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ABSTRACT

This paper studies the undesired phenomena of over-sensitivity of representations
learned by deep networks to semantically-irrelevant changes in data. We identify a
cause for this shortcoming in the classical Variational Auto-encoder (VAE) objec-
tive, the evidence lower bound (ELBO). We show that the ELBO fails to control
the behaviour of the encoder out of the support of the empirical data distribution
and this behaviour of the VAE can lead to extreme errors in the learned represen-
tation. This is a key hurdle in the effective use of representations for data-efficient
learning and transfer. To address this problem, we propose to augment the data
with specifications that enforce insensitivity of the representation with respect to
families of transformations. To incorporate these specifications, we propose a
regularization method that is based on a selection mechanism that creates a fic-
tive data point by explicitly perturbing an observed true data point. For certain
choices of parameters, our formulation naturally leads to the minimization of the
entropy regularized Wasserstein distance between representations. We illustrate
our approach on standard datasets and experimentally show that significant im-
provements in the downstream adversarial accuracy can be achieved by learning
robust representations completely in an unsupervised manner, without a reference
to a particular downstream task and without a costly supervised adversarial train-
ing procedure.

1 INTRODUCTION

Representation learning is a fundamental problem in Machine learning and holds the promise to en-
able data-efficient learning and transfer to new tasks. Researchers working in domains like Computer
Vision (Krizhevsky et al., 2012) and Natural Language Processing (Devlin et al., 2018) have already
demonstrated the effectiveness of representations and features computed by deep architectures for
the solution of other tasks. A case in point is the example of the FC7 features from the AlexNet
image classification architecture that have been used for many other vision problems (Krizhevsky
et al., 2012).

The effectiveness of learned representations has given new impetus to research in representation
learning, leading to a lot of work being done on the development of techniques for inducing rep-
resentations from data having desirable properties like disentanglement and compactness (Burgess
et al., 2018; Achille & Soatto, 2017; Bengio, 2013; Locatello et al., 2019). Many popular techniques
for generating representation are based on the Variational AutoEncoders (VAE) model (Kingma &
Welling, 2013; Rezende et al., 2014). The use of deep networks as universal function approximators
has facilitated very rapid advancements which samples generated from these models often being
indistinguishable from natural data. While the quality of generated examples can provide significant
convincing evidence that a generative model is flexible enough to capture the variability in the data
distribution, it is far from a formal guarantee that the representation is fit for other purposes. In fact,
if the actual goal is learning good latent representations, evaluating generative models only based
on reconstruction fidelity and subjective quality of typical samples is neither sufficient nor entirely
necessary, and can be even misleading.

In this paper, we uncover the problematic failure mode where representations learned by VAEs ex-
hibit over-sensitivity to semantically-irrelevant changes in data. One example of such problematic
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behaviour can be seen in Figure 1. We identify a cause for this shortcoming in the classical Vari-
ational Auto-encoder (VAE) objective, the evidence lower bound (ELBO), that fails to control the
behaviour of the encoder out of the support of the empirical data distribution. We show this be-
haviour of the VAE can lead to extreme errors in the recovered representation by the encoder and
is a key hurdle in the effective use of representations for data-efficient learning and transfer. To
address this problem, we propose to augment the data with properties that enforce insensitivity of
the representation with respect to families of transformations.

To incorporate these specifications, we propose a regularization method that is based on a selection
mechanism that creates a fictive data point by explicitly perturbing an observed true data point. For
certain choices of parameters, our formulation naturally leads to the minimization of the entropy
regularized Wasserstein distance between representations. We illustrate our approach on standard
datasets and experimentally show that significant improvements in the downstream adversarial ac-
curacy can be achieved by learning robust representations completely in an unsupervised manner,
without a reference to a particular downstream task and without a costly supervised adversarial
training procedure.

Figure 1: An illustration of the intrinsic fragility of VAE representations. Outputs from a Variational
Autoencoder with encoder f and decoder g parametrized by η and θ, respectively, trained on CelebA.
Conditioned on the encoder input Xa = xa the decoder output X = g(f(xa)) = (g ◦ f)(xa) is
shown on the top row. When the original example is perturbed with a carefully selected vector d
such that Xb = Xa + d with ‖d‖ ≤ ε, the output X ′ turns out to be perceptually very different.
Such examples suggest that either the representations Za and Zb are very different (the encoder is
not smooth), or the decoder is very sensitive to small changes in the representation (the decoder is
not smooth), or both. We identify the source of the problem primarily as the encoder and propose a
practical solution.

It is clear that if learned representations are overly sensitive to irrelevant changes in the input (for
example, small changes in the pixels of an image or video, or inaudible frequencies added to an
audio signal), models that rely on these representations are naturally susceptible to make incorrect
predictions when inputs are changed. We argue that such specifications about the robustness prop-
erties of learned representations can be one of the tractable guiding features in the search for good
representations. Based on these observations, we make the following contributions:

1. We introduce a method for learning robust latent representations by explicitly targeting a
structured model that admits the original VAE model as a marginal. We also show that in
the case the target is chosen a pairwise conditional random field with attractive potentials,
this choice leads naturally to the Wasserstein divergence between posterior distributions
over the latent space. This insight provides us a flexible class of robustness metrics for
controlling representations learned by VAEs.

2. We develop a modification to training algorithms for VAEs to improve robustness of learned
representations, using an external selection mechanism for obtaining transformed examples
and by enforcing the corresponding representations to be close. As a particular selection
mechanism, we adopt attacks in adversarial supervised learning (Madry et al., 2017) to
attacks to the latent representation. Using this novel unsupervised training procedure we
learn encoders with adjustable robustness properties and show that these are effective at
learning representations that perform well across a variety of downstream tasks.
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3. We show that alternative models proposed in the literature, in particular β-VAE model used
for explicitly controlling the learned representations, or Wasserstein Generative Adversarial
Networks (GANs) can also be interpreted in our framework as variational lower bound
maximization.

4. We show empirically using simulation studies on MNIST, color MNIST and CelebA
datasets, that models trained using our method learn representations that provide a higher
degree of adversarial robustness even without supervised adversarial training.

2 GENERATIVE MODELS

Modern generative models are samplers p(X|θ) for generating realizations from an ideal target
distribution π(X), also known as the data distribution. In practice π(X) is unknown in the sense
that it is hard to formally specify. Instead, we have a representative data set X , samples that are
assumed to be conditionally independently drawn from the data distribution π(X) of interest. We
will refer to the empirical distribution as π̂(X) = 1

|X |
∑
ξ∈X δ(x − ξ). The goal is learning a

parameter θ∗ such that p(X|θ = θ∗) =
∫
dZp(X|Z, θ = θ∗)p(Z) ≈ π̂(X), thereby also learning a

generator.

