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ABSTRACT

Previous ternarizations such as the trained ternary quantization (TTQ), which
quantized weights to three values (e.g., {−Wn, 0, +Wp}), achieved the small
model size and efficient inference process. However, the extreme limit on the
number of quantization steps causes some degradation in accuracy. To solve this
problem, we propose a hybrid weight representation (HWR) method which pro-
duces a network consisting of two types of weights, i.e., ternary weights (TW) and
sparse-large weights (SLW). The TW is similar to the TTQ’s and requires three
states to be stored in memory with 2 bits. We utilize the one remaining state to in-
dicate the SLW which is referred to as very rare and greater than TW. In HWR, we
represent TW with values while SLW with indices of values by encoding SLW. As
a result, the networks can preserve their model size with improving their accuracy
compared to ternary weights. To sparsify non-ternary weights in quantization,
we also introduce a centralized quantization (CQ) process with a weighted ridge
(WR) regularizer. They aim to reduce the entropy of weight distributions by cen-
tralizing weights toward ternary values. Our comprehensive experiments show the
efficiency of HWR in terms of the trade-off between model size and accuracy.

1 INTRODUCTION

Deep Neural Networks have made considerable progress in various tasks such as image classification
(LeCun et al. 1998, Simonyan & Zisserman 2014, Szegedy et al. 2015), object detection (Ren et al.
2015, Liu et al. 2016), and speech recognition (Graves et al. 2013, Amodei et al. 2016). However,
outstanding neural networks usually require deeper and/or wider layers, thus making them hard
to deploy on mobile and embedded devices. In response to this problem, many studies set their
sights on more efficient networks. Various methods such as pruning (He et al. 2017), light-weights
(Howard et al. 2017), and quantization (Courbariaux et al. 2015) have been carried out to reduce the
model size and/or computation complexity effectively.

In ternarization, the accuracy degradation is resulted from quantizing values in a limited range with
only 2bits. For example, the ternary weights networks (TWN, Li et al. 2016) yields only three quan-
tized values, which prohibits the networks from utilizing high weight values. As known in Han
et al. 2015b, large-valued weights tend to have an important role in the prediction. Therefore, the

Figure 1: Comparison between conventional quantization and hybrid weight representation (HWR).
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absence of large values can cause the accuracy degradation. To solve this problem, our paper pro-
poses a hybrid weight representation (HWR), expressing networks with both ternary weights (TW)
and sparse-large weights (SLW). By taking the advantages of both the TW and SLW, the proposed
HWR method can preserve their model size compared to ternary weights, as well as avoiding the
accuracy degradation in networks.

To be specific, the large values of SLW help networks to improve their accuracy. Furthermore, SLW
can be encoded with one remaining state which is not used to store TW in a 2 bits representation. It
allows the networks to preserve their model size similarly to ternary weights. The compression rate
of the encoding method is affected by the entropy of weight distributions. To train narrower distri-
butions for the efficiency of HWR, we also introduce a centralized quantization (CQ) process and a
weighted ridge (WR) regularizer. Figure 1 shows the differences between conventional quantization
and HWR. As shown in Figure 1, there is a small number of SLW and the indices of encoded SLW
are allocated in storage, unlike TW.

We conduct various experiments, showing that HWR obtains better classification accuracy with
the similar model size compared to the trained ternary quantization (TTQ, Zhu et al. 2016), which
is a baseline ternarization method. The experiments are carried out on CIFAR-100 (Krizhevsky
et al. 2009) and ImageNet (Russakovsky et al. 2015). We use AlexNet (Krizhevsky et al. 2012)
and ResNet-18 (He et al. 2016) as baseline networks. Our proposed representation improves the
AlexNet performance on CIFAR-100 by 4.15% with only 1.13% increase in the model size.

The contributions of this paper are as follows:

• We propose a hybrid weight representation (HWR), including both values (TW) and indices
of values (SLW). SLW allows the networks to improve their accuracy. Besides, the model
size can be preserved by encoding SLW with one remaining state of 2 bits for TW.

• We propose a training process, namely centralized quantization (CQ), to improve the effi-
ciency of HWR. In CQ, we can sparsify almost large weights toward ternary weights. The
low entropy of the centralized distribution improves the compression rate of encoding.

• We propose a regularizer, namely weighted ridge (WR), which gives more penalty to large
weights. WR is utilized to centralize weights for narrower distributions and categorize the
weights into TW and SLW.

2 RELATED WORK

Quantization In low precision training, one major difference from full precision training is that
the conventional 32-bits weights (w) are discretized by a quantization funtion and represented with
the finite number of elements. The discretized weights (wq) are multiplied by input matrices in the
feed-forward pass. For example, the binarized neural networks (BNN, Courbariaux & Bengio 2016)
utilized a sign function to quantize weights and activations to {-1, +1}. The binarized weights (wb)
are defined as:

wb = sign(w), sign(x) =

{
+1 if x ≥ 0
−1 otherwise

In XNOR-Net (Rastegari et al. 2016), input data is even binarized. Furthermore, the multiplication
and addition operations in convolution layers are replaced with XNOR and bit-count operations,
respectively. In TWN (Li et al. 2016), the binarized weights are pruned by thresholding as:

wt =

{
+WE if w > ∆

0 if |w| ≤ ∆
−WE if w < −∆

,
∆ = 0.7 · E(|w|)

WE = E
i∈{i|∆<|w(i)|}

(|w(i)|)

In DoReFa-Net (Zhou et al. 2016), they carried out experiments in a wider bit-width and also quan-
tized the gradients. The quantized weights in k bit-width (wk) by a quantization function (Qk(·))
are described as:

wk = 2 ·Qk( tanh(w)
2max(|tanh(w)|) + 0.5)− 1 , Qk(x) = round(x·(2k−1))

2k−1
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Figure 2: Overall processes of the hybrid weight representation (HWR). The weights are initialized
from a full precision model trained with ReLU1 activation. First of the centralized quantization
(CQ), the weights are quantized with the weight ridge (WR) as a regularizer. By WR, the quantized
weights are also centralized under threshold and categorized into ternary weights (TW) and sparse-
large weights (SLW) by threshold. Second, selective quantization (SQ) is applied to fine-tune the
weights of the previous step. Finally, SLW is encoded by one usable state of TW as a prefix.

