
Considerable Factors for Domain Model Learning in Planning

Rabia Jilani and Rubiya Reba
University of Huddersfield, Queensgate, UK

Abstract

Learning for planning has extensive aspirations to aim
at. Our primary focus area of review in this paper is the
knowledge engineering of domain models to feed plan-
ners. This concerns with learning and representation
of knowledge about operator schema, discrete or con-
tinuous resources, processes and events involved. With
the increased problem complexity on the continuum of
planning from classical towards full scope, synthesiz-
ing expressive and intensive planning domain models
by hand become more challenging, time-intense and
error-prone. Our intended contribution is to provide a
broader perspective on the range of research in the do-
main model learning area and specification of interde-
pendent AP dimensions which can affect the develop-
mental decisions of learning methods/techniques.
We map the amplitude of recently created domain
model learning methods on five considerable dimen-
sions. The dimensions to underpin the development of a
learning system include the type of planning paradigm,
representation languages, learning at various planning
stages, learning systems and sources and the extent of
learning that takes place. We also identify considerable
issues for future work.

Introduction
Automated Planning (AP) is one of the most prominent AI
challenges. It is the process of finding a procedural course
of action through explicit deliberation process to reach a
pre-stated objective in the form of goals while optimizing
overall performance. Planning is a pivotal task that has to be
performed by autonomous agents.

In order to perform automated reasoning, planning tech-
niques require formal specification of application knowl-
edge to be encoded in the form of Domain Models (DM).
In the action-centred view of problem representation, DM
encodes the domain knowledge in the form of actions that
can be executed together with relevant action properties and
features. The correctness of the planner reasoning depends
fundamentally on the quality of the domain knowledge that
otherwise can prove catastrophic. In the complex domain
scenarios, planners also use manually encoded or automat-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ically learned domain-specific control knowledge (in addi-
tion to DM) to guide planner search and cater to scalability
issues. Most planners define control knowledge separately
from DM to support different representations. Here we only
focus on DM learning aspect.

Acquisition of DM from scratch is an exceedingly diffi-
cult and expensive task that is usually done manually. KE
for planning DMs using Machine Learning (ML) techniques
is considered as a paramount for empowering autonomous
learning systems with the capacity to fill implicit human
knowledge gaps and errors, requiring least human interven-
tion. The area of ML application to DM learning systems
has received active research attention in recent years but did
not make as much stride as the learning of control knowl-
edge. Not enough depth of research into the area has made it
an ad-hoc process, where the skills of knowledge engineers
significantly influence the quality of the resulting planning
application and the accuracy of DM still counts as a bottle-
neck for AP (McCluskey, Vaquero, and Vallati 2017).

In this study, our intention is to provide a broader per-
spective on the range of research in the area of Learning
DMs for AP. We include various factors that make AP a
multi-dimensional area for learning researchers and map the
amplitude of recently created learning methods to these di-
mensions. Currently, most of these DM learning systems are
offline learners that target a very narrow range of diverse AP
domain features and exploit a specific source of input i.e.
plan traces with or without intermediate states using Induc-
tive generalization technique to learn classical DM (Jilani et
al. 2014). The target readers of the paper are the students
and interested researchers. The basic motive is to draw their
attention at the current research focus, the overlooked issues
and the gaps which given more attention has a potential for
exploration and research. We assume that the reader would
have insights into the planning and learning baseline litera-
ture.

In the next section, we look at learning DMs from dif-
ferent considerable factors including planning paradigms to
learn domain models for, representation mechanism, learn-
ing/improving DMs at different planning stages, the types
of learning sources/inputs and the extent of learning as an
outcome. We then discuss the types of learning techniques
and algorithms exploited by the learning systems. Towards
the end, we infer some effective and worthwhile venues for



further efforts in the area.

Considerable Factors for development of DM
Learning system

Following planning dimensions are related to learning and
dependent on each other in the number of ways and com-
patibility scenarios. Certainly, this is by no means an ex-
haustive list of considerable factors and techniques that may
affect the learning-planning duo. Among other prospective
dimensions that could have been considered include; struc-
tural type and correctness of input and learning drivers or
motivators (data-driven or knowledge-driven) for learning.

The operationality of the automatically learnt domain
models depends upon what actions do and how they do it. On
the spectrum of working domain models, Descriptive model
of actions identify ’what’ part of the deliberation by its
awareness of the resulting set of states after executing a par-
ticular action. In comparison, Operational models describe
’how’ to carry out task through actions by demonstrating
awareness of how to perform an action and achieve the target
effects (Ghallab, Nau, and Traverso 2016). On the scale of
the deliberation process, descriptive models are higher level
abstract models which focus on action effects. This is useful
for reasoning under situations where planning information
if not available on the run time as hierarchy and abstraction
make planning more efficient. Moving on the scale towards
operational model to address the real-world scenarios and
to include ways to respond to exogenous events, is compu-
tationally very complex yet employ fundamentally identical
learning techniques.

To explain the difference between Descriptive and Oper-
ational DMs, (Ghallab, Nau, and Traverso 2016) quotes an
example of modelling for an agent to take a book from the
library book shelve. On planning time, a descriptive model
will abstract away the details like available space on the
sides or top of the book to insert fingers and extract book
from the shelf. It will instead focus on how to reach the book
and whether hand/gripper needs to be free to execute the ac-
tion. On the other and, for Operational model the scenario
becomes way more complex with determining precisely the
position of book and hand in addition to feasibility in action
and motion sequencing to lift the books.