2.1 FROM VAE TO SMOOTH ENCODERS

The VAE corresponds to the latent variable model p(X|Z, θ)p(Z) with latent variable Z and obser-
vation X . The forward model p(X|Z = z, θ) (the decoder) is represented using a neural network
g with parameters θ, usually the mean of a Gaussian N (X; g(z; θ), vIx) where v is a scalar ob-
servation noise variance and Ix is an identity matrix. The prior is usually a standard Gaussian
p(Z = z) = N (z; 0, Iz). The exact posterior over latent variables p(Z|X = x, θ) is approximated
by a probability model q(Z|X = x, η) with parameters η. A popular choice here is a multivariate
Gaussian N (Z;µ(x; η),Σ(x; η)), where the mapping f such that (µ,Σ) = f(x, η) is chosen to be
a neural network (with parameters η to be learned from data). We will refer to the pair f, g as an
encoder-decoder pair. Under the above assumptions, VAE’s are trained by maximizing the following
form of the ELBO using stochastic gradient descent (SGD),

log p(X = x|θ) ≥ E {log p(X = x|Z, θ)}q(Z|X=x,η) −DKL(q(Z|X = x, η)||p(Z)) ≡ Bx(η, θ)

The gradient of the Kullback-Leibler (KL) divergence term above (see A.1) is available in closed
form. An unbiased estimate of the gradient of the first term can be obtained via sampling z from q
using the reparametrization trick Kingma & Welling (2013), aided by automatic differentiation.

2.2 A PROBLEM WITH THE VAE OBJECTIVE

Under the i.i.d. assumption, where each data point x(n), for n = 1 . . . N is independently drawn
from the model an equivalent batch ELBO objective can be defined (See also E.1) as

B(η, θ) ≡ 1

N

N∑
n=1

Bx(n)(η, θ) = −DKL(π̂(X)q(Z|X, η)||p(X|Z, θ)p(Z)) + const (1)

where the empirical distribution of observed data is denoted as π̂. This form makes it more clear
that the variational lower bound is only calculating the distance between the encoder and decoder
under the support of the empirical distribution.

To see how this locality leads to a fragile representation, we construct a VAE with discrete latents
and observations. We let X ∈ {1, . . . , Nx} and Z ∈ {1, . . . , Nz} and define the following system
of conditional distributions as the decoder and encoder models as:

p(X = i|Z = j) ∝ exp

(
1

v
ω (mj − i/Nx)

)
q(Z = j|X = i) ∝ exp

(
1

σi
ω (µi − j/Nz)

)
where ω(u) = cos(2πu). These distributions can be visualized by heatmaps of probability tables
where i and j are row and column indicies, respectively Figure 2. This particular von-Mises like
parametrization is chosen for avoiding boundary effects due to a finite latent and observable spaces.
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Figure 2: Example VAE model. (left) Heatmap of the en-
coder distribution (darker colors referring to higher prob-
ability) q(Z = j|X = i;µi, σi) where each row i is a
probability distribution over latents with a mode around
µi and spread σi (middle) Heatmap of the decoder dis-
tribution p(X = i|Z = j,mj , vj) where each column j
is a probability distribution with mode at mj and spread
v. The prior p(Z) is chosen to be uniform and is not
shown here. (right) The marginal model p(X = i|m, v)

=
∑Nz

j=1 p(Z = j)p(X = i|Z = j,mj , v) depicted as an
histogram.

The prior p(Z) is taken as uniform, and is not shown. Note that this parametrization emulates a high
capacity network that can model any functional relationship between latent states and observations,
while being qualitatively similar to a standard VAE model with conditionally Gaussian decoder and
encoder functions.

In reality, the true target density is not available but we would have a representative sample. To
simulate this scenario, we sample a ’dataset’ from a discrete target distribution π(X): this is merely
a draw from a multinomial distribution, yielding a multinomial vector s with entries si that gives
the count how many times we observe x = i. The results of such an experiment are depicted in
Figure 3(a) (see caption for details). This picture reveals several important properties of a VAE
approximation.

Q PData TrueModel Q PData TrueModel

(a) (b)

Figure 3: (a) Result by optimizing the ELBO for a VAE that illustrates the fragility of the encoder.
Subfigure with the title ’Data’ (π̂(X)) is a random sample from the true target ’Target’ (π(X)) on
the right. The resulting encoder q(Z|X) and decoder p(X|Z) are shown as ’Q’ and ’P’, respectively.
The vertical and horizontal axes correspond to latentsZ and observationsX respectively. Integrating
over the decoder distribution using a uniform prior p(Z) over the latents, we obtain the model
distribution ’Model’ p(X) =

∑
Z p(X|Z)p(Z). (b) The results obtained by a smooth encoder. Both

the decoder and the representation (encoder) are more smooth while essentially having a similar
fitting quality.

1. After training, we observe that when j and j′ are close, the corresponding conditionals
p(X|Z = j) and p(X|Z = j′) are close (hence corresponding decoder mean parame-
ters mj and mj′ are close, hence (see middle panel of Fig.3(a) with the title P showing
the decoder). This smoothness is perhaps surprising at a first sight: in this example, we
could arbitrarily permute columns of the decoder and still get the same marginal distribu-
tion. Technically speaking, given a uniform prior p(Z), the marginal likelihood p(X|θ)
is entirely invariant with respect to permutations of the latent state. In fact if the encoder
distribution wouldn’t be constrained we could also permute the columns of the encoder to
keep the ELBO invariant. In the appendix E.2, we provide an argument why the choice of
an unimodal encoder model and optimization of the variational objective leads naturally to
smooth decoder functions.

2. The encoders found by the VAE on the other hand are not smooth at all, despite the fact that
the model shows a relatively good fit. This behaviour alerts us about judging generative
models only by the quality of the samples, by traversing the latent space and generating
conditional samples from the decoder. The quality of the decoder seems to be not a proxy
for the robustness of the representation.
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The fragility of representations is inherent from the ELBO objective. For the entire dataset, a batch
ELBO that involves the counts si can be written as

ELBO = −
∑
i

∑
j

siq(Z = j|Xa = i) log
siq(Z = j|Xa = i)

p(X = i|Z = j)p(Z = j)
(2)

The last expression is proportional to the negative KL divergence between two tabular distributions:
siq(Z = j|Xa = i)/L and p(X = i|Z = j)p(Z = j). As such, whenever si is zero, the
contribution of row i of the encoder distribution vanishes and the corresponding parameters µi and
σi are not effecting the lower bound. In a sense, the objective does not enforce any structure on the
encoder outside of the position of the data points in the training set. This figure shows that the out-
of-sample behaviour (i.e., for i where π̂(X) = 0) the encoder is entirely initialization dependent,
hence no learning takes place. We would also expect that the resulting representations would be
fragile, in the sense that a small perturbation of an observation can result in a large change in the
encoder output.