In back-propagation, their is a major concern caused by discretization of full precision weights (w).
The derivatives of the discretizing functions such as sign(·) and Qk(·) have zero values at almost
input ranges. Therefore, the gradients of w, calculated from the discretized weights (wb, wt, and
wk), are also zero values and prevent w from optimizing. To solve this vanishing gradient problem,
the straight-through estimator (STE) method (Hinton et al. 2012, Bengio et al. 2013) is proposed,
where not calculating the gradients ofw. In other words, the gradients ofw ( ∂L∂w ) is replaced with the
gradients of the discretized weights ( ∂L∂wb

, ∂L
∂wt

, and ∂L
∂wk

) instead of back-propagating zero gradients
from discretizing functions.

∂L
∂w = ∂L

∂wb
= ∂L

∂wt
= ∂L

∂wk

Above methods are linear quantization which have the same intervals between adjoining quantum.
By quantizing with the same intervals, the float operations can be replaced to the integer operations.

Their are also non-linear quantization methods that the weights have irregular intervals. For in-
stance, the deep compression (Han et al. 2015a) clustered the weights to quantize and fine-tuned the
quantized weights of each clustering group. In TTQ (Zhu et al. 2016), they quantized the weights
to ternary values with two trainable scale coefficients for negative and positive weight values, i.e.,
{−Wn, 0, +Wp}. In these cases, the model size can be significantly reduced by replacing the weight
values with the indices of them. However, the indices are needed to be transformed as weight values.
And the irregular intervals make it difficult to utilize integer-based and bit-wise operations.

Entropy coding The Huffman coding (Van Leeuwen 1976) aims to compress bit-streams in a loss-
less manner by reducing bit-length of each element with an optimal prefix tree. The entropy of the
weight distribution is one of the important factors that determine the compression rate in Huffman
coding. Deep compression (Han et al. 2015a) pruned the weights to make lower entropy so saved
more storage when applying the Huffman coding.

Regularization The regularization is utilized to manipulate weights in artificial direction by impos-
ing penalty. There are two conventional regularizers such as Ridge (L2) and Lasso (L1) (Han et al.
2015b). The L2 weight decay usually prevents networks from being biased on the training dataset by
restricting weights from growing. The penalty of Lasso makes the weights to be close to zero value
which are unrelated to predict outputs during training-time. Moreover, the explicit loss of Zhou
et al. 2018 makes it possible to quantize weights by controlling the strength of their regularizer. The
penalty of regularization can be utilized to change the entropy of the weight distribution.

From previous studies, we focus on that ternary weights, linearly quantized, only require three states
when being stored in 2bits, thus the remaining state has a potential to be utilized as a prefix of more
extended weights for improving efficiency in quantization. Furthermore, we draw a deduction that
the regularization can help us to generate the lower entropy of the weight distribution, maximizing
the compression efficiency when encoding the extended weights.
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3 METHOD

In this section, we explain: i) how centralized quantization (CQ) can centralize weights toward
ternary values and categorize the weights into TW and SLW; and ii) how the quantized weights
are encoded to be expressed as hybrid weight representation (HWR). The detailed processes are
illustrated in Figure 2.

3.1 BASIC QUANTIZATION METHOD

The basic quantization (BQ) uses a round function to simply quantize the full precision weights (w).
The quantization function (Qw(·)) of BQ is fixed for each layer during training-time. Equation 1
shows how w is quantized to wq by Qw(·). The rng in Eq 1 is the fixed range of w while low
precision training, determined by the maximum absolute value of the pre-trained weights (Mwp

=
max(|wp|)). Before being entered into Qw(·), w is clipped to wc by rng to prevent misquantization
of the round function. The Qw(·) also requires the number of quantization states (s) ascertained by
the number of bits. To be specific aboutQw(·), thewc is scaled by a float value to be discretized then
it is restored by the reciprocal to the float value after the round function. Using STE, the derivative
of wc ( ∂L∂wc

) is replaced with the derivative of wq ( ∂L∂wq
). By clipping w, we can take a saturation

effect on w as in BNN (Courbariaux & Bengio 2016). But if some weights still over rng then w can
be restated by clipping again after updating gradients.

wq = Qw(wc, rng, s) = round(wc ·
s−1

2

rng
) · rngs−1

2

, wc = clip(w, −rng, rng) (1)

To quantize activated values, we restrict the range of activated values by using ReLU1 function as
activation. The activated values with ReLU1 (a) can be quantized to aq in k bit-width by a round
function in Equation 2. As shown in TTQ (Zhu et al. 2016), initializing with the pre-trained model
helps the networks to improve their quantization performance. To take this advantage, our training
starts with a full precision model in which weights are pre-trained with ReLU1 activation.

a = ReLU1(x) = clip(x, 0, 1) = min(max(0, x), 1)

aq = Qa(a, k) = round(a · (2k − 1)) / (2k − 1)
(2)

3.2 WEIGHTED RIDGE

We introduce a new version of L2 weight decay, namely weighted ridge (WR), which aims to achieve
two objectives: i) centralizing almost all weights toward below the threshold; and ii) categorizing
the weights into TW and SLW by the threshold at the end of re-training.

