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end, this paper proposes a novel approach for saliency de- . 1 -
tive, we first establish an eye tracking database which con- = - 5

tection in single-face videos. From the data-driven pecspe £

tains fixations of 70 Single-face videos viewed by 40 sub- (a) Attention distribution (b) Saliency map of ours (c) Saliency map of [37]

' . Through analysis on our we investi ha _.

Jects OL.Ig a alysis Od to)uf data.lbasg’ N gs;[]gamt a Figure 1:An example of video saliency maps generated by our approach
most ?tt?nt@n IS ?t“.'aCte y face in videos, an that at.ten and [37]. Note tha{[37] is a saliency detection approaclirfiages, while
tion distribution within a face varies with regard to facesi ours works on videos. Here, the saliency map$ of [37] arergéstb by re-
and mouth movement. Inspired by the previous work whichgarding each video frame as a still image. The visual atierdistribution
applies Gaussian mixture model (GMM) for face saliency Y 0 subjects is also shown in this figure.

detection in still images, we propose to model visual atten- getecting saliency in videos. All these saliency detection
tion on face region for videos by dynamic GMM (DGMM),  gpproaches are heuristic ones, as they are generally driven
the vanat!on of which relies on face size, mouth movemen-py incorporating biologically-inspired features. Howgve

t and facial landmarks. Then, we develop a long short- e piglogically-inspired features of these approachis re
term memory (LSTM) neural network in estimating DG- heavily on the unmatured study of the human visual system

MM for saliency detection of single-face videos, so called (HVS), leading to inferior performance in saliency detec-
LSTM-DGMM. Finally, the experimental results show that 5.

our approach outperforms other state-of-the-art approeach
es in saliency detection of single-face videos.

Abstract

The past decade has witnessed the popularity of video
conferencing, such as FaceTime and Skype. In video con-
ferencing, almost every frame has a human face. Hence, it
is necessary to predict attention on face videos by saliency
detection, as saliency can be used as a guidance of region-
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Recently, the top-down approaches ([21,[14,[15] 277, 31,
7,22]28| 36,16, 40, 20, 37]) have become more prevalentin
both image and video saliency detection, which learn salien
cy model from human fixations on training images/videos.
These top-down approaches found out that some high-level

Visual saliency([5] aims at predicting how much each features are indeed attractive to visual attention. Ini@art
pixel or region of an image/video attracts human’s atten- lar, face is an obvious high-level feature to attract visaial
tion, which has been widely used in areas of object de- tention, and thus many top-down approaches have incorpo-
tection [16], video quality assessment|[39] and perceptualrated face as a channel for saliency detection of face images
video coding[[35]. The studies on visual saliency can be [6} 40,20/ 37]. To be more specific, Ceff al. [6] inves-
traced back to 1998, when Itti and Koc¢h [19] explored that tigated from eye tracking data that face is highly correlate
intensity, color and orientation information in an image ca with attention, and they therefore proposed to integrate fa
be employed to predict image’s saliency map. Afterwards, channel with the channels of Itti's model [19] using equal
they extended their work to video saliency detectior [18]. weights, for detecting saliency of face images. Later, Zhao
During the past two decades, extensive approaches, such ast al. [40] found that the face channel is more importan-
[17,14,[38,9] 30l 24, 13,18, 12], have been proposed fort than other channels. Accordingly, they proposed to learn

1. Introduction
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the optimal weights of different channels by least square ]
fitting on eye tracking data, further improving the saliency
detection performance df][6]. Most recently, Xtial. [37]

proposed to model the saliency distribution of face region
by Gaussian mixture model (GMM)][3], which is learned
from the training data using the conventional expectation
maximization (EM) algorithm. All above approaches han-
dle images with face, significantly advancing the develop-

ment of top-down saliency detection of images. Figure 2:Proportions of fixations and pixel numbers in different cegi
. . . s,counted on all 70 videos in our database. (a) shows thegimps for
In contrast to top-down image saliency detection meth- e regions of face and background, and (b) illustrates thpaations of

ods, most of the existing video saliency detection approach fixations over different regions of face.
es [18[17. 9,18, 12] make use of the bottom-up information
like motion vector, flicker, as well as spatial and temporal
correlation. On the other hand, face videos| [25] have un-
dergone explosive growth, due to the emerging video con-

ferencing applications, like FaceTime and Skype. As ana- ., mnonents) for the current frame. As such, saliency dis-