3 ROBUST REPRESENTATIONS WITH SMOOTH ENCODERS

In this section, we will adopt a strategy for training the encoder that is guaranteed not to change
the original objective of the decoder when maximizing the lower bound while obtaining a smoother
representation. The key idea of our approach is that we assume an external selection mechanism that
is able to provide new fictive data point x′ in the vicinity of each observation in our data set x. Here,
“in the vicinity” means that we desire that the corresponding latent state of the original datapoint
z = f(x; η) and the latent state of the fictitious point z′ = f(x′; η) should be close to each other
in some sense. Assuming the existence of such an external selection mechanism, we first define the
following augmented distribution

p(X = x,X ′ = x′|θ) ∝
∫
p(X = x|Za, θ)p(X ′ = x′|Zb, θ)ψ(Za, Zb)dZadZb (3)

where ψ(Za, Zb) = exp(−γ2 c(Za, Zb))p(Za)p(Zb). This is a pairwise conditional Markov random
field (CRF) model (Lafferty et al., 2001; Sutton & McCallum, 2012), where we take c(Za, Zb) as a
pairwise cost function. A natural choice here would be, for example, the Euclidean square distance
‖Za − Zb‖2. Moreover, we choose a nonnegative coupling parameter γ ≥ 0. For any pairwise
Q(Za, Zb) distribution, the ELBO has the following form

log p(X = x,X ′ = x′|θ) ≥ E {log p(X = x|Za, θ)}Q(Za) + E {log p(Za)}Q(Za)

+E {log p(X ′ = x′|Zb, θ)}Q(Zb) + E {log p(Zb)}Q(Zb)

−γ
2
E {c(Za, Zb)}Q(Za,Zb) +H(Q(Za, Zb)) (4)

It may appear that the SE has to maintain a pairwise approximation distribution Q(Za, Zb). How-
ever, this turns out to be not necessary. Given the encoder, the marginals of Q(Za, Zb) are fixed
as Qa(Za) = q(Z|Xa = x, η) and Qb(Zb) = q(Z|Xb = x, η), so the only remaining terms that
depend on the pair distribution are the final two terms in (4). We note that this two terms are just
the objective function of the entropy regularized optimal transport problem (Cuturi, 2013; Amari
et al., 2017). If we view Q(Za, Zb) as a transport plan, the first term is maximal when the expected
cost is minimal while the second term is maximal when the variational distribution is factorized as
Q(Za, Zb) = Qa(Za)Qb(Zb).

In retrospection, this link is perhaps not that surprising as the Wasserstein distance, the solution of
the optimal transport problem, is itself defined as the solution to a variational problem (Solomon,
2018): Consider a set Γ of joint densities Q(Za, Zb) with the property that Q has fixed marginals
Qa(Za) and Qb(Zb), i.e.,

Γ[Qa, Qb] ≡
{
Q : Qa(Za) =

∫
Q(Za, Zb)dZb, Qb(Zb) =

∫
Q(Za, Zb)dZa

}
(5)
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The Wasserstein divergence1, denoted byWD is defined as the solution of the optimization problem
with respect to pairwise distribution Q

WD[c](Qa, Qb) = inf
Q∈Γ

∫
c(Za, Zb)Q(Za, Zb)dZadZb (6)

where c(Za, Zb) is a function that specifies the ‘cost’ of transferring a unit of probability mass from
Za to Zb.

It is important to note that with our choice of the particular form of the variational distribution
Q(Za, Zb) we can ensure that we are still optimizing a lower bound of the original problem. We
can achieve this by simply integrating out the X ′, effectively ignoring the likelihood term for the
fictive observations. Our choice does not modify the original objective of the decoder due to the
fact that the marginals are fixed given η. To see this, take the exponent of (4) and integrate over the
unobserved X ′

log p(X = x|θ) = log

∫
dX ′p(X = x,X ′|θ)

≥ E {log p(X = x|Za, θ)}Q(Za) + E {log p(Za)}Q(Za) + E {log p(Zb)}Q(Zb)

−γ
2
E {c(Za, Zb)}Q(Za,Zb) +H(Q(Za, Zb)) ≡ BSE(θ, η) (7)

we name this lower bound BSE as the Smooth Encoder ELBO (SE-ELBO). The gradient of BSE with
respect to the decoder parameters θ is identical to the gradient of the original VAE objective B. This
is intuitive as x′ is an artificially generated sample, we should use only terms that depend on x and
not on x′. Another advantage of this choice is that it is possible to optimize the decoder and encoder
concurrently as in the standard VAE. Only an additional term enters for the regularization of the en-
coder where the marginals obtained via amortized inference q(Za|xa, η) and q(Zb|xb, η) are forced
to be close in a regularized Wasserstein distance sense, with the coupling strength γ. Effectively,
we are doing data augmentation for smoothing the representations obtained by the encoder without
changing the actual data distribution. In the appendix E.3, we also provide an argument about the
smoothness of the corresponding encoder mapping, justifying the name. The resulting algorithm is
actually a simple modification to the standard VAE and is summarized below:
Initialize η(0), θ(0)

for τ = 1, 2, . . . do
xa = GetData(), xb = Select(xa;L, ε) (see Section 3.1)
µa,Σa = f(xa; η), µb,Σb = f(xb; η) (Compute Representation)
WD2,γ(η) = EntropyRegularizedWassersteinDivergence(µa,Σa, µb,Σb, γ) (see Apdx. B.2)
u ∼ N (0, I) (Reparametrization Trick)
E1(η, θ) = − 1

2v‖xa − g(µa + Σ
1/2
a u; θ)‖2 (Data Fidelity)

E2(η) = − 1
2

(
‖µa‖2 + ‖µb‖2 + Tr{Σa + Σb}

)
(Prior Fidelity)

E(η, θ) = E1(η, θ) + E2(η)−WD2,γ(η)

η(τ), θ(τ) = Optimization Step(E, η(τ−1), θ(τ−1))
end

3.1 SELECTION MECHANISM VIA ADVERSARIAL ATTACKS

Adversarial attacks are one of the most popular approaches for probing trained models in supervised
tasks, where the goal of an adversarial attack is finding small perturbations to an input example
that would maximally change the output, e.g., flip a classification decision, change significantly
a prediction (Szegedy et al., 2013). The perturbed input is named as an adversarial example and
these extra examples are used, along with the original data points, for training adversarially robust
models (Madry et al., 2017; Kurakin et al., 2016). As extra samples are also included, such a
training procedure is referred as data augmentation. However, in unsupervised learning and density
estimation, data augmentation is not a valid approach as the underlying empirical distribution would
be altered by the introducing new points.

1We use the term divergence to distinguish the optimal transport cost from the corresponding metric. This
distinction is reminiscent to the distinction between Euclidian divergence ‖ · ‖2 and the Euclidian distance ‖ · ‖
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However, as we let the encoder to target a different distribution than the actual decoder, we can
actually use the extra, self generated samples to improve desirable properties of a given model.
Hence this approach could also be interpreted as a ’self-supervised’ learning approach where we
bias our search for a ’good encoder’ and the data selection mechanism acts like a critique, carefully
providing examples that should lead to similar representations.

In this paper we will restrict ourselves to Projected Gradient Descent (PGD) attacks popular in ad-
versarial training Carlini & Wagner (2016) as a selection mechanism, where the goal of the attacker
is finding a point that would introduce the maximum difference in the Wasserstein distance of the
latent representation. In other words, we implement our selection mechanism where the extra data
point is found by approximately solving the following constrained optimization problem

x′ = x+ arg max
d:‖d‖p≤ε

WD(q(Z|X = x, η), q(Z|X ′ = x+ d, η))

This attack is assigned a certain iteration budget L for a given radius ε, that we refer as selection
iteration budget and the selection radius, respectively. We note a similar attack mechanism is pro-
posed for generative models as described in (Kos et al., 2017), where one of the proposed attacks
is directly optimizing against differences in source and target latent representations. Note that our
method is not restricted to a particular selection mechanism; indeed two inputs that should give a
similar latent representation could be used as candidates.