(a) L2 and pL1 (b) WR (c) the derivative of WR

Figure 3: Specifications of weighted ridge (WR). (a) plots both a normal L2 and a part of L1 (pL1).
The WR is an addition of them as in (b). (c) is the derivative of WR.

In this step, we quantize full precision weights (w) by the basic quantization (BQ) with WR as a
regularizer. This step’s quantization function is defined using Equation 1:

wq = Qw(clip(w, −Mwp
, Mwp

), Mwp
, st + ssl) (3)

where the rng in Equation 1 is the maximum absolute value of the pre-trained weights (Mwp
=

max(|wp|)), fixed during re-training. The s in Equation 1 is derived from the number of bits of
SLW (bsl). If bsl is 2, 3, or 4 bits then the number of quantization steps of SLW (ssl) is calculated
to 4, 8, or 16 while the number of bits and quantization steps of TW (bt and st) are fixed to 2 and 3.

4



Figure 3 (b) denotes WR which is a mixture of both a normal L2 and a part of L1 (pL1) in (a).
The loss of pL1 is only proportionate to the absolute value of the weight which is greater than the
threshold (thresh). In other words, the large weights receive more penalty compared to the weights
under thresh in back-propagation as illustrated in Figure 3 (c). This penalty allows us to sparsify
the weights that do not have the necessity to keep their largeness. WR, pL1, and thresh are defined:

WR(w, λ1, λ2) = λ1(L2(w) + λ2 ·Mwp
· pL1(w)) (4)

pL1(w) =

{
|w| − thresh if |w| > thresh

0 if |w| ≤ thresh , (thresh = Mwp
· st
st + ssl − 1

) (5)

There are two hyper-parameters (λ1 and λ2) which are tools to control the intensity of WR. By
adjusting the greater λ2, more weights can be sparsified below thresh. The Mwp

is also a factor for
applying different intensity to each layer since some layers have too small Mwp than others.

At the end of applying WR, we classify the re-trained weights into TW and SLW. The thresh is
utilized as a criterion for labeling them as Equation 6.

mask(w) =

{
TW if |w| ≤ thresh
SLW if |w| > thresh

(6)

An observation is that WR tends to avoid overfitting as effectively as the L2 regularizer. By adjusting
WR, we can obtain better accuracy than the L2 weight decay in some experiments as in Table 3.

3.3 SELECTIVE QUANTIZATION

(a) mask(w) = TW (b) mask(w) = SLW

Figure 4: In the selective quantization (SQ), two different quantization functions are applied for
each category (TW and SLW).

The selective quantization (SQ), the second step of CQ, aims to fine-tune the previous step’s weights
which are restricted by the additional penalty of the part of L1 (pL1). By removing pL1, the re-
stricted weights can grow again and be more optimized for classification. The key of SQ is that two
different quantization functions are applied for each category. As shown in Figure 4 (a), the weights
in TW category are always ternarized, thus the percentage of TW is guaranteed during fine-tuning.
Otherwise, the weights in SLW category can be quantized to either ternary values or large values
as Figure 4 (b). The quantization function of SQ (Qs(·)) can be expressed as Equation 7, modified
from Equation 3 (The explanations for Mwp , thresh, st, and ssl are in Section 3.2). At the end
of fine-tuning, the fine-tuned weights are re-categorized by the same way as Equation 6. This fine-
tuning step can be skipped depending on the result of SQ, if it yields only slight difference compared
to the weighted ridge (WR).

Qs(w) =

{
Qw(clip(w, −thresh, thresh), thresh, st + 1) if mask(w) = TW
Qw(clip(w, −Mwp , Mwp), Mwp , st + ssl) if mask(w) = SLW

(7)

Specifically, we use the stochastic gradient descent optimizer (SGD, Bottou 2010) in this fine-tuning
step. The momentum optimizer (Sutskever et al. 2013) can misrepresent gradients since the weight
values are clipped after updating gradients.
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(a) bt = 2, bsl = 2
st = 3, ssl = 4

(b) bt = 2, bsl = 3
st = 3, ssl = 8

Figure 5: Encoding trees of hybrid weight representation (HWR). In HWR, we represent TW with
values while SLW with indices of values. The number of bits and quantization steps of TW (bt, st)
are fixed to 2, 3. In contrast, them of SLW (bsl, ssl) can be changed to (2, 4), (3, 8), or (4, 16).

3.4 ENCODING SPARSE-LARGE WEIGHTS

The distributions of centralized-quantized weights have low entropy since there are only small num-
ber of SLW. It allows the networks to achieve a higher compression rate by encoding SLW. We
utilize one remaining state of TW as a prefix to encode SLW as shown in Figure 5. As a result, the
hybrid weight representation (HWR) method includes both the values (TW) and the indices (SLW)
when the weights are allocated in memory.