From the collection of work to date, learning and plan-
ning approaches are compared to similar or seminal re-
search while the research to reveal interrelations and inter-
dependencies are least addressed. We discuss five interre-
lated dimensions to stretch the consideration pane when
working towards DM learning for model-based planning and
may help in identifying open venues for future work. Fol-
lowing is the brief discussion on each of these dimensions
in the perspective.

Planning Paradigms and Problem Types
Since the classical planning paradigm was proposed in the
50s, considerable progress has been made in the develop-
ment of planning techniques and domain-independent plan-
ners. Currently, the dimensions of planning and so the under-
lying domain model design is wide-ranging. The continuum

of the categories from ”classical” to ”full scope” planning
depends on the nature of the environment in which plan-
ner has to do deliberation (Zimmerman and Kambhampati
2003). Deliberation assumptions broadly depend upon seven
features, including state observability, action determinism,
world dynamics, action duration, the scope of the state, at-
tainment of goal and time and concurrency factor. The clas-
sical planning has the most rigid assumptions while the as-
sumptions relax progressively towards full scope planning
on the continuum. In this section we clarify how the DM de-
sign and dynamics change over the continuum of the plan-
ning types.

Classical Planning: Classical planning reason about
static and fully known environment that has a finite and dis-
crete set of states and fully deterministic actions effects. The
actions in classical planning occur instantaneously and do
not consider any exogenous changes that are expected in the
environment. All these factors modelled in the form of a dis-
crete DM for a classical planning problem often differ with
the real world in which plans must be executed. This makes
it more of an abstract and descriptive model which is far
from a continuous operational model with the ability to re-
sponse exogenous events.

The states in a DM are a valuation of the variables from
the domain. Two variations of languages for expressing clas-
sical DMs include the one with boolean state variables and
the other with multi-valued state variables that take values
from a finite domain. STRIPS language to encode classical
DMs is based on the boolean variables that put into effect
classical state model. Several languages that include richer
syntax and finite-domain non-boolean state variables instead
of the straight-forward propositional encoding include (Mc-
Dermott et al. 1998)(Bäckström and Nebel 1995)(Gerevini
et al. 2009)(Helmert 2009).

Metric Planning: Logically based on classical planning
except that it reasons in the presence of numeric variables
without a bound on the number of values i.e. infinite vari-
ables. Numeric variables in metric DM usually represent
consumable resources e.g. fuel, time, energy, capacity etc.
Semantically being close to classical planning, a metric do-
main can be mapped by applying a finite bound on the range
of multi-valued numeric variables.

Temporal Planning: Unlike classical planning DM where
time is considered implicit with instantaneous action, tem-
poral planning DM explicitly include duration in order to
model concurrency in both independent and overlapping in-
teractive actions. In addition to usual pre and post conditions
in action definition, temporal DM also mentions numeric
constraints (relative or absolute) and events to locate action
execution in time. Generally, the objective of modelling tem-
poral constraints is a minimization of the plan makespan.
Time can explicitly be represented in the DM using state-
oriented or time-oriented representation(Ghallab, Nau, and
Traverso 2016). PDDL 2.1 (Fox and Long 2003) models
temporal DM with the group of propositions and a vector
of numeric variables to be manipulated by the actions based
on their preconditions. Temporal planning closely relates to
Scheduling.



Hybrid Planning: A hybrid system is one in which there
are both continuous control parameters and discrete logi-
cal modes of operation. Advances in classical and tempo-
ral planning have led to a possibility to plan in continuous
change. Hybrid planners and DMs tend to contribute towards
indispensable value in building autonomous reasoning sys-
tems. To reason about non-linear continuous dynamics in ad-
dition to conventional problem solving, the underlying DM
of the world needs to be more expressive.

DM for hybrid planning include object types, action defi-
nition (that can be conditional) and the continuous (numeric)
effects affecting the typed variables. Hybrid DM also con-
tain exogenous events and processes that certainly executes
regardless of the action taken. Processes model continuous
changes in the environment with time and execute when
its preconditions become true. Solar rover domain can be
a good example; with the Rovers, chargeable Batteries and
the rover Engines etc be the considerable types. Drive or
Recharge batteries would be the actions, while sunrise and
sandstorm would be the events and process. Execution in-
stance of continuous numeric effects may occur as a result
of some action effects e.g. when rover has to change its di-
rection, move, align batteries and transmit data, all of these
actions would have separate continuous effects on the bat-
tery charging process of the rover.

AP community faces significant challenges in the con-
struction of hybrid DMs. One main exhaustive challenge
includes expressivity of the model elements for continuous
non-linear change in the target problems. In addition, it is
difficult to generalise from continuous change. To date, the
only viable approach towards hybrid planning and learning
is PDDL+ planning via discretisation. Several authors are
working towards the hybrid planning domain using piece-
wise linear function and dealing with continuous change by
discretising time and solving it as a discrete time problem
(Denenberg and Coles 2018b) with scalability as a major is-
sue to face. None of the hybrid planning solvers can perform
with real-world problems except after choosing the solver to
fit the purpose, or by deliberately modelling in such a way
so as to make the problem solvable in a realistic time. Based
on the fact that thorough and robust DM is rare, the devel-
opment of hybrid DM learning systems is in its infancy.