!yzgd in this paper Iatgr, face receive_s more visual atner_lti tribution within a face region can be modeled by DGMM.
in videos (77.7% fixations) than that in images (62.3%fixa- £in a1y we combine the modeled face saliency with salien-
tions). Thus, face also plays a vital role in predictingesai cy detected by the conventional feature chanriels [19], to

cy o.fface_videos, similar to its important role in salieney d predict attention on single-face videos. The experimental
tection ofimages. The mostrecentworklof [1] has been pro- ¢ its verify that our LSTM-DGMM approach advances

posed to predict which face is salient among multiple faces, i o gtate_of-the-art saliency detection in single-fackews.
for multiple-face video saliency detection. However, few

work has been devoted to precisely modeling attention dis-2, Database and analysis
tribution within face region for videos. Although video®ar 2 1. Database
composed of images, they are fundamentally viewed differ- . )
ently by people from still images. It is because the dynamic 10 our best knowledge, there exists no eye tracking
changes of pictures in videos can be also seen as saliendatabase on single-face videos. Therefore, we conduct-
cy cues. Thus, video saliency cannot be precisely detectec®d the eye tracking experiment to obtain a database, in
merely by the assembly of image saliency, as shown in Fig_whlgh the fixations on free—wewmg single-face vu_jeos are
ure[d. Figur&ll further shows that face saliency can be mod_ayallable. _ The database is composed of 70 single-face
eled as dynamic GMM (DGMM) in videos, in which the Videos which are selected from 300-VW/[33] database and
GMM distribution of attention varies across video frames. YouTube. The resolutions of all 70 videos in our database
are 1280 x 720, and their frame rates are around 30Hz.

. dBy estabfll|sg|_n gtk?n €ye tra:ﬁklng daztatt;as? of .S'n?tle'f?chhere are 40 subje&s’nvolved in the experiment to watch
videos, we find In this paper that most attention 1S attracted ,, 7 videos, including 24 males and 16 females aging from

by face in videos, the distribution of which varies with re- 21t

. e 0 35.
spect to face size and mouth movement. Upon this finding,
we propose a long short-term memory (LSTM) based DG-
MM (LSTM-DGMM) approach to predict saliency distribu-
tion within a face for videos, in which attention on face and
facial features is modeled by the distribution of GMM. Dif-
ferent from Xu's static learned GMNI[37] for image salien-
cy detection, parameters of GMM are dynamically modified
in our LSTM-DGMM approach to model DGMM distribu-
tion alongside frames, according to the content in videos.
Such dynamic parameters can be learned by our LSTM
from training fixations in our approach. As far as we know,
LSTM [11]] is an advanced recurrent neural network (RNN),
which can learn long-term dependencies of sequential data2.2. Database analysis
For saliency detection of single-face videos, we thusagtili
LSTM to learn the dependency information of DGMM be-
tween frames, for modeling the variation of face saliency
distribution in a video. Specifically, in a single-face vide LAll 40 subjects have either corrected or uncorrected noayesight.

Proportion

(a) Face and background (b) Subregions in face

' we take the content of previous and current frames (i.e., the
face size, mouth movement intensity and facial landmark-
s) as the input to LSTM, and then predict the parameters
of DGMM (i.e., means, variances and weights of gaussian

During the experiment, the videos were displayed at their
original resolutions (720p), and their display order is-ran
dom to reduce the eye fatigue effect on the eye tracking
results. All 40 subjects were asked to watch these video
without any task. Besides, the fixations of those 40 sub-
jects on each video were recorded by a Tobii X2-60 eye
tracker at the sampling rate 606Hz. Finally, 1,006,478
fixations over27, 707 frames of70 videos were collected
in our database. Our database would be freely download-
able in the camera-ready version for facilitating the fatur
research.