There are some advantages of using HWR. The model size can be maintained similar to TTQ (Zhu
et al. 2016) since SLW is very rare. The restoration of encoded SLW is not that difficult. The value
of SLW can be restored by taking the first sign bit of bsl and adding 2 to the rest of bsl. However,
there is a concern that HWR causes more complex and extra burden to memory access and inference
time due to the SLW. To minimize the negative effect of SLW, we suggest to utilize the sparsity
of SLW by gating them or applying a variant of sparse matrix-vector multiplication. Then the TW
takes up most of the weights and still has the potential to keep some benefits of ternary weights
such as replacing multiplication operations to sign assignment operations (Rastegari et al. 2016)
and utilizing gates for skipping zero weights (Deng et al. 2018). More details about our proposed
inference methods are in Appendices C.

4 EXPERIMENT RESULTS

Model architecture We utilize AlexNet (Krizhevsky et al. 2012) and pre-activated ResNet-18 (He
et al. 2016) as baseline models, implemented on Tensorflow (Abadi et al. 2016) framework. In
AlexNet, we use a variant of it by adding batch normalization (Ioffe & Szegedy 2015) layers and
removing dropout layers. In ResNet, we change two things: i) not using skip-connection for the
first block of ResNet-18, since the first layer is not quantized and the not quantized weights cannot
be entered into the add operations to keep integer-precision stream while inference-time; and ii)
mediating of two quantum intervals from convolution layers. In add operations, each input from
two convolution layers has different quantum interval due to layer-wise quantization functions. The
different intervals make it hard to keep integer-precision stream after add operations. More details
of ResNet-18 are explained in Appendices A.

4.1 EXPERIMENTS ON CIFAR-100

Training setup We set the learning rate of AlexNet to 0.01 with decay 0.1 after every 100 epochs
until 300 epochs and the L2 weight decay (λ1) to 0.02. We also set the learning rate of ResNet-18
to 0.1 with the same decay of AlexNet and the λ1 to 0.0002. For the dataset, we select CIFAR-100
Krizhevsky et al. 2009) and set the minibatch size to 128 to estimate the performance of networks.
We also use Nesterov Accelerated Gradients (Sutskever et al. 2013) as an optimizer. To prevent
the fluctuation of validation accuracy, we take a simple moving averages (sma) in 5 epochs during
training-time and average the sma over four repetitions. All experiments are our implementation.
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Table 1: The results of both the top-1 accuracy and the average bit length in multiple bit-width. The
full experiments of ResNet-18 are listed in Appendices E

Model
Name

Bit-W
(bt/bsl)

Bit-A λ2
Percentage

of SLW
Average

Bit Length
Top-1

Accuracy Remarks

AlexNet 32 32 - - - 75.06% FP
AlexNet 32 32 - - - 74.78% FP(ReLU1)
AlexNet 2 / - 4 - 0% 2 70.57% TTQ*
AlexNet 2 / 3 4 - 12.05% 2.362 73.54% BQ
AlexNet 2 / 3 4 1.2 1.39% 2.042 73.39% BQ+WR
AlexNet 2 / 3 4 - 0.83% 2.025 74.72% SQ

ResNet-18 32 32 - - - 76.07% FP
ResNet-18 32 32 - - - 74.54% FP(ReLU1)
ResNet-18 2 / - 4 - 0% 2 72.79% TTQ*
ResNet-18 2 / 2 4 - 0.59% 2.0118 73.92% BQ
ResNet-18 2 / 2 4 1.0 0.014% 2.0003 73.92% BQ+WR
ResNet-18 2 / 2 4 - 0.0015% 2.00003 74.22% SQ
ResNet-18 2 / 3 4 - 7.34% 2.2203 74.07% BQ
ResNet-18 2 / 3 4 1.0 0.434% 2.013 74.05% BQ+WR
ResNet-18 2 / 3 4 - 0.321% 2.0096 74.67% SQ
ResNet-18 2 / 4 4 - 28.80% 3.1521 74.54% BQ
ResNet-18 2 / 4 4 1.0 4.995% 2.2 74.32% BQ+WR
ResNet-18 2 / 4 4 - 4.145% 2.166 74.84% SQ

Implementation Our experiments show the comparison between our proposed methods (BQ, BQ
with WR, and SQ in Section 3) and TTQ (Zhu et al. 2016) as a baseline model. In weight quan-
tization, the number of bits of TW (bt) is fixed to 2 while the number of bits of SLW (bsl) can be
changed to 2, 3, or 4. In activation quantization, we select 4 bits to quantize the activations. For the
original TTQ paper, they did not quantize activated values. In our implementation of TTQ (TTQ*),
we quantize activations with the same quantization function in Equation 2 to make similar condi-
tion. Also, our ResNet-18 architecture for TTQ* can be different from the origian TTQ as written
above. We quantize all the weights and activations, even the last activation before the global average
pooling, except the weights of first and last layers and the outputs of soft-max layer.

In Table 1, the effect of the weighted ridge (WR) regularizer can be found out from the comparison
of the basic quantization (BQ) and BQ with WR. The results of BQ+WR show more centralized
distribution and less accuracy than only BQ. Furthermore, we observe that the results of the selective
quantization (SQ) have more centralized distribution than BQ+WR and more improved accuracy
than BQ, removing the part of L1 in WR and fine-tuning the restricted weights by WR. After the
encoding step, the difference of the average bit length between SQ and TTQ* becomes similar.
When bsl is 3 for AlexNet, SQ reaches top-1 accuracy of 74.72%, which is 4.15% higher than
TTQ*, with only 1.25% increase in the model size. In ResNet-18, when bsl is 3, the top-1 accuracy
of SQ is 1.88% higher than TTQ* with only 0.5% loss in the model size.