Prominent examples of continuous and dynamic domains
in large scale operations include urban traffic management
and control (UTMC) domain (McCluskey and Vallati 2017),
Reservoir Control (Yeh 1985), Heating, Ventilation and Air
Conditioning (HVAC) (Erickson et al. 2009) and Navigation
(Faulwasser and Findeisen 2009). Such scenarios motivate
the need to automate or semi-automate the hybrid DM learn-
ing process.

Representation Language
Expressively and practicability are generally the two main
considerations for knowledge representation mechanism. In
AP the key purpose of explicit knowledge representation
language for the formulation DM is to be able to rea-
son with it and infer new knowledge from it in the form
of action plans. There is no one knowledge representation
approach just like the reasoning approach that has com-

bined properties for all types and level of deliberation prob-
lems. Similarly, there is no single highly specialized knowl-
edge representation to cover a specialized area of learning
DMs. A well-chosen representation language should explic-
itly model every action effect the system might confront
(Arora et al. 2018a). (Riddle, Holte, and Barley 2011) proves
that the representation mechanism exploited makes an ex-
tensive difference to the planner’s ability to solve a prob-
lem by exploring six different representations of the Blocks
World Domain.

To cover diverse terrain of domain modelling approaches
and the kind of symbolism needed corresponding to respec-
tive planning types, this section discusses the most com-
monly used and accepted knowledge representations that
work well with their corresponding planning paradigm.

The term STRIPS is substantially used to refer to for-
mulations for classical planning. STRIPS was developed at
Stanford in early 70s, for the first intelligent robot. STRIPS
encoding of DM includes state-transition function whereas
the states are represented as first-order predicates. First or-
der logic (or predicate logic) is considered as the most ex-
pressive representation formalism for reasoning systems in
a dynamic environment. Based on its restrictive features,
STRIPS was proposed to avoid the frame problem com-
plexity as an alternate representation mechanism for situa-
tion calculus. Being a limited language in terms of semantic
features, reasoning and expressive power, STRIPS was aug-
mented by PDDL (McDermott et al. 1998) in order to ac-
quire common formalism and standardization for planning
problems.

PDDL family of planning domain description languages
is based on STRIPS (and partly ADL) assumptions while
supporting more expressive features and representations.
PDDL express DM based on types, predicates, constants and
operator definitions. Based on the feature space provided by
PDDL, DM representation has progressed from represent-
ing toy problem to being the foundation of autonomous be-
haviour with the evolution of AP.

The PDDL domain modelling features and elements have
been extended beyond some of the traditional restrictions
of classical planning (for the environment to be determin-
istic, fully observable and static etc) (PDDL 1.2). It includes
numeric variables for numerically expressive resources and
durative actions to express the temporal structure of ac-
tions (PDDL 2.1 (Fox and Long 2003)). As an extension of
PDDL 2.1 for probabilistic domains models with stochas-
tic state transitions, PPDDL (Probabilistic PDDL) (Younes
et al. 2005) was proposed. PDDL 3.0 include hard and
soft constraints (Gerevini and Long 2006) and object-fluents
(PDDL3.1 (Helmert 2008)).

RDDL (Sanner 2010) turned out to be very rich language
by its use in IPPC-2011 (Vallati et al. 2015) (to replace
PPDDL) in producing models with the factor of stochastic-
ity, concurrency, and complex reward which is not possible
with PPDDL.

PDDL+ (Fox and Long 2006) was developed to model
more flexible, robust and autonomous hybrid (mixed dis-
crete and continuous) DMs to reason about non-linear con-
tinuous dynamics with high dimensional state and action



spaces. The ability to manage interaction between the sys-
tem and environmental exogenous events is the key to this
PDDL extension. An advantage of using the continuous
PDDL+ over the classical PDDL is its accuracy and granu-
larity of its continuous representation (McCluskey and Val-
lati 2017). Several researchers have argued that the model
adopted in PDDL+ is much more natural than the previously
build models (McDermott 2003a)(Boddy 2003). The mod-
elling of continuous processes has also been considered by
(McDermott 2003b) and several other earlier in the knowl-
edge representation and reasoning communities.

In PDDL+ encoding of DM, events are analogous to in-
stantaneous actions when the event preconditions satisfy.
Similarly, processes are equivalent to continuous durative
actions of PDDL 2.1. Unlike action execution that happens
if chosen to, processes and events automatically occur as
soon as their precondition satisfies. Processes are triggered
by actions or by exogenous events. The process executes
based on its satisfied preconditions which lead to the exe-
cution of continuous numeric changes as process effects. So
only processes contain continuous update expression while
actions and events, being instantaneous, still represent dis-
crete change. Because of the higher complexity of mixed
discrete/continuous planning, very few PDDL+ planners are
available and this currently counts as a disadvantage of using
PDDL+ representation for domain modelling.

OCL (McCluskey, Richardson, and Simpson 2002), ADL
(Pednault 1989), NDDL (Frank and Jónsson 2003), MA-
PDDL (Kovács 2012) and OPT (McDermott 2005) are a few
more planning languages not very popular for DM learning.