We investigate the intrinsic factors which have impact on
visual attention to single-face videos, by analyzing tha-fix
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Figure 3: Proportions of fixations on face and facial features veraus izes, for all 70 videos of our database. Each dot in thesfigtands for the
statistical result of one video. The least square fittingyesiiof linear regression on fixation proportions of all franre70 videos are provided (blue lines).
The Spearman rank correlation coefficients between faeeasid fixation proportions in each region are (a) 0.82, (18,08 0.66 and (d) 0.07.

tions obtained from 70 videos in our database. We have thedistribution is variant to mouth movement and invariant to
following observations. Note that the technique on extract blink.
ing face-related features for our database analysis is to be Before figuring out the relationship between visual at-
discussed in Sectidg 3. tention and mouth movement or eye blink, we obtained the
Observation 1: For a video, face attracts significantly ground-truth annotations of eye blink and mouth movemen-
more visual attention than background, and within a face t, by manually annotating all 70 videos of our database
region, facial features (i.e., eyes, nose and mouth) are mor Then, the statistical results of fixations versus mouth move
salient than other regions in face. ment and eye blink are shown in Figlide 4, for all 70 videos
First, we show in Figurlel2-(a) the proportions of fixation- of our eye tracking database. From this figure, we can find
s and pixels belonging to face and background, respectivelythat the proportions of fixations on face are almost the same,
for all 70 videos. As seen in Figule 2-(a), although the face whether mouth moves or eyes blink. This implies that the
region only takes up.1% pixels in video frames, it attracts amount of attention on face is invariant to mouth movement
78.6% visual attention. Compared %2.3% fixations at- and blink. On the other hand, the distribution of attention
tracted by face in imag@sface region is more salient in on face varies with regard to mouth movement. That is,
drawing visual attention in videos. Besides, Figure 24b)i when mouth moves, more attention is drawn to mouth re-
lustrates the proportions of pixels and fixations withinefac ~ gions with reduced attention on eye regions. Different from
region. We can see from this figure that facial features con-mouth movement, the eye blink hardly changes the atten-
sume20.1% pixels in face regiond.7% for two eyes5.3% tion distribution in face. In summary, mouth movement on-
for mouth and5.1% for nose), whereas they dra¥2.1% ly influences the distribution of attention within face, \fehi
fixations §.4% for eyes,15.5% for mouth and18.2% for attention amount and distribution of face are not sensitive
nose). Thus, we can conclude that facial features are moreeye blink. This completes the analysis of Observation 3.
salient than other regions in face for a video. This complete ~ Observation 4: Visual attention on mouth increases a-
the analysis of Observation 1. long with the enlarged intensity of mouth movement.
Observation 2: Visual attention on face, eyes and nose  FigurelB plots the fixation proportions of mouth at differ-
increases along with the enlarged size of face in videos,ent intensities for mouth movement, with the scatter anal-
whereas the attention on mouth is invariant to the fac8size ysis on all fixations of mouth regions from our database.
Figure[3 shows the proportions of fixations belonging to Here, the intensity of mouth movement is measured using
the regions of face and facial features at different facessiz the method in the next section. We can see from Figure
in 70 videos of our database. In this figure, the fitting curves® that attention on mouth generally increases with the in-
are plotted to reflect the general trend that how proportion- creased intensity of mouth movement, and the correspond-
s of fixations in facial features change alongside increasednd Spearman rank correlation coefficient is 0.24, much
face sizes. From Figuf@ 3, we can find out that when the facelarger than 0.07 for the correlation between fixation pro-
size becomes larger, the proportions of fixations in face, Portion in mouth and face size. This completes the analysis
eyes and nose increase. However, the proportions of fixa-0f Observation 4.
tions in mouth are almost unchanged, implying that visual )
attention on mouth is invariant to the size of face in videos. 3. Features extraction
This completes the analysis of Observation 2.
Observation 3: The amount of attention in face region
is not affected by mouth movement and blink, whereas its

As presented above, face-related features significantly
influence the distribution of visual attention on singleda