4.2 EXPERIMENTS ON IMAGENET

Training setup We performed the experiments of ResNet-18 on ImageNet (Russakovsky et al. 2015)
dataset. We set the learning rate to 0.1 with decay 0.1 after 25, 50, 75, and 80 epochs until 85 epochs
and the minibatch size to 256. We use the momentum optimizer (Sutskever et al. 2013). We take a
simple moving average of validation error in 5 epochs during training-time.

In Table 2, the results of BQ, BQ+WR, and SQ on ImageNet show a similar tendency of the results
on CIFAR-100. The SQ (bsl = 4) reaches top-1 accuracy of 59%, which is 6.41% higher than TTQ*,
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Table 2: The results of both the top-1 accuracy and the average bit length on ImageNet dataset.

Model
Name

Bit-W
(bt/bsl)

Bit-A λ2
Percentage

of SLW
Average

Bit Length
Top-1

Accuracy Remarks

ResNet-18 32 32 - - - 70.41% FP
ResNet-18 32 32 - - - 62.51% FP(ReLU1)
ResNet-18 2 32 - 0% 2 66.6% TTQ
ResNet-18 2 4 - 0% 2 52.59% TTQ*
ResNet-18 2 / 3 4 - 1.11% 2.033 55.51% BQ
ResNet-18 2 / 3 4 0.25 0.84% 2.025 55.20% BQ+WR
ResNet-18 2 / 3 4 - 0.54% 2.016 57.67% SQ
ResNet-18 2 / 4 4 - 4.012% 2.161 58.43% BQ
ResNet-18 2 / 4 4 1 0.293% 2.012 56.70% BQ+WR
ResNet-18 2 / 4 4 - 0.269% 2.011 59.00% SQ

with only 0.55% loss in the average bit length. One notable point is that using ReLU1 activation
causes large accuracy degradation, even the accuracy of TTQ (Zhu et al. 2016) is higher than the
full precision model with ReLU1.

4.3 ABLATION STUDY

Table 3: The results of the weighted ridge (WR) regularizer on full precision models.

Model
Name

Quantizaton
Plan (bt/bsl)

λ2
Top-1

Accuracy Remarks

AlexNet - - 75.06% FP
AlexNet 2 / 3 1.2 75.32% FP+WR

ResNet-18 - - 76.07% FP
ResNet-18 2 / 2 1 76.49% FP+WR
ResNet-18 2 / 3 1 76.28% FP+WR
ResNet-18 2 / 4 1 76.88% FP+WR

In this study, we try to observe the effect of the weighted ridge (WR) regularizer on full precision
models as shown in Table 3. When λ2 is set to 1, the penalty of the part of L1 (pL1) of WR
is calculated to the maximum absolute value of the pre-trained model (Mwp

) by the derivative of
Equation 4, which is sufficiently large because the penalty Mwp

is same with the maximum penalty
of L2 (Mwp

). The results of AlexNet and ResNet-18 with WR obtain 0.26% and 0.81% higher
accuracy than the base-line models. The pL1 prevents the networks from overfitting as effectively
as L2 regularizer. We conjecture that the biased large weights toward training dataset have more
negatively effect on generalization than small weights. Therefore, the restriction of large weights
enables us to make more generalized models. More ablation studies are in Appendices B.

5 DISCUSSION

5.1 TRADE-OFF BETWEEN ACCURACY AND MODEL SIZE

We perform more extended experiments in various λ2 of WR to monitor the correlation between the
percentage of SLW and the accuracy of ResNet-18 on CIFAR-100. The complete results are listed
in Appendices E. Figure 6 shows that the intensity of pL1 (λ2) in Equation 4 has less relation with
the classification accuracy. In spite of the greater λ2, some results show even better accuracy than
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Figure 6: The trade-off between accuracy and model size in various λ2(2, 1, 1
2 ,

1
4 ,

1
8 ,

1
16 ).

lower λ2. Therefore, we can perceive that many large weights in networks can be centralized with
comparable accuracy, accompanied of generalization.

5.2 THE WEIGHT DISTRIBUTIONS

(a) BQ (b) BQ+WR (c) SQ

Figure 7: The weight distributions of each method.

As illustrated in Figure 7, the blue and red bars refer to the percentage of TW and SLW respectively.
In the SQ step, the forcibly restricted weights by WR can grow during fine-tuning, resulting in less
percentage of SLW than BQ+WR as in Table 1. From that, we assume that when a weight starting
to grow in fine-tuning begins to contribute more importantly for prediction than some other weights
which have made a similar contribution with the growing weight, the other weights become smaller
in contrast. The most central weights of SLW in BQ+WR are wide-spread after SQ step. This shows
that the penalty of pL1 cannot be proper to make more naturally centralized distributions. To make
more flatten distributions after centralization, we suggest using another version of WR which utilize
a part of exponential lasso (pEL1, Breheny 2015) instead of pL1 as written in Appendices D.

5.3 ANALYSIS OF QUANTIZATION METHOD.

Figure 8: Layer-wise comparison of the percentage of SLW and the maximum absolute value.

Figure 8 displays the layer-wise maximum absolute value and percentage of SLW. If one layer has
many SLW after BQ then the layer tends to have a relatively higher number of SLW after SQ. The
maximum absolute values (max-abs) of SQ tend to be larger than them of BQ since the restriction
of the number of SLW causes more strong gradients for large weights. The max-abs of BQ are
remarkably lower than the full precision model, used to fix the range of quantization functions at
initialization. That shows a problem that the basic quantization (BQ) method is not an effective way
because some layers do not use the whole quantization states. For this reason, we need to apply
more effective quantization methods instead of BQ. The following Table 4 lists other methods.
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Table 4: Classification accuracy of the state-of-the-art quantization methods trained on ImageNet
with Resnet-18 model. Bit-W and Bit-A refer to the weights and activations bit-width respectively.