Mccluskey et al in (McCluskey and Vallati 2017) intro-
duced a number of DM properties that also assist in the ef-
fective selection of representation mechanism for domain
encoding. These include consistency, accuracy, complete-
ness, adequacy and operationality with respect to the forma-
tion of planning DM and their associated problem instances
in particular representation language.

Planning Stages and potential Learning
In order to deal with real-world planning-inherent complex-
ity, learning-augmented planning systems should be able to
apprehend the environment, generate corresponding effects
and enhance their performance according to the previous ex-
perience. We discuss learning-augmented planning systems
from DM learning and refinement perspective. These sys-
tems can be categorized as conducting learning before the
planning process starts (offline), during the plan search and
execution stages (Online).

Both online and offline DM learning has pros and cons.
Online learning can continuously/incrementally refine the
DM in case an anomaly is detected by improving or adapt-
ing to the changes while for offline planning, the planner
has to bear with the predefined version till the planning pro-
cess finishes. Similarly, For online learning of DM, the over-
head cost incurred for the joint planning-learning process is
higher in terms of processing time and efficiency compared
to offline learning (Zimmerman and Kambhampati 2003).
This may also explain why online incremental DM learning
has not been very popular in recent years.

The form of online learning approaches that have received
active attention is for learning domain control knowledge.
Unfortunately, very few learning integrated planning sys-
tems perform online learning for completion or improve-
ment of DM. Few systems that exhibit online learning in-
clude online learning of macro-actions during planning pro-
cess (Coles and Smith 2007)(Botea et al. 2005) or learning
patterns for predicting success, failure or dead-end
outcomes on plan execution to compile them into a new
action model (valid for off-the-shelf planners) (Jiménez,
Fernández, and Borrajo 2008) . Reinforcement learning con-
ducts online learning through the trial-and-error visitation of
states in its environment to seek optimal policy for problem
goals. Reinforcement learning can be used to enhance plan
quality as well as to learn the DM (begins without a model
of transition probability between states) (Zimmerman and
Kambhampati 2003)(Croonenborghs et al. 2007).

Learning Systems and their Sources
This section provide insights into various learning systems
that also goes beyond the boundary of learning for AP but
essentially use the known ML techniques to conduct learn-
ing.

Apprentice System: (Mitchell, Mabadevan, and Stein-
berg 1990) coined the term apprentice system as an inter-
active knowledge-based system which comprehends knowl-
edge by observing the users interaction with the system and
analyzing the problem-solving steps. These systems cap-
ture and infer from the training examples of the user’s ac-
tivity and the context on which decisions involved in ac-
tivity were taken. It then generalizes rules from the train-
ing examples that are comparable to the hand-generated
rules. The idea has been implemented in a number of ap-
plication areas. LEAP (Mitchell, Mabadevan, and Steinberg
1990) is a learning apprentice and advice system for digi-
tal circuit design that learns new tactics from its experience
with user approval and rejection of its advice about circuit
decomposition. ARMS system (developed in 1988) (Segre
2012) for robot Assembly planning learns from user inter-
face where user instructs the simulated robots to perform
simple tasks. (Nakauchi, Okada, and Anzai 1991)(Jourdan
et al. 1993)(Tecuci and Dybala 1998)(Abbeel et al. 2008)
are some more examples of apprentice systems that use var-
ious methods of interaction with the user including passive
observations or querying the user to record the reason behind
the particular decision made.

Learning from Demonstration: The source of input for
such systems are generally the training logs based on the
sub-cognitive skills and actions of a trainer. The AP liter-
ature also describes this method as learning by observation,
demonstration, imitation or watching and also by Behavioral
Cloning. Learning from fully or partially-annotated demon-
strations by domain expert have been used by several sys-
tems for knowledge acquisition in robotics and task mod-
elling (Garland and Lesh 2003)(Argall et al. 2009) but has
rarely been used to learn declarative DM (Nejati, Langley,
and Konik 2006) for AI planners. This is partly because for
moderately complex domains, it is unfeasible for the area



expert to specify conjecture for every action, explanations
for every inconsistency, and all possible effects of DM, as
the performance of the learner is affected by the ability of
the trainer. In order to cover for trainer’s implicit knowledge
gap, many systems use reinforcement learning techniques to
co-operate with this type of learning. Two of the common
demonstration approaches include Tele-operation and Shad-
owing.

Crowdsourcing: Recently crowdsourcing (Howe 2008)
has been exploited as a novel approach for acquiring plan-
ning DMs (Zhuo 2015). Collecting a large amount of train-
ing data is not always feasible in terms of reach and cost e.g.
in a situation like a military operation. Instead of collect-
ing training examples, crownsourcing methods engage dif-
ferent annotators that could include various sources like do-
main experts, stakeholders, previous data, or experience of
the general public about the domain to learn. The outcome
from various annotators built as the soft constraints can later
be solved using Max-sat solver to generate a domain model.