4There were 3 volunteers to annotate movements of eyes anthmou

2Note that in[[37] face averagely hasr% pixels in the whole image. at all frames in 70 videos. Then, the ground-truth annatatiof eyes
SHere, face size refers to the proportion of pixel number tgilog to and mouth movements were obtained by the major voting, wduiehalso
the face region in a video frame. available along with our eye tracking database.
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averaged on all 70 videos of our database, for the cases dahmailn and details. Then, the intensity of mouth movement attttle
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whered'” andd!' ™" are thei-th distances at framesand

(t —t'), respectively. In[{Ll), the denominator is used to
compute the relative distance for measuring mouth move-
ment intensity. According to the theory of persistence of vi
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Mouth Movement sion [2], there exists approximately 0.1 second residual fo
Figure 5: Proportions of fixations in mouth at different intensities f mOtIOIn perception. Since the interval benNegnﬁhb and )
mouth movement. The Spearman rank correlation coefficiers is 0.24. (t — t)-th frames needs to be larger than motion perception

in @), t' is computed by
videos. Thus, this section mainly deals with the extraction
of the face-related features of videos, which include face, t" =round0.1- fr). (2)
facial features and mouth movement intensity.

Face and Facial Features. Observation 1 has shown
that face and its facial features in a single-face video are
much more salient tha_n background. He_nce, itis necessary; The proposed approach
to extract face and facial features for saliency detection.
this paper, we follow the way of [37] to automatically seg- 4.1. Featureintegration
ment the regions of the face and facial features, by lever-
aging the face alignment algorithin [32]. Specifically, 66
landmark points are located according to point distributio
model (PDM) [32]. Then, some landmark points are con-
nected to precisely obtain the contours of face and facial

features. Upon the contours, the regions of face and faC|aItion and face at the-th video frame. Then, these conspicu-

;eattlrj]res ctan ?e ex]tcr?cted. Zl?ﬂ_e |6f_(a'2 shows an dexar?ﬁl?ty maps need to be linearly combined for outputting final
or the extraction of face and facial features, based on esaliency mars, as follows,

66-point PDM.
Intensity of Mouth Movement. Observation 4 has fig- S, = weSY + w;S! + woSY + wpSF

ured out that attention distribution within face is corteth J

with the movement intensity of mputh. We therefore need st. we + w; +wo + wp(se) = 1, wp(se) = Zajst]7

to measure the mouth movementintensity. Here, we use the =0

18 mouth landmarks (see Figurke 6) to quantify the mouth 3)

movement intensity at thieth frame (denoted by,). Giv- wherew = [we,wr, wo,wr(s;)]T are the weights corre-

en the mouth landmark#), can be determined upon the d- sponding to each feature channel, ands the face size at

ifference of width and height between neighboring frames. frame¢. Based on Observations 2 and 3, the amount of at-

However, there may be some error on detecting the land-tention in face region is affected by face size, and is invari

marks of mouth. To reduce the impact of such errofn ant to mouth movement. Thus,z can be represented by

D, needs to be calculated by averaging over more than onethe polynomial function with regard to face sizg denoted

Euclidean distance, at either horizonal or vertical diect  aswp(s;) = Z‘jjzo ajsy where{aj}37:() are the polyno-

In our approach, we compute on 9 Euclidean distanégs:  mial coefficients to be learned from the training data. In

where fr is the frame rate of a video. Finallyp; can be
achieved using the calculation & (1) afdl (2).

In our approach, we follow the basic way 6f [37] to
integrate saliency maps of different channels together for
saliency detection in single-face videos. To be more specif
ic, we assume th&¢, SI, S? andS!" are the conspicuity
maps of channels on features of color, intensity, orienta-
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Figure 7:Framework of our LSTM-DGMM approach for saliency detectafrsingle-face videos.

this paper, we adopt Itti's mod€l [119] to yield conspicuity frame of a single-face video, we can model its conspicuity
mapsS¢, S! andS¢ for the channels of low-level features. mapS!” as follows,

In addition to the low-level features, face is incorporated

our approach, as Observation 1 validates that face receives
most visual attention in a video. In our approach, we uti-

lize LSTM-DGMM to model conspicuity mag!” of face
channel, for saliency detection of single-face videos.

