari physics engine by playing a standard version of the BreakOut game. (Higgins
et al., 2017) learns disentangled representations in the source domains to achieve zero-shot domain
adaption in the new environments. Finally, a straight-forward strategy is to show the agent all possible
environments (Yu et al., 2017; Tan et al., 2018; Tobin et al., 2017).
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APPENDIX A PROOFS FOR THE THEOREMS

For mathematical rigor, we suppose the state space and the action space are both continuous in this
section.

A.1 PROPOSITION 1 AND PROOF

Proposition 1. If J is the expected return defined as in Section 2, π can be an arbitrary function
defined on the probability simplex (

∫
π(τ)dx = 1, π(τ) ≥ 0, where τ is a trajectory from the starting

state to a terminal state), and π∗ is the maximizer of J(π), then ∀π0, there exists a path connecting
π0 to π∗ that J(π) monotonically increases, which implies that π0 is not a local maximum of J .

Proof. Note that J is a linear functional defined as J(π) =
∫
π(τ)R(τ), where R(τ) is the total

return following the trajectory τ . Due to the linearity, we can generate the path by a convex
interpolation of π0 and π∗. Note that J(π) is also a convex interpolation of J(π0) and J(π∗)
now.

A.2 PROPOSITION 2 AND PROOF

Definition. Assume the transition probability p(s
′ |s, a)is perturbed by a disturbance d(s

′ |s, a), we
denote the perturbed transition probability as pd(s

′ |s, a) = p(s
′ |s, a) + d(s

′ |s, a). d(s
′ |s, a) is such

a function that ensures pd(s
′ |s, a) is a feasible distribution (pd(s

′ |s, a) ≥ 0 and
∫
s′

(pd(s
′ |s, a)) = 1).

Define ||d|| = maxs∈S,a∈A
∫
s′
|d(s

′ |s, a)|ds′ .
Proposition 2. We assume r(s, a) is bounded and denote maxs,a r(s, a) = R. Denote the optimal
value function for state s in the perturbed environment is V ∗d (s), and the optimal value of s in the
original environment is V ∗0 (s), then |V ∗d (s)− V ∗0 (s)| < Rε

(1−γ)2 when ||d|| < ε for ∀s ∈ S

Proof. We imitate the techniques in (Abbad & Filar, 1992). From the Markovian property, we have
V ∗(s) = maxa

∫
s′
p(s
′ |s, a)(r(s, a) + γV ∗(s

′
))

|V ∗d (s)− V ∗0 (s)| ≤ max
a
|
∫
s′

((pd(s
′
)− p0(s

′
))(r(s, a)) + γ(pd(s

′
)V ∗d (s

′
)− p0(s

′
)V ∗0 (s

′
)))|

≤ ||d||R+ γmax
a

∫
s′
|d(s

′
)V ∗d (s

′
)|ds

′
+ γmax

s
|V ∗d (s)− V ∗0 (s)|

Because V ∗(s) ≤
∑∞
t=0 γ

tR = 1
1−γR, we have,

max|V ∗d (s)− V ∗0 (s)| ≤ R||d||
(1− γ)2

This bound is rather loose, and it can only be a partial explanation of the experimental results. The
changes of environment in our experiments are much larger than a ’perturbation’.

A.3 THEOREM 1 AND PROOF

Definition. At the i-th iteration, we update the value function by the following rule:

V i+1(s) = (1− α)V i(s) + αmax
a

[R(s, a, T (s, a)) + γV i(T (s, a))],∀s ∈ S (6)

where α ∈ (0, 1] is the step size, and V 0(s) is some initialization value. Note that by Property 1 in
Sec 2.1, the maximization algorithm over a is accessible.
Theorem 1. The above continuous value iteration algorithm is a contraction mapping:

max
s
|V k(s)− V ∗(s)| ≤ (1− (1− γ)α)k max

s
|V 0(s)− V ∗(s)|,

where V* represents the optimal value function.
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The proof is a trivial extension of conventional value iteration.

In addition, we analyze how the error of model approximators influence our algorithm. We suppose the
error will not change when training the value function. Denote the dynamics approximator as T̂ (s, a)

and the reward approximator as R̂(s, a). Suppose the maximal error of the two approximators are
respectively εT , εR, that is, maxs,a |T̂ (s, a)− T (s, a)| = εT and maxs,a |R̂(s, a)−R(s, a)| = εR.
We have,

|V i+1(s)−V i(s)| ≤ (1−α)|V i(s)−V i−1(s)|+αγmax
a
|V i(T̂ (s, a))−V i−1(T̂ (s, a))|,∀s ∈ S

As long as T̂ (s, a) ∈ S,

|V i+1(s)− V i(s)| ≤ (1− α+ αγ) max
s
|V i(s)− V i−1(s)|,∀s ∈ S

Thus, the error will not hurt the contraction property, and the convergence is then guaranteed.
However, the optimum may change. For the groundtruth dynamics and reward, the Bellman equation
for the optimum is,

V ∗(s) = max
a

[R(s, a, T (s, a)) + γV ∗(T (s, a))],∀s ∈ S
For the approximated dynamics and reward,

V ∗(s) = max
a

[R̂(s, a, T̂ (s, a)) + γV ∗(T̂ (s, a))],∀s ∈ S
They are not necessarily the same, hence the optimum may change.