While crowdsourcing is comparatively new in learning for
planning, it has been used in several planning application e.g
(Zhang et al. 2012) enables a crowd to effectively and col-
laboratively resolve global constraints to carry out itinerary
planning. (Gao et al. 2015) proposes a technique to handle
the discrepancy in crowd inputs by first building a set of Hu-
man Intelligence Tasks (HITs) for values collection and then
estimate the actual values of variables and feed the values to
a planner to solve the problem. (Raykar et al. 2010) label
training data for machine learning by crowdsourcing infor-
mation from experts and non-experts. The system not only
evaluates the different experts and but also gives an estimate
of the actually hidden labels.

Transfer learning: Through Transfer Learning (TL), sys-
tem exploits data from one or more source domains to im-
prove learning performance in a different target domain in
situations with like limited training data availability. Knowl-
edge engineering through transfer learning especially for
planning DMs has recently received much attention and the
resulting learning technique provides a good corpus of work
for interested researchers.

Pan et al in a survey on TL explain the benefit of using TL
to cover the same feature space assumption of ML. Many
machine learning methods work well only under a common
assumption: the training and test data are drawn from the
same feature space and the same distribution. When the dis-
tribution changes, most statistical models need to be rebuilt
from scratch using newly collected training data. In many
real-world applications, it is expensive or impossible to rec-
ollect the needed training data and rebuild the models. It
would be nice to reduce the need and effort to recollect the
training data especially when data is scarcely available or
when it easily becomes outdated. In such cases, knowledge
transfer or transfer learning between task domains would be
desirable (Pan and Yang 2010). The survey also addresses
the primary issues of what, when and how to transfer.

(Zhuo, Yang, and Li 2009) learns DM from plan traces by
transferring useful information from other domains whose
DMs are already known. The system creates a metric to

measure the shared information and transfer this informa-
tion according to this metric. The larger the metric is, the
bigger the information is transferred. Inspired by the educa-
tional psychology of meta-cognitive reflection for better in-
ductive transfer learning practices (WEI et al. 2018) propose
a novel L2T framework for transfer learning which automat-
ically optimizes what and how to transfer between a source
and a target domain by leveraging previous transfer learning
experiences. (Zhuo et al. 2008) presents t-LAMP, (transfer
Learning Action Models from Plan traces) which can learn
DMs in PDDL language with quantifiers. The system ex-
ploits plan traces using MLN to enable knowledge transfer.
(Zhuo and Yang 2014) proposed TRAMP (Transfer learn-
ing Action Models for Planning) system, to learn DMs with
limited training data in a target domain, by transferring as
much of the available information from source domains by
using web search on top of transfer technique to bridge the
transfer gap.

LSTM: Long short-term memory (Hochreiter and
Schmidhuber 1997) is artificial recurrent neural network
(RNN) architecture used in deep learning techniques and
has been successfully used in learning long range depen-
dencies. Along with its common applications in a number
of areas like connected handwriting recognition (Graves et
al. 2009) or speech recognition (Sak, Senior, and Beaufays
2014), it is recently been used in learning for planning
perspective.

LSTM architecture and plan generation, both effectively
exhibit the same phenomena of exploiting long-range depen-
dencies to function. The PDeepLearn (Arora et al. 2018b) is
a pioneering system that maps the LSTM abilities to learn a
high-quality multimodal HRI PDDL model identical to the
hand-woven DM for AP. The source of learning exploited
for this purpose is state-action interleaved plan traces. The
PDeepLearn system narrows down the ideal model out of
the candidate DMs generated, by exploiting pattern mining
techniques and recurrent neural networks.

Extent and Evaluation of Learning
Just like optimality property of plans is too hard to check
and evaluate in terms of distance from being optimal (Long
and Fox 2002), similarly domain model completeness and
quality have no standard evaluation and analysis methods,
and like the requirements specification, it cannot be objec-
tively assessed, and proven correct. Learning systems and
their output are typically evaluated empirically, based on
their divergence from the reference model (which itself can
be questionable from multiple perspectives by multiple ex-
perts). A step forward in defining the quality of DMs and
to improve KE tools McCluskey et al (McCluskey, Vaquero,
and Vallati 2017) uses the idea of DM as a formal specifica-
tion of a domain, and considers what it means to measure the
quality of such a specification. To build the notion of qual-
ity assessment, they used dynamic and static testing of the
DM. (Vallati and McCluskey 2018) presents quality frame-
work which aims at representing all the aspects that affect
the quality of knowledge in DMs. The framework is based
on the interaction between seven different sets that underpin



the domain quality.
In some cases, the extent of learning can be improved by

accommodating or totally abolishing the inadequacies by the
provision of richer observation samples of knowledge. On
the other hand, for the learning of probabilistic domains, it
is not easy to detect inadequacies, and on top, there are no
current procedures to improve the stochastic actions when
states that do not fit the model are observed.

The strength of the exploited learning approach or algo-
rithm is the key factor to regulate the extent of learning
by the system, as it may get stuck in local minima or not
be able to capture patterns of the target knowledge within
a reasonable time and memory requirements (Jiménez et
al. 2012). For example, exploiting reinforcement learning
method, to learn from reward-based approach can learn bet-
ter in a stochastic environment as compared to the inductive
learning (which is based on drawing from inference). Sim-
ilarly, learning for conformant or contingent planning task,
the suitable learning approach to adopt is by inference or
by inductive generalization to find the best fit for the ob-
served facts. The concept of model-lite planning (Kamb-
hampati 2007) views a planning problem as an MPE (most
plausible explanation) problem. These techniques search for
solution plans that are most plausible according to the cur-
rent DM, specifically for situations where the first bottleneck
is getting the DM at any level of completeness.