Model Bit-W Bit-A Top-1
Accuracy

HWR (ours, bt/bsl = 2/3) 2/3 4 57.67%
HWR (ours, bt/bsl = 2/4) 2/4 4 59.00%
ABC-Net (Lin et al. 2017) 3 3 61.0%
PACT (Choi et al. 2018) 4 4 69.2%
QIL (Jung et al. 2019) 4 4 70.1%

The state-of-the-art quantizations Table 4 presents that our method HWR has less accuracy than
other state-of-the-art quantization methods. There are two main reasons: i) more complex quanti-
zation methods. For example, PACT (Choi et al. 2018) use parameterized clipping activation and
QIR (Jung et al. 2019) use a transformer before discretizing weights; ii) differences of detail of
ResNet-18 architecture. As explained in Section 4, we try to keep the integer-precision stream dur-
ing inference-time. Especially, the skip-connections and add operations of ResNet can disturb the
stream to maintain integer-precision since two outputs from different convolution layers, having
different quantization intervals, should be added.

To deal with that BQ has low performance, the state-of-the-art quantization methods can be harmo-
nized with the centralized quantization (CQ) process. The full precision model for initialization can
be replaced with the pre-quantized model trained by those methods. The quantization function of
BQ can be replaced with the quantization function of the pre-quantized model.

6 CONCLUSION

We propose the hybrid weight representation (HWR), consisting of two types of weights such as the
ternary weights (TW) and sparse-large weights(SLW). In HWR, we represent TW with values while
SLW with indices of values. To represent SLW as indices, we encode SLW by utilizing one usable
state as a prex, which is not used to store TW in 2 bits. To maximize the effect of encoding, we
introduce the centralized quantization (CQ) process: i) applying the basic quantization (BQ) with
the weighted ridge (WR) as a regularizer to centralize and categorize the weights; and ii) applying
the selective quantization (SQ) to fine-tune the weights. After encoding process, the model size of
HWR is similar with the TTQ even non-ternary weights exist. Additionally, we propose a method
to mediate two different quantum intervals of add operations in ResNet to keep the integer-precision
stream while inference-time. As a result, SLW helps the networks to improve their accuracy while
preserving their model size by encoding SLW compared to the 2-bit representation. We can achieve
more efficient networks in terms of the trade-off between accuracy and model size.

7 FUTURE WORK

We consider three ways to extend our research: i) using more accurate quantization method instead
of BQ. The pre-quantized weights and quantization functions from state-of-the-art methods can be
utilized for HWR; ii) using more bits for central weights. In mid-tread and symmetrical quantization,
there is still one remaining state similarly with the ternary weights. Therefore, more experiments
can be carried out to find the optimal number of bits for center and edge weights; and iii) verifying
the performance of suggested inference methods. As written in Appendices C, we suggest efficient
inference methods utilizing the sparsity of SLW to minimize the extra burden caused by SLW.
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A DETAILS OF RESNET

A.1 THE MEDIATION OF QUANTUM INTERVALS

Figure 9: Before add operations in ResNet, the outputs of last convolution layers from each block
are scaled by a scale factor r, derived from the maximum absolute values of convolution layers.

In our quantization method, the weights and activations are quantized in the same intervals (wq =
iw ·Iw, aq = ia ·Ia). The Iw and Ia are fixed float intervals while the iw and ia are integer variables.
Therefore, convolution and fully-connected layers can be inferred by integer operations as Equation
8. Other operations such as batch normalization (BN, Ioffe & Szegedy 2015), ReLU1 activation,
and the Qa(·) also can be integrated and compressed by integer comparators (Lahoud et al. 2019,
Lin et al. 2017) since the coefficients of BN and boundaries of ReLU1 and Qa(·) are fixed so can be
prearranged.

oq = layer(aq, wq) =
∑∑

aqwq = IaIw ·
∑∑

iaiw (8)

However, ResNet (He et al. 2016) has identity mappings and add operations that prevent the data
streams from keeping the same quantum intervals due to the layer-wise intervals. To deal with this
problem, we scaled one input of add operations by a scale factor r as defined in Equation 9. The r is
derived from the maximum absolute values of the shortcut (mshort) and last convolution (mconvb )
layers from each block as in Figure 9. Since we use a log and floor function, r is always in the
range (0.5, 1] and it helps to keep the effect of identity mapping of ResNet. If r is zero then nothing
is added in the add operation or if r is larger than 1 then the shortcut can be perturbed by a large
residual.

r = f(mshort,mconvb) =
mshort

mconvb

· 2

⌊
log2

mconvb

mshort

⌋
, (0.5 < r ≤ 1) (9)

By adjusting r, two different intervals from jth (shortcut) and kth (convb) convolution layers can
be mediated and it will allow us to add two inputs with only shift operations (multiplication of
multiple of 2) as Equation 10.

add(ojq, o
k
q ) = mshort · (2

−

log2

Ika I
k
w

IjaI
j
w


·
∑∑

ijai
j
w +

∑∑
ikai

k
w) (10)

A.2 THE FIRST RESIDUAL BLOCK OF RESNET

In our quantization, the first convolution layer is not quantized. Therefore, to prevent ResNet from
having mixed precision output after add operations, our first residual block do not have a skip-
connection even though the input shape of the block is same with the output shape of the first layer.
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B ABLATION STUDY

B.1 FIXING THE RANGE OF THE QUANTIZATION FUNCTION

Table 5: Comparison of non-fixing the range of the quantization function (TTQ*) and fixing them
(TTQ**).