4 EXPERIMENTS

Goal and Protocol In our experiments, we have tested and compared the adversarial accuracy of
representations learned using a VAE and our smooth encoder approach. We adopt a two step exper-
imental protocol, where we first train encoder-decoder pairs agnostic to any downstream task. Then
we fix the representation, that is we freeze the encoder parameters and only use the mean of the
encoder as the representation, then train a simple linear classifier based on the fixed representation
using standard techniques. In this supervised stage, no adversarial training technique is employed.
Ideally, we hope that such an approach will provide a degree of adversarial robustness, without the
need for a costly, task specific adversarial training procedure. To evaluate the robustness of the re-
sulting classifier, for each data point in the test set, we search for an adversarial example using an
untargeted attack that tries to change the classification decision. The adversarial accuracy is reported
in terms of percentage of examples where the attack is not able to find an adversarial example.

The VAE and SE decoder and encoder are implemented using standard MLP and ConvNet archi-
tectures. The selection procedure for SE training is implemented as a projected gradient descent
optimization (a PGD attack) with selection iteration budget of L iterations to maximize the Wasser-
stein distance between q(Z|X = x) and q(Z|X = x + δ) with respect to the perturbation δ where
‖δ‖∞ < ε. Further details about the experiment can be found in the appendix C.1.

Results: We run simulations on ColorMNIST, MNIST and CelebA datasets. The ColorMNIST is
constructed from the MNIST dataset by coloring each digit artificially with all of the colors corre-
sponding to the seven of the eight corners of the RGB cube (excluding black). We present the results
with the strongest attack we have experimented: a PGD attack with 100 iterations and 10 restarts.
We observe that for weaker attacks (such as 50 iterations with no restarts), the adversarial accuracy
is typically much higher.

For the ColorMNIST dataset, the results are shown in Figure 4 where we test the adversarial accuracy
of representations learned by our method and compare it to a VAE. We observe that the adversarial
accuracy of a VAE representation quickly drops towards zero while SE can maintain adversarial
accuracy in both tasks. In particular, we observe that for the arguably simpler color classification
task, we are able to obtain close to perfect adversarial test accuracy using representations learned
by the VAE and SE. However, when the classifiers are attacked using PGD, the adversarial accuracy
quickly drops with increasing radius size, while the accuracy degrades more gracefully in the SE
case.

In Figure 5, we show the robustness behaviour of the method for different architectures. A ConvNet
seems to perform relatively better than an MLP but these results show that the VAE representation
is not robust, irrespective of the architecture. We have also carried out controlled experiments with
random selection instead of the more costly untargetted adversarial attacks (See appendix C.1 Fig-
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Figure 4: Simulation Results on ColorMNIST. The goal is the comparison of adversarial accuracy
of VAE representations with SE representations trained with a selection radius of 0.1 and 0.2 and
a selection budget of 20 PGD iterations. Vertical axis shows the adversarial accuracy as a function
of attack radius. The dashed and dotted lines show the nominal accuracy of the VAE and SE when
there are no attacks (The SE nominal accuracy is virtually identical for different selection radii,
hence only a single level is shown.)

ure 7(a) for further results). We observe some limited improvements with SE using random selection
in adversarial accuracy compared to VAE but training a SE with adversarial selection seems to be
much more effective. We note that the selection iteration budget was lower (L = 20 with no restarts)
than the attack iteration budget (100 with 10 restarts) during evaluation. It was not practical to train
the encoder with more powerful selection attacks, thus it remains to be seen if the tendency of in-
creased accuracy with increased iteration budgets would continue. We also observe that essentially
the same level of adversarial accuracy can be obtained with a small fraction of the available labels
(See appendix C.1 Figure 8 for further results).

0.01 0.10 0.20 0.30

Attack Radius

0

20

40

60

80

100

A
d
v
e
rs

a
ri

a
l 
A

cc
u
ra

cy
 (

%
)

Mnist (Arch: MLP, Task:Digit, Sel. Iter. Budget:50)

VAE

SE, SelRad = 0.1

SE, SelRad = 0.2

VAE Nominal

SE Nominal

0.01 0.10 0.20 0.30

Attack Radius

0

20

40

60

80

100

A
d
v
e
rs

a
ri

a
l 
A

cc
u
ra

cy
 (

%
)

Mnist (Arch: Conv, Task:Digit, Sel. Iter. Budget:50)

VAE

SE, SelRad = 0.1

SE, SelRad = 0.2

VAE Nominal

SE Nominal

(a) MLP (b) ConvNet

Figure 5: Simulation Results on MNIST. The goal is illustrating the effect of the architecture (MLP
and ConvNet). In all the examples, the SE is trained by a selection radius a budget of 50 PGD
iterations. The linear classifier is always trained without any adversarial training, by fixing the
encoder parameters. The blue dot, green triangle and red squares correspond to the standard VAE
and SE trained with a selection radius of 0.1 and 0.2 respectively. The dashed and dotted lines show
the nominal accuracy of the VAE and SE when there are no attacks (The SE nominal accuracy is
virtually identical for different selection radii, hence only a single level is shown.)

We have also repeated our experiments on the CelebA dataset, a large collection of high resolution
face images labeled with 40 attribute labels per example. We have used 17 of the attribute labels
as the targets of 17 different downstream classification tasks. The results are shown in Table.2.
The results clearly illustrate that we can achieve much more robust representations than a VAE.
It is also informative to investigate specific adversarial examples to understand the failure modes.
In Figure 6 we show two illustrative examples from the CelebA. Here we observe that attacks to
the SE representations are much more structured and semantically interpretable. In our exploratory
investigations, we qualitatively observe that the reconstructions corresponding to the adversarial
examples are almost always legitimate face images with clearly recognizable features. This also
seems to support our earlier observation that VAE decoders are typically smooth while the encoders
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Xa (g ◦ f)(Xa) Xb = Xa + d (g ◦ f)(Xb) d

(a) VAE

(b) SE

(c) VAE

(d) SE

Figure 6: Qualitative results on CelebA. Attacks to downstream tasks (a), (b) ’Mustache’ classifica-
tion, (c), (d) ’Bald’ classification. (a) In the VAE case, the attack is successful but the perturbation
does not have a visible structure. (b) The SE representation is attacked by a perturbation that can
clearly be identified as drawing a beard on the image. In this case, the attack is able to fool the classi-
fier and the generated image from the representation is that of a person with beard and mustache. In
the second example (c), the VAE representation seems to be attacked by exploiting the non-smooth
nature of the encoder by mapping the latent representation to the one in the vicinity of a clearly
different person with the desired features, as can be seen from the corresponding reconstruction.
In contrast, in the SE case (d), an unsuccessful attack that adds a much more structured perturba-
tion. From the reconstruction it is evident that a latent feature is attacked that seems to control the
receding hairline.

are inferring non-robust features. Our approach seems to be a step towards obtaining more robust
representations.