Learning Techniques and Algorithms
On the continuum of planning paradigms starting from the
classical planning, learning/improving the domain theory
is inconsistent with the classical planning assumption of
a complete and correct domain theory (Zimmerman and
Kambhampati 2003). Based on this fact, classical planning
only supports offline learning of DM. Moving towards full
scope planning, the real world problems present complex
requirements like learning numeric variables, explicit time
representation and derived predicates that enrich the descrip-
tions of the world.

Among the majority of the DM learning techniques ex-
ploited for DM learning, much attention has been given to
inductive (top-down approach) and analytical (bottom-up
approach) learning by extrapolating from sample plans used
as the evidence to make a probabilistic claim about all or
most of the learned knowledge (Jilani et al. 2014). Analyt-
ical learning uses input additional knowledge such as ini-
tial/intermediate and goal states, fluents or other partial do-
main information as explanations of the collected example
plans for deductive reasoning. Most of the knowledge ex-
traction from the additional input knowledge used is based
on direct liftings of the observed states in the input. Systems
that learn very expressive DMs tend to demand most detailed
input (Tate et al. 2012). Other inductive techniques such as
decision tree learning, neural networks, and Markov Logic
Network learning, have seen few learning applications. Nu-
merous technique overviewed in this section is inclined to-
wards full or at-least broader scope planning on the contin-
uum. The overview is a non-exhaustive description of the
relevant systems.

Many learning systems exploit the technique of Markov
Logic Network (MLN) (Richardson and Domingos 2006)
that applies the concept of a Markov network to first-order
logic (FOL) and draw the inference from the evidence. The
vertices of the Markov graph are taken as atomic FOL for-
mulas, and the edges act as the logical connectives used
to construct the formula. Several systems includeing (Zhuo
et al. 2010) and (Zhuo and Kambhampati 2013) learn DM
based on the idea of Markov network as a major driving
approach. To deal with probability along with imperfect
and contradictory knowledge, MLNs provide a dense lan-
guage to determine very large Markov networks, and the
ability to flexibly and modularly incorporate a wide range
of domain knowledge into them (Richardson and Domingos
2006). LAMP system (Zhuo et al. 2010) uses the Markov
Logic Network (MLN) technique to select the most likely
subsets of candidate formulas from all the generated formu-
las which are later transformed into learned action models.
It learns STRIPS action models (with quantifiers and logical
implications) for classical planning from plan traces with
partially observed states. TRAMP (Zhuo and Yang 2014)
system conducts MLNs assisted transfer learning to learn
DM.

NLOCM (Gregory and Lindsay 2016) presents a method
of inducing cost (numeric) model for numerical planning.
The approach operates from action traces, cost pairs and
uses constraints programming based approach in order to
identify the action parameter sets that influence action costs.
It learns costs associated with important features of the ob-
ject finite state machines, generated by the LOCM (Cress-
well, McCluskey, and West 2013) family of algorithms.
PlanMiner (Segura-Muros, Perez, and Fernandez-Olivares
2018) system requires in addition (potentially noisy) state
information and presents a combined framework for learn-
ing the numeric and propositional components. (Lindsay et
al. 2017) learns domain models from natural language action
description.

Inducing DM and its features such as action duration for
temporal domains has been well-studied using predictive
modelling approaches of a relational decision and regres-
sion trees. Inducing regression trees is itself a well-known
method to building models for numeric variables. Decision
tree structures like a flow chart where learning takes place
by labelling the variables at nodes and branches of the tree
from the training data. Models in which state variables, rep-
resented in the form of trees can take discrete values are
called classification trees while trees, where state variables
can take continuous values, are called regression trees. Re-
lational decision trees (Blockeel and De Raedt 1998) are
the first-order logic upgrade of the classical decision trees
(Jiménez, Fernández, and Borrajo 2013).

(Haigh and Veloso 1999) used regression tree learning
(from execution traces of robot) to acquire rules that pri-
oritize the activities of the robot ROGUE according to the
values of its sensors. (Balac, Gaines, and Fisher 2000) used
regression trees for DM learning by the robot through ex-
perience to make similar predictions under various environ-
mental conditions in order to produce efficient plans. (Lan-
chas et al. 2007) automatically model the duration of ac-



tion execution as relational regression trees learned from
observing plan executions. They use execution traces to in-
fer important situational factors that lead to different execu-
tion times. Relational regression trees work with examples
described in a relational language such as predicate logic.
The system uses TILDE (Blockeel and De Raedt 1998) - a
relational tree learning system that allows the construction
of both relational decision and regression trees. (Jiménez,
Fernández, and Borrajo 2013) presented replanning when
failure paradigm to support planning in an uncertain and
stochastic environment. The online learning component of
the system allows it to learn probabilistic rules of the suc-
cess of actions from the execution of plans and to automati-
cally upgrade the planning model with these rules. Given the
set of observations and real DM as input, the upgraded out-
put DM is defined in PPDDL for probabilistic planning. To
model and learn, non-deterministic action effects, (Pasula,
Zettlemoyer, and Kaelbling 2007) developed a probabilistic,
relational planning rule representation given a set of exam-
ple action execution.