Model
Name Bit-W Bit-A Top-1

Accuracy Remarks

AlexNet 32 32 75.06% FP
AlexNet 2 4 70.57% TTQ*
AlexNet 2 4 72.04% TTQ**

ResNet-18 32 32 76.07% FP
ResNet-18 2 4 72.79% TTQ*
ResNet-18 2 4 73.55% TTQ**

To observe the effect of the fixed range of the basic quantization (BQ) method, we perform a par-
ticular experiment. The results of our implementation of TTQ (TTQ*) is performed with the quan-
tization function of which the range is not fixed. On the other hand, a version of implementation
(TTQ**) have two different conditions compared to TTQ*: i) fixing the range of the quantization
function at initialization; and ii) using one coefficient as {-Ws, 0, +Ws}. When applying them,
the accuracy of AlexNet and ResNet-18 are rather improved by 1.47% and 0.76%. The results of
TTQ** shows that the fixed range also can be utilized for quantization. Additionally, TTQ set a
constant t to 0.05 for quantizing weights under t ·max(|w|) as zero values. In our method, however,
if bsl is 2, 3, or 4 bits then the t is derived as 1

6 , 1
10 , or 1

18 . All our t are higher than 0.05 of TTQ and
it can cause worse results since L2 regularizer gives more penalty to the larger weights.

B.2 MEDIATION OF QUANTUM INTERVALS

Table 6: The results of applying the scaling factor r, derived from the maximum absolute values of
two inputs of add operations, to mediate two different intervals on ResNet-18 with full precision.

Model
Name Scaling Activation

function λ1
Top-1

Accuracy
ResNet-18 - ReLU 0.0002 76.07%
ResNet-18 mshort

mconvb
ReLU 0.0002 75.80%

ResNet-18 r ReLU 0.0002 76.15%
ResNet-18 - ReLU1 0.0002 74.54%
ResNet-18 mshort

mconvb
ReLU1 0.0002 74.16%

ResNet-18 r ReLU1 0.0002 74.54%

In Table 6, the experiments are conducted to observe the effect of the coefficient r, introduced in
Appendices A.1, on the accuracy of ResNet-18. We compare three coefficients such as zero, r in
Equation 9, and mshort/mconvb . We observe that r performs as similar as non-scaled models. As
mentioned in Appendices A.1, the mshort/mconvb , greater than 1, can perturb the shortcut connec-
tions. We apply r scaling for all our quantization experiments on ResNet-18.

C EFFICIENT INFERENCE METHODS

In this section, we suggest two methods for efficient inference of HWR. Those methods utilize the
sparsity of SLW to minimize the extra burden caused by SLW and the benefit of ternary weights that
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the multiplication of ternary weights can be replaced with the sign assignment operation (Rastegari
et al. 2016).

C.1 GATED MULTIPLICATION

Figure 10: Computing architecture for HWR in inference time. According to the TW of each weight
(W1), the operation for input (X1) is determined. There are two operations such as sign assignment
(sign asgmt) and integer multiplication (MUTT) for each type, TW and SLW.

In GXNOR-Net (Deng et al. 2018), they proposed gated XNOR architecture to take an advantage of
binary weights when using ternary weights. If the input or weight are zero then the multiplication
can be skipped while if they are not zero then the XNOR operation can be applied similarly with the
XNOR-Net (Rastegari et al. 2016). In HWR case, we use enable pins as gates to divide two cases of
TW and SLW. As shown in Figure 10, if the TW is 012 or 112 and input is not zero then only sign
assignment operation (sign asgmt) is done while if the TW is 102 then only integer multiplication
(MUTT) is done. The sign-assigned or multiplied values are added at the end to be an output of one
neuron.

C.2 SEPARATED MULTIPLICATION

Figure 11: Computing architecture for HWR in inference time. There are two weight matrices such
as a dense matrix WTW and a sparse matrix WSLW . The original weight matrix can be restored by
sum of WTW and WSLW . In inference time, sign assignment operation is carried out with WTW

while sparse convolution is carried out with WSLW . The output of a layer is sum of outputs from
two operations.

In conventional layer, there is only one weight matrix. On the other hand, we can divide the one
quantized matrix (Wq) to two matrices such as a dense matrix WTW and a sparse matrix WSLW as
in Equation 11.

Wq = WTW +WSLW (11)

The WTW and WSLW can be described as:

WTW =

{
Wq if mask(w) = TW
0 otherwise

, WSLW =

{
0 otherwise
Wq if mask(w) = SLW

(12)
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In inference time, the multiplication of quantized activations (Aq) and quantized weights (Wq) also
can be divided as:

Aq ·Wq = Aq ·WTW +Aq ·WSLW (13)

For multiplication of Aq and WTW , the only sign assignment is required. For multiplication of Aq
and WSLW , we can utilize sparse convolution operation (Park et al. 2016) to reduce computational
complexity. After applying each operation, two calculated results are added to be an output of a
layer.