VAE SE
Task Nom Adv Nom Adv
Bald 97.8 0.0 97.4 86.5
Mustache 96.1 0.0 95.7 84.4
Necklace 86.2 0.0 88.0 78.9
Straight Hair 79.1 0.0 78.7 77.3
Wearing Hat 96.6 0.0 96.4 77.3
Earrings 79.3 0.0 81.3 55.3
Blond Hair 92.4 0.0 90.7 53.5
Necktie 93.2 0.0 92.7 51.7

VAE SE
Task Nom Adv Nom Adv
Brown Hair 83.1 0.0 80.5 41.5
Eyeglasses 95.6 0.0 95.7 33.0
Black Hair 79.7 0.0 81.4 31.4
Bangs 90.3 0.0 89.6 27.0
No Beard 86.5 0.0 85.3 24.3
Wavy Hair 71.4 0.0 72.8 10.2
Smiling 82.7 0.0 85.7 1.1
Gender 81.1 0.0 81.6 0.7
Lipstick 79.2 0.0 80.3 0.6

Table 1: Comparison of nominal (Nom) and adversarial (Adv) accuracy (in percentage) on 17 down-
stream tasks using a VAE and a SE trained with a selection radius of ε = 0.1 and evaluated with
attack radius of 0.1 and iteration budget of 100 with 10 restarts. See Section 4 for the experimental
protocol.

5 RELATED WORK

The literature on deep generative models and representation learning is quite extensive and is rapidly
expanding. There is a plethora of models, but some approaches have been quite popular in recent
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years: Generative Adversarial Networks (GANs) and VAEs. While the connection of our approach
to VAE’s is evident, there is also a connection to GANs. In the appendix, we provide the details
where we show that a GAN decoder can be viewed as an instance of a particular smooth encoder. Our
method is closely related to the β-VAE (Higgins et al., 2017), used for controlling representations
replaces the original variational objective (1) with another one for explicitly trading the data fidelity
with that of prior fidelity. In the appendix, we show that the method can be viewed as an instance of
the smooth encoders.

Wasserstein distance minimization has been applied in generative models as an alternative objective
for fitting the decoder. Following the general framework sketched in Bousquet et al. (2017), the
terms of the variational decomposition of the marginal likelihood can be modified in order to change
the observation model or the regulariser. For example, Wasserstein AutoEncoders (WAE) Tolstikhin
et al. (2017), Zhang et al. (2019) or sliced Wasserstein Autoencoders Kolouri et al. (2018) propose
to replace data fidelity and/or the KL terms with a Wasserstein distance. Our approach is different
from these approaches as we do not propose to replace the likelihood as a fundamental principle for
data fitting. In contrast, the Wasserstein distance formulation naturally emerges from the particular
model choice and the corresponding variational approximation.

Our approach involves an adversarial selection step. The word ’Adversarial’ is an overloaded term
in generative modelling so it is important to mention differences between our approach. Adversarial
Variational Bayes is a well known technique in the literature that aims to combine the empirical
success of GANs with the probabilistic formulation of VAEs, where the limiting functional form of
the variational distribution can be replaced by blackbox inference (Mescheder et al., 2017). This
approach also does not modify the original VAE objective, however, the motivation here is different
as the aim is developing a more richer family. In our view, for learning useful representations,
when the decoder is unknown, the advantage of having a more powerful approximating family is
not clear yet; this can even make the task of learning a good representation harder. Adversarial
Autoencoders (Makhzani et al., 2015), Adversarially Learned Inference (ALI) (Dumoulin et al.,
2016) and BiGANs (Bidirectional GANs) (Donahue et al., 2016) are also techniques that combine
ideas from GANs and VAEs for learning generative models. The key idea is matching an encoder
process q(z|x)p(x) and to the decoder process p(z)p(x|z) using an alternative objective, rather than
by minimizing the KL divergence. In this formulation, p(x) is approximated by the empirical data
distribution, and p(z) is the prior model of a VAE. The encoder q(z|x) and decoder p(x|z) are
modelled using deep networks. This approach is similar to Wasserstein autoencoders that propose
to replace the likelihood principle.

The idea of improving VAEs by capturing the correlation structure between data points using MRFs
and graphical models has been also been recently proposed (Tang et al., 2019) under the name
Correlated Variational Auto-Encoders (CVAEs). Our approach is similar, however we introduce
the correlation structure not between individual data points but only between true data points and
artificially selected data points. We believe that correctly selecting such a correlation structure of the
individual data points can be quite hard in practice, but if such prior knowledge is available, CVAE
can be indeed a much more powerful model than a VAE. We note that a proposal for automatically
learning such a correlation structure is also recently proposed by (Louizos et al., 2019).

6 DISCUSSION AND CONCLUSIONS

In this paper, we have introduced a method for improving robustness of latent representations learned
by a VAE. It must be stressed that our goal is not building the most powerful adversarially robust
supervised classifier, but obtaining a method for learning generic representations that can be used
for several tasks; the tasks can be even unknown at the time of learning the representations. While
the nominal accuracy of an unsupervised approach is expected to be inferior to a supervised training
method that is informed by extra label information, we observe that significant improvements in
adversarial robustness can be achieved by our approach that forces smooth representations.
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A APPENDIX

A.1 KL DIVERGENCE

The KL divergence between two Gaussian distributions translates to a well known divergence in the
parameters (in the general case this is a Bregman divergence)

KL(Pa||Pb) =
1

2

(
TrΣ−1

b (Σa − Σb)− log |Σ−1
b Σa|

)
+

1

2
(µa − µb)>Σ−1

b (µa − µb) (8)

where Pa = N (µa,Σa) and Pb = N (µb,Σb) are Gaussian densities with mean µ· and covariance
matrix Σ·, and | · | denotes the determinant for a matrix argument, and Tr denotes the trace. The
KL divergence consists of two terms, the first term is the scale invariant divergence between two
covariance matrices also known as a Itakuro-Saito divergence and the second term is a Mahalonobis
distance between the means. The KL divergence is invariant to the choice of parametrization or the
choice of the coordinate system.

B OPTIMAL TRANSPORT AND WASSERSTEIN DISTANCE

Consider a set Γ of joint densities Q(Za, Zb) with the property that Q has fixed marginals Qa(Za)
and Qb(Zb), i.e.,

Γ[Qa, Qb] ≡
{
Q : Qa(Za) =

∫
Q(Za, Zb)dZb, Qb(Zb) =

∫
Q(Za, Zb)dZa

}
(9)

The Wasserstein divergenceWD is defined as the solution of the optimization problem with respect
to pairwise distribution Q

WD[c](Qa, Qb) = inf
Q∈Γ

∫
c(Za, Zb)Q(Za, Zb)dZadZb (10)

where c(za, zb) is a function that specifies the ‘cost’ of transferring a unit of probability mass from
za to zb.