Due to the modelling-inherent complexity of hybrid do-
mains, it is hard to obtain a model of the complex nonlin-
ear dynamics that govern state evolution (Say et al. 2017).
Unlike classical planning paradigm, research is still in its
infancy about how the expressiveness in hybrid modelling
may affect the hybrid reasoning in a dynamic world.

To effectively represent cascading of action effects in hy-
brid domain, Denenberg et al (Denenberg and Coles 2018a)
designed three different methods for modelling sequences of
continuous effects (on a single variable) that an action may
cascade in a continuous domain. One of the methods is the
PDDL 2.1 model using clips and durative actions and the
remaining two are PDDL+ based. The authors have com-
pared the performance of these models empirically using
three different state-of-the-art PDDL+ planners and draw
conclusions based on the performance of each of the model
on two different learning problems. Alberto et al (Pozanco,
Fernandez, and Borrajo 2018) present APTC, a urban traffic
control system based on AP. The system assist DM design
and adaptation according to continuous changes in the world
by updating the model through monitoring and learning. The
system learns the effects of the actions at a junction level and
incorporates new actions in the DM.

In hybrid planning research, for past couple of years, re-
searchers have been exploiting Deep Learning and other eas-
ily accessible tools such as TensorFlow to learn highly accu-
rate nonlinear deep neural networks with least background
knowledge of the model structure (Say et al. 2017). Tensor-
Flow is an open source library for numerical computation
and large-scale machine learning that in addition to other
functions can simplify data acquisition process and models’
training (Rampasek and Goldenberg 2016). In (Wu, Say, and
Sanner 2017), authors exploited the use of TensorFlow in or-
der to plan successfully in hybrid non-linear domains. Here
the term ”hybrid” is used in the context of MDPs (i.e. mixed
domains of factored variables) as opposed to its meaning in
PDDL+ planning community. The authors produced the re-
sults evidencing how Tensorflow can be highly scalable in
terms of convergence and execution time.

It is worth noting that the problem of encoding DMs is
being analysed not only from the point of view of gener-
ating models in a specific description language –such as
PDDL– but also for generating different sorts of automat-
ically exploitable models. Konidaris et al (2014) proposed a
method for constructing symbolic representations for high-
level planning by establishing a close relationship between
an agent’s actions and the symbols required to plan to use
them.

Considerable Issues
This section includes some considerable issues we have de-
rived from our review.

The area of learning DM for planning has received pro-
portionately less attention and narrow scope than the learn-
ing of search control knowledge for planning. One of the
reasons for homogeneity and lack of diversification in DM
learning methods and considered representation mechanism
is the conflict between the configurations of learning ap-
proaches with planning approaches e.g. combining classical
planning paradigm with increment DM learning.

Another related issue worth contemplating is about decid-
ing which type of domain model or domain knowledge (over
the continuum of planning) is hardest/easiest to learn and
how hard/easy it is to get the corresponding training data.
This might help researchers be more decisive about which
part of the model is worth learning automatically with the
available resources. Hybrid DM learning is a key to move on
the spectrum of model abstraction from descriptive to more
operational real-world DMs.

Another question worth pondering is the recommended
sequence based on biases in which the considerable options
for learning mechanism should be decided. Based on the
complex interactions between the components of the learn-
ing system, finding the matching compatibility parameters
among the components could be the right direction to an-
swer the question. For example, to learn or refine the tempo-
ral DM for online planning system, what minimum input as-
sistance would be required and which representation mech-
anism would best suit the purpose in order to balance the
overhead cost incurred by the learning system so it doesn’t
overwhelm the gains in search efficiency.

Another abiding issue is the autonomous collection of rich
observation samples of planning actions. There have been
several plan recognition approaches (Ramı́rez and Geffner
2010) that can be exploited to output plan traces. Generally,
there are three ways to collect example plans. The first is
when plans are generated through goal-oriented solutions,
the second through random walks and third through obser-
vation of the environment by a human or by an agent. Goal
oriented plan solutions are generally expensive in that a tool
or a planner is needed to generate a large enough number
of correct plans to be used by the system. To do this one
must also have a pre-existing domain model and problems
with good coverage of world objects. Randomly generated
plan traces usually under-sample the action and state spaces.
Observation by an agent has a high chance that noise will
be introduced in the plan collection; which can clearly af-
fect the learning process. Currently, most working systems



assume the input knowledge to be correct and consequently
not suitable for real-world applications. To increase poten-
tial utility, systems should be able to show equal robustness
to noise.

There have been some recent work (discussed in Extent
and Evaluation of Learning section) concerned with the cre-
ation of evaluation mechanism or matrix to judge the quality
and robustness of DMs and declare it adequate for planners.
As the sources of knowledge elicitation and model devel-
opment are not mathematical procedures, therefore a DM
cannot be measured on a correctness scale. To attract more
research towards automatic DM acquisition, the 2009 edi-
tion of ICKEPS (Bartak, Fratini, and McCluskey 2010) was
devoted to evaluating systems that involved the domain re-
quirements to be captured in an application-oriented syntax
for automatic or semi-automatic generation of a DM. How-
ever, the disconnect between research and application was
highlighted also by the more recent 2016 ICKEPS com-
petition, where the majority of competing teams used no
informed method or supporting tools environment in the
knowledge engineering process (Chrpa et al. 2017).