A.4 THEOREM 2 AND PROOF

Lemma 1.
∫ t

0
e−x

2

dx >
√
π

2

√
1− e−

√
t, t > 0

Proof. Denote the l.h.s. as A, then we have

A2 =

∫ t

0

∫ t

0

e−(x2+y2)dxdy.

The integral is taken over a square area. By dividing the square area into a semi-circle area D and the
rest, we can derive the following inequality from the non-negativity of e−(x2+y2):

A2 >

∫∫
D

e−(x2+y2)dxdy =

∫ π
2

0

∫ t

0

e−r
2

rdrdθ

The r.h.s can be easily integrated, and the result is π
4 (1− e−

√
t). Hence we get Lemma 1.

Theorem 2. Denote the policy for a state s as π(s). For a given MDP, suppose

π0(s) =

{ N (µ0, σ0), s = s0

π∗(s), other s ∈ S ,

where µ0, σ0 are the initial parameters for the initial Gaussian policy π0(s0), and all the other
policies are fixed as the optimal policy π∗(s). We simply denote such policy as π(µ0, σ0). Presume
the optimal policy for s0 is N (µ∗, 0). If there exists µ ∈ [µ0, µ

∗] and ∆ > 0 such that the optimal Q
value Q∗(s0, a) < B(∆) (B is a function w.r.t.∆) for all action a ∈ [µ

′ −∆, µ
′
+ ∆]. We have the

following conclusion: J(π(µ
′
, σ)) < J(π(µ0, σ0)) for all σ ∈ (0, σ0].

Proof. We start the proof by showing the exact value of the bound B, then we demonstrate how we
can deduce the conclusion from B. to simplify the proof, we use the following notations:

Q∗(s0) = max
a

Q∗(s0, a)

f(µ, σ) = pdf(N (µ, σ))

Vπ(s0|µ, σ) =

∫ ∞
−∞

f(µ, σ)Qπ(s0, a)da

12
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Note that since all the policies are fixed except for s0, the (µ, σ) pair determines the whole policy π.
Now using the above notations,

B =
Vπ0(s0|µ0, σ0)−Q∗(s0)√

1− e−
√

∆√
2σ0

+Q∗(s0)

Recall the condition that for a ∈ [µ
′ −∆, µ

′
+ ∆], Q∗(s0, a) < B, we have:

Vπ′ (s0|µ
′
, σ) =

∫ ∞
−∞

f(µ
′
, σ)Qπ′ (s0, a)da

=

∫ µ
′
−∆

−∞
f(µ

′
, σ)Qπ′ (s0, a)da+

∫ µ
′
+∆

µ′−∆

f(µ
′
, σ)Qπ′ (s0, a)da+

∫ ∞
µ′+∆

f(µ
′
, σ)Qπ′ (s0, a)da

Because Q∗(s0) ≥ Q∗(s0, a) ≥ Qπ′ (s0, a),

Vπ′ (s0|µ
′
, σ) ≤

∫ µ
′
−∆

−∞
f(µ

′
, σ)Q∗(s0)da+

∫ µ
′
+∆

µ′−∆

f(µ
′
, σ)Bda+

∫ ∞
µ′+∆

f(µ
′
, σ)Q∗(s0)da

= Q∗(s0) +

∫ µ
′
+∆

µ′−∆

f(µ
′
, σ)(B −Q∗(s0))da

= Q∗(s0) + (B −Q∗(s0))

∫ µ
′
+∆

µ′−∆

f(µ
′
, σ)da

From the following inequality and Lemma 1,∫ µ
′
+∆

µ′−∆

f(µ
′
, σ)da =

1√
2πσ

∫ µ
′
+∆

µ′−∆

e−
(a−µ

′
)2

2σ2 da

=
1√
2πσ

∫ ∆

−∆

e−
a2

2σ2 da

≥
√

1− e−
√

∆√
2σ (Lemma1)

≥
√

1− e−
√

∆√
2σ0 (σ ∈ (0, σ0])

Thus, due to B −Q∗(s0) < 0

Vπ′ (s0|µ
′
, σ) ≤ Q∗(s0) + (B −Q∗(s0))

√
1− e−

√
∆√
2σ0

= Vπ0
(s0|µ0, σ0)

Then, we can divide the expected return into two parts: 1. return from the paths that never pass s0;
2. return from the paths that pass s0. Since all the policies except for s0 are deterministic, we can
rewrite the expected return J(π(µ, σ)) as:

J(π(µ, σ)) = α+ βVπ(s0|µ, σ),

where α and β are constants. Thus we finish our proof.