B.1 `2-WASSERSTEIN DISTANCEW

The `2-Wasserstein distanceW2
2 for two Gaussians has an interesting form. The optimum transport

plan, where the minimum of (10) is attained, is given

Q∗(za, zb) = N
((

µa
µb

)
,

(
Σa Ψ
Ψ Σb

))
(11)

where Ψ = ΣaΣ
1/2
b (Σ

1/2
b ΣaΣ

1/2
b )−1/2Σ

1/2
b . It can be checked that this optimal Guassian density

is degenerate in the sense that there exists a linear mapping between za and zb:

za(zb) = µa + ΣaΣ
1/2
b (Σ

1/2
b ΣaΣ

1/2
b )−1/2Σ

−1/2
b (zb − µb)

where A1/2 denotes the matrix square root, a symmetric matrix such that (A1/2)2 = A for a sym-
metric positive semidefinite matrix A. The `2-Wasserstein distance is the value attained by the
optimum transport plan

W2
2 (Pa, Pb) = ‖µa − µb‖22 + Tr

(
Σa + Σb − 2

(
Σ

1/2
b ΣaΣ

1/2
b

)1/2)
(12)

B.2 ENTROPY REGULARIZED `2-WASSERSTEIN DISTANCE

Entropy Regularized `2-Wasserstein is the value attained by the minimizer of the following func-
tional

F [Q] =
γ

2
E
{
Tr(Za − Zb)(Za − Zb)>

}
Q(Za,Zb)

−H[Q(Za, Zb)] (13)

where H is the entropy of the joint distribution Q. Using the form in (11) subject to the semidefinite
constraint Σa −ΨΣ−1

b Ψ> � 0

Tr (za − zb) (za − zb)> = −2Tr(Ψ) + const (14)
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The entropy of a Gaussian Q(za, zb) is given by the Schur formula

H[Q(za, zb)] =
D

2
log(2πe) +

1

2
log |Σb||Σa −ΨΣ−1

b Ψ>| (15)

Here, D is the dimension of the vector (za, zb). The entropy regularized problem has a solution
where we need to minimize

F̃ (Ψ) = −γTr(Ψ)− 1

2
Tr log

∣∣Σa −ΨΣ−1
b Ψ>

∣∣ (16)

Taking the derivative and setting to zero

∂F̃ (Ψ)

∂Ψ
= −γI + Σ−1

b Ψ>
(
Σa −ΨΣ−1

b Ψ>
)−1

(17)

we obtain a particular Matrix Ricatti equation

0 = −ΨΣ−1
b Ψ> − 1

γ
Σ−1
b Ψ> + Σa (18)

that gives us a closed form formula for the specific entropy regularized Wasserstein distance

W2
2,γ(N (ma,Σa),N (mb,Σb)) = ‖ma −mb‖22 + Tr{Σa + Σb − 2Ψ} (19)

WD2,γ(N (ma,Σa),N (mb,Σb)) ≡ γ

2
W2

2,γ(N (ma,Σa),N (mb,Σb)) (20)

−D
2

log(2πe)− 1

2
log |Σb||Σa −ΨΣ−1

b Ψ>| (21)

For the case of two univariate Gaussians, i.e., when the joint distribution has the form

Q(Za, Zb) = N
((

ma

mb

)
,

(
Σa ψ
ψ Σb

))
the solution is given by the solution of the scalar quadratic equation.

f(ψ)′ = ψ2 +
1

γ
ψ − ΣaΣb = 0 (22)

ψ = − 1

2γ
± 1

2|γ|
(
1 + 4γ2ΣaΣb

)1/2
(23)

We take the root that gives a feasible solution as the minimizer. In the scalar case, this is the solution
that satisfies Σa − ψ2/Σb ≥ 0, or equivalently ΣaΣb ≥ ψ2

ψ =
1

2γ
(uγ(Σa,Σb)− 1) (24)

where we have defined
uγ(Σa,Σb) =

(
1 + 4γ2ΣbΣa

)1/2
It can be easily checked that the other root is infeasible. For the scalar ψ case we obtain

WD2,γ(N (ma,Σa),N (mb,Σb)) =
γ

2

(
‖ma −mb‖22 + Σa + Σb

)
− 1

2
(uγ(Σa,Σb)− 1)

+
1

2
log(uγ(Σa,Σb) + 1)− 1

2
log(2ΣbΣa)− log(2π)− 1

C SUMMARY OF THE SMOOTH ENCODER ALGORITHM WITH FACTORIZED
GAUSSIAN

Assume a factorized encoder distribution of form q(Za|x, η) =
∏Dz

k=1N (Zka ;µka,Σ
k
a) and

q(Zb|x′, η) =
∏Dz

k=1N (Zkb ;µkb ,Σ
k
b ) where Dz is the dimension of the latent representation, and
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µk and Σk are the k’th component of the output of a neural network with parameters η. Similarly,
xi denotes the i’th component of the observation vector x of size Dx. For optimization, we need an
unbiased estimate of the gradient of the SE-ELBO with respect to encoder parameters η and decoder
parameters θ:

BSE(η, θ) = E {log p(X = x|Za, θ)}q(Za|xa,η) + E {log p(Za)}q(Za|xa,η) + E {log p(Zb)}q(Zb|xb,η)

−γ
2
E {c(Za, Zb)}q(Za,Zb|xa,xb,η) +H(q(Za, Zb|xa, xb, η))

Given x, we first select a fictive sample x′ via a selection mechanism, in this case as an adversarial
attack as explained in section 3.1.

Sample a latent representation and calculate the associated prediction

za ∼ q(Za|Xa = x, η) = N (Za;µa,Σa) x̄ = g(za; η)

The terms of the SE-ELBO can be calculated as

E {log p(x|Za, θ)}q(Za|Xa=x,η) ≈ −Dx

2
log 2πv − 1

2v

Dx∑
i=1

(xi − x̄i)2

E {log p(Za)}q(Za|Xa=x,η) = −1

2

Dz∑
k=1

((µka)2 + Σka)− Dz

2
log 2π

E {log p(Zb)}q(Zb|Xb=x′,η) = −1

2

Dz∑
k=1

((µkb )2 + Σkb )− Dz

2
log 2π

WD2,γ =
γ

2
E
{
‖Za − Zb‖2

}
q(Za,Zb|xa,xb,η)

−H(q(Za, Zb|xa, xb, η))

where

uγ(Σa,Σb) =
√

1 + 4γ2ΣbΣa

WD2,γ =
γ

2

Dz∑
k=1

(
‖µka − µka‖22 + Σka + Σkb

)
−1

2

Dz∑
k=1

(
(uγ(Σka,Σ

k
b )− 1)− log(uγ(Σka,Σ

k
b ) + 1) + log(2ΣkbΣka)

)
−Dz log(2π)−Dz

C.1 EXPERIMENTAL DETAILS AND FURTHER RESULTS

We always train decoder-encoder pairs with identical architectures using both the standard VAE
ELBO and the SE ELBO with a fixed γ. Then, in each case by fixing the encoder (that is essentially
using the same representation) and by only using the mean activations of the encoders, we train
linear classifiers using standard training for solving several downstream tasks.