Algorithm 1 The recursive algorithm for solvinfl(7)

1: Initialize the values ofr;(0) as0, ando aso (0) in the way of [37].

2: Vectorize all the pixel coordinatesz(and y) in the t-th frame into one-
dimensional form x andy). Similarly, G; is vectorized into one dimension
V(Gy).

3: for k= 1to K do
4:
5: Stagel. Optimizer: (k) with o¢ (k — 1):
6: fori=1to5do
(x = nj.)° (v —niy)?
B (k—1) = exp{——; : - R R s

' (0fo (k= 1)2 " (o], (k— 1)
7 whereo; . (k — 1) ando; , (k — 1) are defined byfs).
8:  endfor )
9:  SetEi(k—1) = {Ei(k —1)}5_,.
10:  Computenr; (k)T = E:(k —1)T - V(G;), where(-)' is the pseudo

inverse.
110 if IN(Gy, S (oe(k — 1), me (k) — N (G, SF (o0 (k — 1), me (k —
1))| < e then

12: Break the FOR loopreturn 7+ (k) ando (k — 1).
13: end if
14:

15: Stage 2. Optimizeo (k) with ¢ (k):

16:  CalculateE, (k) = V(G:) - (m:(k)T)1.
17: fori = 1to5do

18: Updateo (k) by

1 1

(= ——3

oi (k) of ,(k)?

19:  endfor

200 if|IN(Gy,SE (or(k), me(k)) — N (G, SF(0r (k= 1), (k)| < &
then

21: Break the FOR loopieturn 7 (k) andoy (k).

22: end if

23: end for

24: return 7 (K) ando (K) as the solution td{7).

4.2. DGMM

According to Observation 1, attention on face region is

)T = ((x = ph )% (v = ni DD (~ B (k).

5

S{' = ™G =mGi, (4)

=1
wherer! is the weight of thei-th GM G;. Here,G; =
(G},G2,G3,6G4,69)T andmy = (nf,nf, m}, w}, 77) corre-
spond to the GMs and their weights, for modeling attention
on face, left eye, right eye, nose and mouth. Specifically,
for each GMG;, we assume that their mephand standard
deviationo} are

1 = (Hf s 11h)s
9t = 0 0’%7y '

In above equatiory; , andy; , are means ofi; atx andy
axes;o; , ando; , are standard deviations. Then, for pixel
at(z,y), Gi can be represented by

(x—pi.)*  (y—niy)®
(0 4)? (01 )

Once weighr!, meanui and standard deviatior are ob-
tained for each GM, conspicuity map of face can be mod-
eled by DGMM of [4) and[{6). In this papes; is simply

set to be the center of the corresponding face or facial fea-
ture, detected by the method of Secfidn 3. Asifbando,

we utilize an advanced LSTM network to learn them, to be
discussed in Sectidn 4.3.

Before learning LSTM, we need to estimate DGMM dis-
tribution upon ground-truth fixations from training data, a
the target of LSTM. Since; is known after the detection
of face and facial features, the task of DGMM estimation
turns to working outr; ando,, formulated by

Gi = exp{— } (6)

5
argmax N (G4, SF), s.t. Z’]TZ =1, >0, (7)

Tt ,0 .
t 0t i=1

more likely to be drawn by facial features. Thus, GMM of WhereG: is the distribution of ground-truth fixations and it
[37] can be applied to model conspicuity map of face. How- corresponds to saliency m&j"” modeled by DGMM with

ever, different from static GMM for still face imagées [37],

parameters; ando;. In addition, V' (-) is the function of

the parameters of GMM should be dynamic across frames innormalized scanpath saliency (Nf_Whi_Ch evaluates sim-
video saliency detection, according to Observation 4. Thus ilarity between human fixation distributic@; and saliency

we propose DGMM in this paper to model the dynamic vari-

ation of visual attention on a face. Specifically, for thih

5NSS is used here for measuring similarly[ag [23] proved tIg8S ¢ a
most effective way in evaluating saliency detection acoyra
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) ) L o) | where o(-) is the sigmoid function. Moreover,

N IR R N I {W,.,U,,,b;} are the trained parameters for map-

1 rame frame 2 rame ! . ..