D A PART OF EXPONENTIAL LASSO

(a) L2 and the pEL1 (b) the version of WR (c) derivative of the version of WR

Figure 12: Another version of WR, using the part of exponential lasso (pEL1) instead of pL1. (a)
denotes both L2 and pEL1. The version of WR is addition of them as in (b). (c) is the derivative of
the version of WR.

In Figure 7 (b), the most central weights in SLW has a particularly high probability than other
weights in SLW. This is because the penalty of pL1 prevents the weights from being large. If the
penalty of pL1 for the weights, large enough for thresh, is reduced then the particularly centralized
weights would grow well. For that, we suggest a version of WR which utilize a part of exponential
L1 (pEL1, Breheny 2015) instead of pL1. The version of WR (WR*) and pEL1 can be defined as
Equation 14, 15. The τ is an additional tuning parameter.

WR∗(w, λ1, λ2) = λ1(L2(w) + λ2 ·Mwp
· pEL1(w)) (14)

pEL1(w) =

{
λ2

τ

{
1− exp

(
− τ
λ2
· (|w| − thresh)

)}
if |w| > thresh

0 if |w| ≤ thresh
(15)

E FULL EXPERIMENTS OF RESNET-18

Table 7 shows the full version of our experiment results on CIFAR-100 dataset with ResNet-18
model in various λ2.
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Table 7: The experimental results of HWR and CQ in multiple bit-width and various λ2.

Model
Name

Bit-W
(bt/bsl)

Bit-A λ2
Percentage

of SLW
Average

Bit Length
Top-1

Accuracy Remarks

ResNet-18 32 32 - - - 76.07% FP
ResNet-18 32 32 - - - 74.54% FP(ReLU1)
ResNet-18 2 / - 4 - 0% 2 72.79% TTQ*
ResNet-18 2 / 2 4 - 0.59% 2.0118 73.92% BQ
ResNet-18 2 / 2 4 0.0625 0.373% 2.0075 73.57% BQ+WR(1)
ResNet-18 2 / 2 4 - 0.092% 2.0018 73.95% SQ(1)
ResNet-18 2 / 2 4 0.125 0.198% 2.004 73.93% BQ+WR(2)
ResNet-18 2 / 2 4 - 0.079% 2.0016 74.07% SQ(2)
ResNet-18 2 / 2 4 0.25 0.095% 2.002 73.73% BQ+WR(3)
ResNet-18 2 / 2 4 - 0.049% 2.001 73.73% SQ(3)
ResNet-18 2 / 2 4 0.5 0.023% 2.0004 74.11% BQ+WR(4)
ResNet-18 2 / 2 4 - 0.0068% 2.00013 73.95% SQ(4)
ResNet-18 2 / 2 4 1.0 0.014% 2.0003 73.92% BQ+WR(5)
ResNet-18 2 / 2 4 - 0.0015% 2.00003 74.22% SQ(5)
ResNet-18 2 / 2 4 2.0 0.0002% 2.000004 73.93% BQ+WR(6)
ResNet-18 2 / 2 4 - 0.0004% 2.0+8e-7 74.08% SQ(6)
ResNet-18 2 / 3 4 - 7.34% 2.2203 74.07% BQ
ResNet-18 2 / 3 4 0.0625 4.955% 2.149 74.19% BQ+WR(1)
ResNet-18 2 / 3 4 - 1.904% 2.057 74.23% SQ(1)
ResNet-18 2 / 3 4 0.125 3.393% 2.102 74.05% BQ+WR(2)
ResNet-18 2 / 3 4 - 1.563% 2.047 74.06% SQ(2)
ResNet-18 2 / 3 4 0.25 2.11% 2.063 74.28% BQ+WR(3)
ResNet-18 2 / 3 4 - 1.147% 2.034 74.52% SQ (3)
ResNet-18 2 / 3 4 0.5 0.967% 2.029 74.1% BQ+WR(4)
ResNet-18 2 / 3 4 - 0.7% 2.021 74.54% SQ(4)
ResNet-18 2 / 3 4 1.0 0.434% 2.013 74.05% BQ+WR(5)
ResNet-18 2 / 3 4 - 0.321% 2.0096 74.67% SQ(5)
ResNet-18 2 / 3 4 2.0 0.018% 2.0006 74.3% BQ+WR(6)
ResNet-18 2 / 3 4 - 0.016% 2.0005 74.11% SQ(6)
ResNet-18 2 / 4 4 - 28.80% 3.1521 74.54% BQ
ResNet-18 2 / 4 4 0.0625 20.67% 2.827 74.56% BQ+WR(1)
ResNet-18 2 / 4 4 - 11.749% 2.47 74.67% SQ(1)
ResNet-18 2 / 4 4 0.125 16.608% 2.664 74.28% BQ+WR(2)
ResNet-18 2 / 4 4 - 10.395% 2.416 74.57% SQ(2)
ResNet-18 2 / 4 4 0.25 12.38% 2.495 74.53% BQ+WR(3)
ResNet-18 2 / 4 4 - 8.462% 2.338 74.78% SQ(3)
ResNet-18 2 / 4 4 0.5 8.108% 2.324 74.26% BQ+WR(4)
ResNet-18 2 / 4 4 - 5.485% 2.219 74.45% SQ(4)
ResNet-18 2 / 4 4 1.0 4.995% 2.2 74.32% BQ+WR(5)
ResNet-18 2 / 4 4 - 4.145% 2.166 74.84% SQ(5)
ResNet-18 2 / 4 4 2.0 1.611% 2.064 74.06% BQ+WR(6)
ResNet-18 2 / 4 4 - 1.381% 2.055 74.73% SQ(6)
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