In fact, the bound B is not hard to reach, a special case of the above theorem is ,
Proposition. We follow the notations in Theorem 2, then, If Vπ(µ0,σ0)(s0) ≥ 0.5Vπ(µ∗,0)(s0), and
Q∗(s0, a) < 0.6Vπ(µ0,σ0)(s0) for all a ∈ [µ0+µ∗−σ0

2 , µ0+µ∗+σ0

2 ], then such µ
′ ∈ (µ0, µ

∗) exists
that J(π(µ

′
, σ)) < J(π(µ0, σ0)) for all σ ∈ [0, σ0].

The above proposition suggests that if the expected value of the original policy is not so bad
(Vπ(µ0,σ0)(s0) ≥ 0.5Vπ(µ∗,0)(s0)), a local minimum will emerge when the optimal Q of a part of the
intermediate action is only a little lower than the initial value (Q∗(s0, a) < 0.6Vπ(µ0,σ0)(s0)).

Although Theorem 1 proves the case when only the policy at s0 can be optimized, it is clear that the
result also holds if the whole policy can be optimized.
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APPENDIX B DETAILS OF ILLUSTRATIVE EXAMPLE

We implement the MDP and the algorithms in MATLAB 2015b. For the policy gradient theorem, we
use a variance-reduced version of the vanilla policy gradient:

∇θJ(πθ) =
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(at|st)(
T∑
t′=t

r(st′ , at′ ))

For PG, we maintain a Gaussian policy N (µ(si), σ
2(si)) for s0, s1, s2 with trainable parameters

µ(si) and σ(si) (i = 0, 1, 2). For transfer learning, in the new environment, we set the initial µs as
the optimal policy in the source domain, and set σs as 1 to encourage exploration. Likewise, for VI,
we set the initial value function as the optimal value in the source domain.

For the value iteration, we use the continuous version as Section. 4. We set the step size of the policy
gradient algorithm as 1e-4, and the step size of the value iteration algorithm as 1e-3.

Fig. 6 and table 1 give more details about the illustrative example.

) )

Figure 6: The training curve during fine-tuning.

s0 s1 s2
V∗ 0.6 0.3 0.2
a∗ -0.7 -0.7 0.8

s0 s1 s2
V∗ 0.6 0.2 0.3
a∗ 0.7 -0.8 0.7

Table 1: The Optimal Value and Policy in the Source Domain and the Target Domain (Left: Source
Domain; Right: Target Domain)

APPENDIX C IMPLEMENTATION DETAILS

We use feed forward networks for all models and the activation function is ReLU. For transition
network, reward network, and termination network, the networks have 2 hidden layers of size 512.
For value network and target value network, the networks have 2 hidden layers of size 256 and 2
hidden layers of size 128. The weights of the networks are initialized by Xavier weight initializer.
And the networks are all trained by Adam optimizer, the learning rates for transition network, reward
network, termination network and value network are 1e-3, 1e-3, 1e-3, 1e-4, respectively.

The transition network, reward network, and termination network are trained 2 times for every 40
steps. The training data is uniformly sampled from the replay buffer, and the batch size is 512. The
value network is trained 2 times in each step with the current (s, r, s′) tuple. At each time the value
network is trained, the target networks will be soft updated as follows,

θV target = τθV + (1− τ)θV target (7)

A critical step in our algorithm is to find the optimal action a∗ with respect to state s. That is, we
need to solve the following optimization problem,

π(st) = arg max
a

(fR(st, a) + γfV (fT (st, a) + st)) (8)

14
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We use Adam optimizer with the learning rate of 0.1. To avoid trapped by local maxima, we set 200
initial points for the gradient descent procedure. When training from scratch, the optimizer will be
called k times, where the initial value of k is 0 and it is increased by 1 for every 150k steps. The
reason we do not optimize too many steps at the beginning is the value network is not accurate at that
time. But when transferring, we set a fixed k = 10 because we have a good initialization for value
network. After we get the action, a noise will be added to the action in order to encourage exploration.
The noise we used is Ornstein-Uhlenbeck process with µ = 0 and σ = 0.15. And the noise will be
decayed with the progress of training.

However, the above case is just for the tasks without true terminations. For the tasks with true
terminations, i.e. the task will be terminated before reaching the time limit, the optimization needs to
be re-writed as follows,

π(st) = arg max
a

(fR(st, a) + 1fD<t[γfV (fT (st, a) + st)]) (9)

, where t is the decision boundary of the termination network. Note that the above function is not
fully differentiable, so we replace the hard threshold with a soft threshold.