L---_----f---l ------------------- SRR ping from {x, h_1} to g, Similarly, {W,,, U, by}
Figure 8:structure of our LSTM for DGMM. and{W, ,U, .b,} are the trained parameters for, and

8o+, respectively. Based on the above gates, the memory of
mapsS’. Note that the greater NSS value means higher thet-th framec; can be updated by
similarity. Unfortunately, we find that optimization formu
lation of (7) is a non-convex problem. In this paper, we €t =8t © Ct—1 + 8it © ¢(Wexy + Uchy 1), (9)

solve [T) by developing a recursive algorithm, which iter- . . .
atively updatesr; ando; with the other being fixed. The whereg() is the hyperbolic function, and stands for the

details about our recursive algorithm are summarized in Al- component-wise producW, andU_ are parameters to be
gorithmil. trained. Then, hidden states can be obtained by

4.3.LSTM for DGMM hy =gt © d(cy). (10)

In this section, we present an advanced LSTM network ~ UPOn above hidden states, our LSTM outpiit@andar,
for learning to predict; ando,, which models DGMM dis- ~ Which approximate the targets ando; as follows. Note
tribution of face saliency in a video. As such, the sequéntia that# = {#;}7 ands; = {6;}?, corresponding to the pre-
dependency is considered in the DGMM model by LSTM. dlcted_welghts and standard deviations of_GMs fqr face, left
However, different from the conventional LSTI[34], our ©€Ye: fight eye, nose and mouth, respectively. Sipeg?
LSTM network is designed for regression problemas  are continuous variables a@f’zl m; IS equivalentto 1, our
ando, are continuous variables. The architecture of our L- LSTM predicts it as follows,
STM is shown in Figurgls.

) ) v W_.h
The input to LSTM is the features extracted from each Ty = SeXp( ) . (11)
frame of single-face videos. As analyzed in Observations 2 2 =1 exp(Wrihy)
and 4, the DGMM distribution of attention within a face is In addit i be obtained b
correlated to face size and the intensity of mouth move- n addition,o; can be obtained by
mentD,. Thus,s; and D, are input to our LSTM. In ad- &i — W,.hy, (12)

dition, Observation 1 pointed out that facial features influ

ence the attention distribution within the face region. Due which is also continuous variable. IR{11) afid](1%,,:

to this, we also take the facial landmarks of facial features andW . are the parameters to be trained.

as the input to saliency detection. To remove the redundan- Besides, we define the loss functidrof LSTM by

cy of the conventional PDM, 13 landmarks of facial fea-

tures [29] are selected as the input feature to LSTM, and 1 NI 5 , . .

they are discribed by,. This way, the over-fitting can be £ = =~ SN mhn(d ) + Mo — 65 ll2),
; ; i ; Zn:l L s e

avoided in training LSTM. Finally, we have feature vector v Cross Entropy Exror Mean Squared Error

x; = (4, s¢, Dy) as the input to LSTM. (13)
Given the input features of face size, facial landmark- whereN is the total number of training videos, affgl is

s and mouth movement, our LSTM incorporates memory the number of frames for the-th video in training setqr,fht

cells to learn when to update hidden states with gate onando?, , are the weight and standard deviation of the GMM

forgetting previous hidden states, for predictingando,. for thet-th frame in then-th video, respectively. As shown

Specifically, for the memory ced of LSTM, there are sev-  in (I3), the loss function includes two parts: the first paurt i




Table 1:Comparison of our and other approaches in messtgndard deviation) of NSS and CC, averaged over all 7-folsissvalidation in our database.