For both encoder and decoder networks we use a 4 layer multi layer perceptron (MLP) and a con-
volutional network (ConvNET) architectures with 200 units of ReLU activations at each layer. We
carried out experiments with latent space dimensions of 32, 64 and 128, corresponding to an output
sizes of an encoder with 64, 128 and 256 units, with two units per dimensions to encode the mean
and the log-variance parameters of a fully factorized Gaussian condition distribution. The training
is done using the Adam optimizer. Each network (both the encoder and decoder) are randomly
initialized and trained for 300K iterations.
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Tasks
MNIST Digit
Color-MNIST Color, Digit
CelebA see table 1

Training Representation Dimension, dim(Z) 32, 64, 128, 256

VAE or SE Observation noise variance, v 0.25, 0.5, 1., 2.
Architecture MLP, ConvNET

Training Coupling Strength γ 0.01, 0.1, 1, 5, 10, 50

SE Only Selection PGD Radius ε 0.01, 0.1, 0.2, 0.3
Selection PGD Iteration Budget L 1, 5, 10, 20, 50

Evaluation Attack PGD Radius to downstream task 0.01, 0.1, 0.2, 0.3
Attack PGD Iteration Budget 100 (10 random restarts)

Table 2: Experiment Hyperparameters
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Figure 7: Simulation Results on ColorMNIST. (a) The goal is comparing the robustness as a result
of the selection procedures, uniformly random selection from the unit ball and adversarial selection.
(b) The effect of the selection budget L on the adversarial accuracy. The plot shows adversarial
accuracy results for L = 1, 5, 10, 20.
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Figure 8: Simulation Results that illustrate label efficiency on CelebA. Dotted line shows down-
stream task adversarial accuracy obtained by using all the labelled data. Once the representation is
fixed, it is feasible to achieve the same accuracy with a small fraction of data.

D RELATED WORK

D.1 GENERATIVE ADVERSARIAL NETWORKS (GANS)

GANs are presented as neural sampling models of observations x of form x = f(ζ; η) where f is
typically a deep neural network with parameters η, and ζ is a realization from some simple distribu-
tion p(Z). In the context of GANs, the function f is called a generator. When the dimension of x
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is bigger than the dimension of ζ, the density p(x) induced by the transformation f is inevitably a
degenerate distribution. Since f is continuous, and it is concentrated on a subset of the data space
Xf ≡ {x : ∃ζ, x = f(ζ; η)}. Our use of letter f and parameters η is deliberate and we will illustrate
in the sequel that the generator network of a GANs is actually analogous to a smooth encoder, where
the roles of the latent variables and observations are switched, but we will first review GANs.

To fit a degenerate distribution to a dataset, the GAN approach adopts a strategy where the generator
is co-trained with a second neural network d(x;w) with parameters w with the following objective

min
θ

max
w

{
E {log d(x;w)}Dreal(x) + E {log(1− d(g(ζ; θ);w))}p(ζ)

}
(25)

where Dreal(x) is the empirical data distribution. This objective is (unfortunately) referred as an
adversarial objective in the literature, not to be confused with adversarial attack mechanism in
the context of supervised learning Madry et al. (2017). The function d is called a discriminator.
After replacing expectations with finite sample averages, this objective enforces that in a dataset
that contains both synthetically generated (fake) and real examples, the classification function d
should increase the correct classification rate by discriminating fakes from real examples while the
generator f should decrease the detection rate of fake examples. When 0 ≤ d(·) ≤ 1, which is the
case for a classifier, one can also write the objective as

min
θ

max
w

{
E {l(x;w)}Dreal

− E {l(f(ζ; η);w))}p(ζ)
}

(26)

where l(x;w) = log d(x;w). This form also highlights an interesting alternative formulation and an
interpretation in terms of optimal transport. In fact, not long after the seminal work of Goodfellow
et al. (2014), the mechanism beyond the GAN objective and its direct connection to the theory of
optimal transport has been recognized by the seminal paper Arjovsky et al. (2017) where the problem
is further framed as

min
θ

max
w

{
E {l(x;w)}Dreal(x) − E {l(x̄;w)}Dfake(x̄;θ)

}
(27)

with the constraint that |l(x;w) − l(x̄;w)| ≤ ‖c(x, x̄)‖, i.e. l is a Lipschitz function for some
L where ‖c(x, x̄)‖ ≤ L‖x − x̄‖. Here, Dfake(x̄; θ) is the fitted density of x̄ = f(ζ; η). This
is the dual formulation of the optimal transport problem, that can be understood as an economic
transaction between a customer and a shipment company. Here, the difference l(x;w)− l(x̄;w) can
be interpreted as the profit made by the company for the shipment of one unit of mass from x and to
x̄, and the Lipschitz condition ensures that it makes still sense for the customer to make use of the
services of the company rather than simply doing the transport of her own (Solomon, 2018). The
customer wants to pay less, so she should minimize the profit of the company. This can be achieved
by changing the desired delivery distribution Dfake by adjusting θ, so that the transfer from the fixed
source distribution Dreal is minimized. Ideally, when Dfake = Dreal, there is nothing to transfer and
no cost is incurred. This objective also minimizes the Wasserstein distance between the actual data
distribution Dreal and the fake data distribution Dfake as given by the generator.

Once the GAN objective can be viewed as minimizing a particular Wasserstein distance, it is rather
straightforward to view it as a maximizer of a particular ELBO corresponding to a particular smooth
encoder, albeit in one where the positions of the observations and the latents are exchanged and a
very large coupling coefficient γ is chosen. Moreover, the variational marginals have specific forms:
One marginal Qa(X) is chosen as the empirical data distribution and the other marginal is chosen
as having the form of a neural sampler Qb(Xb) =

∫
q(Xb|Zb, η)p(Zb)dZb.

The artificial extended target becomes

p(Z,Z ′|X, θ) ∝
∫
dXbp(Z|X, θ)p(Z ′|Xb, θ)ψ(X,Xb) (28)

It can be seen that the ELBO in this case becomes

log p(Z,Z ′|X, θ) ≥ E {log p(Z|X, θ)}Qa(X) + E {log p(X)}Qa(X)

+E {log p(Z ′|Xb, θ)}Qb(Xb) + E {log p(Xb)}Qb(Xb)

−γ
2
E {c(Xa, Xb)}Q(Xa,Xb) +H(Q(Xa, Xb)) (29)
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Now, by taking the coupling γ sufficiently large, the coupling term dominates the lower bound
and we obtain the Wasserstein minimization objective. The random draws from p(Z) become the
selection mechanism. Moreover, the terms that depend on the artificial target p(Z|X, θ) become also
irrelevant so in this regime the problem becomes just solving the optimal transport problem between
Qa and Qb.

A link between entropic GANs and VAEs is also pointed at in the literature, albeit for calculating a
likelihood for GANs Balaji et al. (2018). However, our motivations as well as the interpretation of
the connection is quite different and we view the GAN decoder as an instance of the smooth encoder.

D.2 DISENTANGLED REPRESENTATIONS AND β-VAE

Targeting the encoder to an augmented distribution different than the decoder us the freedom to
express some extensions of VAE in the same framework. One of such extensions is the β-VAE,
quite often used for controlling representations replaces the original variational objective (1) with
the following objective

log p(X = x|θ) ≥ E {log p(X = x|Z, θ)}q(Z|Xa=x,η) − βDKL(q(Z|Xa = x, η)||p(Z))(30)

The justification in the original paper Higgins et al. (2017) is obtained from an implicit robustness
criteria where DKL(q(Z|Xa = x, η)||p(Z)) < ε and β appears in a Lagrangian formulation. Hoff-
man & Johnson (2016) have also provided an alternative justification.