π(st) = arg max
a

(fR(st, a) + σ(t− fD)(γfV (fT (st, a) + st))) (10)

, where σ is the sigmoid function. In this way, we make it fully differentiable, so that gradient descent
can be applied.

Our implementation is based on PyTorch. In order to speed up our program, we employ multiprocess-
ing technique. In practice, we have 4 processes running in parallel, and all the networks are shared
across the processes.

APPENDIX D EXPERIMENT DETAILS

Our simulation environment is OpenAI gym 0.9.3.

For transferring experiments, we change one or several physical properties in the environments. In
one of the new environments,the change is relatively small (we call it ”Hard”), while the other is
more intensively perturbed(we call it ”Harder”). We achieve it by directly modifying the codes or the
XML files in the OpenAI gym library. The modifications are listed in the Table 2.

Hard Harder

Pendulum-v0 Change the mass from 1 to 2 Change the mass from 1 to 2
Change the length from 1 to 2

Reacher-v1 Change the density of ”body1”
from 1000 to 2000

Change the density of ”body1” from 1000 to 2000
Change the damping of ”joint1” from 1 to 2

Inverted
Pendulum-v1

Change the gravity from
-9.81 to -15

Change the gravity from -9.81 to -20
Change the damping of all joints from 1 to 2

InvertedDouble
Pendulum-v1

Change the gravity from
-9.81 to -15

Change the gravity from -9.81 to -20
Change the damping of all joints from 0.05 to 0.1

HalfCheetah-v1 Change the gravity from
-9.81 to -15

Change the gravity from -9.81 to -20
Change the damping of joint ”bthigh” from 6 to 12
Change the damping of joint ”bshin” from 4.5 to 9
Change the damping of joint ”bfoot” from 3 to 6

Table 2: Environment modification

In transferring experiments, we select the agents get similar scores in the original environment for
fair comparison. Table 3 shows the scores of the agents we chose in different environments. To get
these scores, we evaluate each agent 10 times and calculate the mean episode reward.
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MVC(ours) DDPG TRPO
Pendulum-v0 -163.1 -124.7 -110.9
Reacher-v1 -14.4 -14.1 -14.4
InvertedPendulum-v1 1000.0 1000.0 1000.0
InvertedDoublePendulum-v1 9354.3 9267.1 9112.4
HalfCheetah-v1 3276.3 3391.6 4273.4

Table 3: Scores in the original environments.

APPENDIX E SUPPLEMENTARY MATERIALS FOR EXPERIMENTS

Figure 7: Density plot shows the estimated Q versus observed returns sampled from 5 test trajectories.
for simple environments like Pendulum and Cartpole, the critic can predict the Q value quit accurate.
However, in more complicated environment like Cheetah, the estimated Q are way more inaccurate.
(This plot is from (Lillicrap et al., 2015))

APPENDIX F SUPPLEMENTARY EXPERIMENT RESULTS

We compare the sample complexity and the performance of the five algorithms (MVC, DDPG, TRPO,
PPO, and SQL) on the HalfCheetah, for both the training from scratch setting and transfer learning
setting.

SQL is a continuous variant of Q-learning, which expresses the optimal policy via a Boltzmann
distribution. PPO is developed from TRPO with several modifications. In the train from scratch
setting, SQL shows the best sample efficiency (significantly better than other algorithms). This is
probably because it improves exploration by incorporating an entropy term but all the other algorithms
do not. However, in the transfer learning setting, the performance of MVC is nearly the same as SQL.
As both are value-centric algorithms, we think the benefit of MVC comes from using an environment
dynamics approximator. PPO shows better performance than TRPO (both in the train from scratch
and the transfer learning), but still much worse than MVC.
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Figure 8: Comparison with more baselines.

We also did experiments with ME-TRPO, but we found it cannot handle a long time horizon (1000
time steps in HalfCheetah-v1) since its models will diverge quickly.

16


	Introduction
	Background
	MDPs and Notation
	Transfer Learning

	Why tranferring policy can be difficult? A Simple Illustration
	Model-based and Value-centric (MVC) Reinforcement Learning
	Value-centric method in transfer learning
	Continuous value iteration
	Algorithm

	A Theoretical Justification from the Optimization Perspective
	Experiments
	Setup
	Main Results
	Ablation Study and Diagnosis of Components

	Related Work
	Proofs for the Theorems
	Proposition 1 and Proof
	Proposition 2 and Proof
	Theorem 1 and Proof
	Theorem 2 and Proof

	Details of Illustrative Example
	Implementation Details
	Experiment Details
	Supplementary Materials for Experiments
	Supplementary experiment results