Metrics | Our approach 1tti[L9] Cerfl6] Judd[21] PQFTI9] Zhao[40] Rudoy[31] Xu[37] OBDL[12]
NSS 5.51+1.63 1.46+0.75 | 2.45+0.70 | 1.82+0.33 | 1.2740.87 | 4.00+1.14 | 1.98+0.65 | 4.90£1.08 | 1.78+1.20
0.84+0.10 0.39£0.14 | 0.59+0.10 | 0.52+0.06 | 0.26+0.15 | 0.78+0.09 | 0.56+0.12 | 0.78+0.11 | 0.34+0.14
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Figure 9:Saliency maps across different frames (the 84th, 198th2@8rH frames) of a randomly selected video, generated bgraliother 8 approaches,
as well as the human fixations.
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Figure 10:Saliency maps of some videos at different face sizes, gy our and other 8 approaches, as well as the human figation

measured by a cross entropy error for, and the second (CC). NSS quantifies the degree of correspondence between

part is measured by a mean squared errogforBesides,  human fixation locations and saliency maps. CC measures

there is a parametex to regulate the weights on these t- the strength of linear correlation between human fixation

wo parts. Afterwards, we can simultaneously optimize  maps and predicted saliency maps. The larger NSS and CC

anda, using the backpropagation (BP) algorithm and train indicate higher accuracy of saliency detection.

our LSTM network end-to-end. Finally, the LSTM network With ground-truth fixations of each training set, and

can be obtained for predicting DGMM distribution of visual &, of DGMM distribution can be obtained by Algorithm 1,

attention within a single face across frames. as the targets of LSTM. In Algorithm 1, the termination cri-

5. Experimental results terion parameters and K were empirically set t@.001

and20, respectively. We found that Algorithm 1 converges

In this section, we evaluate the effectiveness of our with 6.4 iterations in average. Upon the obtained DGMM

LSTM-DGMM approach in detecting saliency of single- distribution, LSTM was trained to predi¢t ands; of DG-

face videos, via comparing with other 8 state-of-the-art ap MM. Consequently, a single layer with 30 hidden units was

proaches. Next, we present the baseline and settings of ouapplied to our LSTM, in order to avoid over-fitting. The

experiment. learning rate for training our LSTM was fixed to 0.003 and
_ _ training epoches were set to 100, for achieving the proper
5.1. Baseline and Settings convergence in training LSTM with the BP algorithm. Be-

In our experiment, all 70 videos in our database, which sides,\, which tradeoffst; andd in the loss function of

are discussed in SectibnP.1, were used for training and testm)’ was tuned to be 0.1.

Here, 7-fold cross-validation was applied by randomly and 5.2. Test on our database

equally dividing our database to be 7 non-overlapping sub-

sets. Then, the averaged saliency detection results are re- Objective evaluation. Here, we evaluate the saliency
ported in this section. To evaluate saliency detectionligsu  detection performance of 7-fold cross-validation over our
we utilize the following metrics: NSS and linear correlatio database, and compare our approach with 8 other approach-



Table 2:Comparison of averaged NSS and GEsfandard deviation) for predicting fixations of other sutse

Metrics | Our approach| Itti[19] Cerflg] Judd[21] PQFTI9] Zhao[40] | Rudoy[31] Xu[37] OBDL[12]
NSS 5.00+1.31 1.49+1.04 | 2.2741.02 | 1.95+£0.34 | 1.34-1.04 | 2.94+1.14 | 2.00+0.61 | 4.10+0.68 | 1.81£1.39
CcC 0.85+0.02 0.38+0.13 | 0.540.11 | 0.53+£0.04 | 0.25+0.15 | 0.72+:0.12 | 0.54£0.11 | 0.82+0.06 | 0.32£0.16

Table 3:Comparison of our and other approaches in NSS and CC, avecage single-face videos of other database.

Metrics | Our approach| Itti[L9] | Cerf[6] | Judd[21] | PQFTI9] | Zhaol[40] | Rudoyl31] | Xu[37] | OBDL[12]
NSS 3.22 1.18 1.70 1.56 1.33 2.28 1.73 2.77 2.10
CcC 0.68 0.37 0.48 0.35 0.29 0.55 0.41 0.58 0.46

es (i.e., Ittiet al]19], Cerfet al]6], Juddyet al[21], Guo same procedure of Sectibn P.1. In our experiments, their
et al]9], Zhao et al]40], Rudoyet al[31], Xu et al, ixations on test videos are predicted by our -