In our formulation, β can be simply interpreted as a dispersion term that is related to the number of
points selected by the selection mechanism. To see this, suppose the selection mechanism chooses
β − 1 points xb,i where i = 1 . . . β − 1 that are identical to the true observation x = xb,i = x′i for
i = 1 . . . β − 1.

p(X|θ) =

∫
dX ′1:β−1p(X,X

′
1:β−1|θ) (31)

∝
∫
dX ′1:β−1dZdZ

′
1:β−1p(X|Z, θ)p(Z)

(
β−1∏
i=1

p(X ′i|Z ′i, θ)p(Z ′i)

)
(32)

=

∫
dZdZ ′1:β−1p(X|Z, θ)p(Z)

(
β−1∏
i=1

p(Z ′i)

)
(33)

Now, instead of integrating out Z ′1:β−1, we choose a variational distribution with identical marginals
of form

Q(Z,Z ′1:β−1) = q(Z|Xa = x, η)

β−1∏
i=1

q(Z ′i|Xb,i = x, η) (34)

The variational lower bound becomes identical to the β-VAE objective as

log p(X|θ) ≥ E {log p(X|Z, θ)}q(Z|Xa=x,η) + E {log p(Z)}q(Z|Xa=x,η) (35)

+

β−1∑
i=1

E {log p(Z ′i)}q(Z′
i|Xb,i=x,η) +H(Q(Z,Z ′1:β−1)) (36)

= E {log p(X = x|Z, θ)}q(Z|Xa=x,η) − βDKL(q(Z|Xa = x, η)||p(Z)) (37)

where the last step follows due to the functional form of the variational distribution.

E TECHNICAL RESULTS

E.1 BATCH ELBO

In section 2.2, we have defined a batch ELBO (2). To see the connection to VAE ELBO (1)

log p(X = x|θ) ≥ E {log p(X = x|Z, θ)}q(Z|X=x,η) −DKL(q(Z|X = x, η)||p(Z)) ≡ Bx(η, θ)
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we first define the empirical data distribution π(X) = 1
N

∑N
i=1 δ(X − xi). We can now write

log p(X = x|θ) ≥ E {log p(X = x|Z, θ)}q(Z|X=x,η) −DKL(q(Z|X = x, η)||p(Z)) ≡ Bx(η, θ)

1

N

N∑
i=1

log p(X = xi|θ) =
1

N

N∑
i=1

E {log p(X = xi|Z, θ)}q(Z|X=xi,η)

− 1

N

N∑
i=1

E {log q(Z|X = xi, η)}q(Z|X=xi,η)

+
1

N

N∑
i=1

E {log p(Z)}q(Z|X=xi,η)

= E {log p(X|Z, θ)}q(Z|X,η)π(X) − E {log q(Z|X, η)}q(Z|X,η)π(X)

+E {log p(Z)}q(Z|X,η)π(X)

−E {log π(X)}q(Z|X,η)π(X) + E {log π(X)}π(X)

= −DKL(q(Z|X, η)π(X)||p(X|Z, θ)p(Z)) + const

This result shows that the ELBO is minimizing the KL distance between one exact and one approx-
imate factorization of the joint distribution p(X,Z) = p(X|Z, θ)p(Z) ≈ q(Z|X, η)π(X).

E.2 WHY IS THE DECODER TYPICALLY SMOOTH AFTER THE VAE TRAINING?

In the context of a VAE, the smoothness of the decoder is implicitly enforced by the highly con-
strained encoder distribution and the dynamics of an SGD based training. In the sequel, we will
illustrate that, if two latent coordinates are sufficiently close, the decoder mean mapping is forced to
be bounded.

In a standard VAE, the encoder output for each data point is conditionally Gaussian as q(Z|X =
x; η) = N (fµ(x; η), fΣ(x; η)). The decoder is chosen as p(X|Z = z; η) = N (g(z; θ), vI). The
decoder parameters θ under the ELBO depend only on the data fidelity term ‖x− g(z; θ)‖2/v.

For a moment, assume that the encoder is fixed and focus on a single data point x. During training,
a set of latent state vectors zi for i = 1 . . . T are sampled from the conditionally Gaussian encoder
distribution. When the dimension of the latent space Dz is large, these samples zi will be with high
probability on the typical set. The typical set of a nondegenerate Gaussian distribution is approxi-
mately the surface of a Mahalanobis ball, a compact hyper-ellipsoid M(x) centered at fµ(x; η) with
scaling matrix fΣ(x; η)1/2.

If we assume that the training procedure is able to reduce the error in the sense that ‖x−g(zi; θ)‖ ≤
E for all zi where E is a bound on the error magnitude for zi sampled from the encoder, the decoder
is forced to give the same output for each point approximately on M(x). For a point za drawn from
q(Z|X = x; η) we have

‖za − fµ(x; η)‖K ≈
√
Dz with high probability

where K = fΣ(x; η)−1 and ‖x‖K ≡
√
x>Kx.

For a point zb independently drawn from q(Z|X = x; η), by the triangle inequality we have

‖g(za; θ)− g(zb; θ)‖ ≤ 2E (38)

where the Mahalanobis distance

2
√
Dz ≈ ‖za − zb‖K ≤

1√
λmin

‖za − zb‖

where λmin is the smallest eigenvalue of the covariance matrix. Hence the distance is also bounded
when the variance is not degenerate and minimum distance will be on the order of ‖za − zb‖ ≈
2
√
Dzλmin so we expect the ratio to be bounded

‖g(za; θ)− g(zb; θ)‖/‖za − zb‖ ≤ E/
√
Dzλmin (39)
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We see that the ELBO objective enforces the decoder to be invariant on the typical set of q(Z|X =
x; η), where most of the probability mass is concentrated.

Now, for each data point x, the corresponding latent space hyper-ellipsoid M(x) are forced to be
large in the sense of having a large determinant by the entropy term of the encoder that promotes
large log-determinant. The size of M(x) is also controlled by the prior fidelity term, avoiding
blowing up. Hence the union ∪x∈XM(x), where X is the dataset, will approximately cover the
latent space when the encoder has converged and on each hyper-ellipsoid M(x) the decoder will be
enforced to be smooth.

E.3 SMOOTHNESS OF THE SMOOTH ENCODER

In this section we show that the smooth encoder training forces a small Lipschitz constant for the
encoder mean mapping. To simplify the argument, we will assume that the variance mapping of
the encoder would be a constant function that does not vary with x, i.e., fΣ(x; η) = Σ(η). The
latter assumption could be removed by considering a metric on the joint space of the means and
covariance.

Using the adversarial selection mechanism, during training we solve the following problem using
PGD:

x∗ = arg max
x′:‖x′−x‖p≤ε

WD(q(Z|X = x, η), q(Z|X ′ = x′, η))

Assuming that PGD finds the global maximum at the boundary of the ε-ball where ‖x− x∗‖p = ε,
under constant variance assumption for the encoder we can see that the Wasserstein divergence
simply becomes the square distance between mean mappings

WD(q(Z|X = x, η), q(Z|X ′ = x∗, η)) = ‖fµ(x; η)− fµ(x∗; η)‖22
We know that the SE ELBO objective has to minimize this distance for any coupling term γ so the
procedure actually tries to reduce the local Lipschitz constant L(x) around data point x

L(x) =
‖fµ(x; η)− fµ(x∗; η)‖

‖x− x∗‖p
≤ E

ε

and promotes smoothness whereE is an upper bound on the change in the representation ‖fµ(x; η)−
fµ(x∗; η)‖ ≤ E.
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