I Zh I Rud I X I fixati 10 id predicted b LSTM
and Hosseirt al [12]) to verify the effectiveness of our ap- DGMM approach, which was trained from fixations of oth-
proach. The comparison results are presented in e ler 60 videos viewed by other 40 subjects (available in our

h. Th [ It ted in Table 1er 60 vid iewed by other 40 subjects (available i

in terms of average an values with standard de-database of Secti .1). The accuracy of saliency detectio
int f d NSS and CC val ith standard de-datab fSectign2.1). Th f sali detecti
viations. As we can see from this table, our approach out-is reported in Tablg]l2. This table verifies the cross-subject
erforms other 8 approaches in terms of both two metrics, generalization of our approach.
perf her 8 app hes i f both i lizati f pp h
arriving at5.51 in NSS a_md).84 in CC. Specifically, our ap- Generalization on other databases. We further evalu-
proach has gt least61 improvement in NSS anl.06 en- ate our approach on single-face videos of other databases
hance_ment in CC, over other ap_pro_a_lches. The results of T""Tor generalization test. There are in total 4 vidbinelud-
ble[ imply that our approach significantly advances State'ing one obvious face in the existing eye tracking database
of-the-art saliency detection in single-face videos. Besj of videos, SFUI[ID] and DIEML[26]. They are all test-
the gaif‘ of our approach O.V7] ver!fies the effec_tivengss ed in our experiment. Note that here we randomly utilize
of making GMM dynamlc in nggos, since face saliency is one trained LSTM-DGMM model from the 7-fold cross-
_modele_c(jjby GMM In[EEV] while itis represented by DGMM validation to test these 4 videos. Table 3 tabulates the NSS
n ourb\_/l eo app;]oac. ) , q and CC results of our and other approaches, averaged over
h Su Ij_ectlve & uatflon. FlgulresI]) ar)tﬂjlof emonstrate 4 yoqt videos. From this table we can find that our approach
the saliency maps of some selected video frames, genera again performs better than all other approaches. Hence, the

ed by our and other 8 approaches. One may observe thago o ajization of our approach can be validated.
the saliency maps of our approach are much closer to the

ground-truth maps of human attention, compared to other 8 .
approaches. Such results mean that our approach is capabf@ €onclusions

of well locating the salient regions within face. Specifigal In this paper, we have proposed the LSTM-DGMM ap-
Figurel9 shows the saliency maps across different frames inyoach to predict saliency distribution within single€ac
a same video, and we can see that our approach is able 19 rqss video frames. To be more specific, a new eye track-
precisely catch the saliency change when mouth is moving,ing database was obtained, by recording fixations of 40 sub-
while other approaches, especially|[37], have nearly no re-jects on viewing 70 single-face videos. To the best of our
actlon to this kind of movement. This clearly_venﬂes the knowledge, our database is the first one for eye-tracking da-
effectiveness of our LSTM-DGMM model, which enables 5 of single-face videos. Then, we investigated from our
the dynamic transition of GMM between frames for model- 4tanase that face attracts most attention in videos, and th
ing saliency distribution within a single face. Figlre 16-fu ¢ gistribution of attention within a face is correlatedhwi
ther shows the saliency maps of different videos with face 5.0 size, facial features and mouth movement. Accord-
being at various sizes. One may observe that our approacrpng to our investigation, we proposed the DGMM distribu-
is capable of predicting human attention well, regardi€ss 0 {ion 1o model the attention within a single face alongside
face size. frames. Next, benefitting from the recent development of
RNN, an advanced LSTM network was developed, which
predicts the structured DGMM distribution of attention on
Generalization on other subjects. To test the general-  single-face videos. Finally, the experimental results\s
ization of our approach, this section moves to the evalnatio that our LSTM-DGMM approach performs best in detect-
on predicting attention of other subjects in our database.ing saliency of single-face videos, compared with other 8
First, we randomly selected one test set (i.e., 10 videasint state-of-the-art approaches.
tal) from 7-fold cross-validation. Then, 32 subjects, ligta
different from those for our eye tracking database, were in-
volved in free-viewing the selected 10 videos. Meanwhile, ~ 61he 4 videos armewstony.blair_resignation amiib4010.closeup
the fixations of those 32 subjects were recorded using theFOREMANandoneshow

5.3. Test on generalization
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