In order to gain researchers’ interest in learning sys-
tems’ development, current state-of-the-art learning systems
should be more accessible and open to use by research stu-
dents and the scientific community. Like planners, these sys-
tems should be available on-line and include an interface
along with user guidance manual for ease of use by non-
planning experts.

Conclusion
At the state of the art, few automated techniques for learning
DMs have been proposed; they differ in terms of consider-
able options discussed in this paper and so the accuracy and
reliability of output DM. By this brief overview, we hope to
draw research attention to the broader scope in learning effi-
cient and expressive DMs for various planning paradigms by
discussing common area to consider before the development
of KE method for planning domains.

References
Abbeel, P.; Dolgov, D.; Ng, A. Y.; and Thrun, S. 2008. Ap-
prenticeship learning for motion planning with application
to parking lot navigation. In 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1083–1090.
IEEE.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and autonomous systems 57(5):469–483.
Arora, A.; Fiorino, H.; Pellier, D.; Métivier, M.; and Pesty,
S. 2018a. A review of learning planning action models. The
Knowledge Engineering Review 33.
Arora, A.; Fiorino, H.; Pellier, D.; and Pesty, S. 2018b.
Action model acquisition using lstm. arXiv preprint
arXiv:1810.01992.
Bäckström, C., and Nebel, B. 1995. Complexity results for
sas+ planning. Computational Intelligence 11(4):625–655.

Balac, N.; Gaines, D. M.; and Fisher, D. 2000. Using regres-
sion trees to learn action models. In Smc 2000 conference
proceedings. 2000 ieee international conference on systems,
man and cybernetics.’cybernetics evolving to systems, hu-
mans, organizations, and their complex interactions’(cat.
no. 0, volume 5, 3378–3383. IEEE.
Bartak, R.; Fratini, S.; and McCluskey, L. 2010. The
third competition on knowledge engineering for planning
and scheduling. AI Magazine 31(1):95–98.
Blockeel, H., and De Raedt, L. 1998. Top-down induction
of first-order logical decision trees. Artificial intelligence
101(1-2):285–297.
Boddy, M. S. 2003. Imperfect match: Pddl 2.1 and real
applications. Journal of Artificial Intelligence Research
20:133–137.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24:581–621.
Chrpa, L.; McCluskey, T. L.; Vallati, M.; and Vaquero, T.
2017. The fifth international competition on knowledge en-
gineering for planning and scheduling: Summary and trends.
AI Magazine 38(1):104–106.
Coles, A. I., and Smith, A. J. 2007. Marvin: A heuristic
search planner with online macro-action learning. Journal
of Artificial Intelligence Research 28:119–156.
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using locm. The Knowl-
edge Engineering Review 28(2):195–213.
Croonenborghs, T.; Ramon, J.; Blockeel, H.; and
Bruynooghe, M. 2007. Online learning and exploit-
ing relational models in reinforcement learning. In IJCAI,
volume 2007, 726–731.
Denenberg, E., and Coles, A. 2018a. Modelling sequences
of processes in pddl+ for eicient problem solving.
Denenberg, E., and Coles, A. 2018b. Automated Planning
in Non-Linear Domains for Aerospace Applications.
Erickson, V. L.; Lin, Y.; Kamthe, A.; Brahme, R.; Surana,
A.; Cerpa, A. E.; Sohn, M. D.; and Narayanan, S. 2009.
Energy efficient building environment control strategies us-
ing real-time occupancy measurements. In Proceedings of
the First ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings, 19–24. ACM.
Faulwasser, T., and Findeisen, R. 2009. Nonlinear model
predictive path-following control. In Nonlinear model pre-
dictive control. Springer. 335–343.
Fox, M., and Long, D. 2003. Pddl2. 1: An extension to
pddl for expressing temporal planning domains. Journal of
artificial intelligence research 20:61–124.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. Journal of Artificial Intel-
ligence Research 27:235–297.
Frank, J., and Jónsson, A. 2003. Constraint-based attribute
and interval planning. Constraints 8(4):339–364.



Gao, J.; Zhuo, H. H.; Kambhampati, S.; and Li, L. 2015.
Acquiring planning knowledge via crowdsourcing. In Third
AAAI Conference on Human Computation and Crowdsourc-
ing.
Garland, A., and Lesh, N. 2003. Learning hierarchical
task models by demonstration. Mitsubishi Electric Research
Laboratory (MERL), USA–(January 2002).
Gerevini, A., and Long, D. 2006. Preferences and soft con-
straints in pddl3. In ICAPS workshop on planning with pref-
erences and soft constraints, 46–53.
Gerevini, A. E.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth inter-
national planning competition: Pddl3 and experimental eval-
uation of the planners. Artificial Intelligence 173(5-6):619–
668.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
planning and acting. Cambridge University Press.
Graves, A.; Liwicki, M.; Fernández, S.; Bertolami, R.;
Bunke, H.; and Schmidhuber, J. 2009. A novel connection-
ist system for unconstrained handwriting recognition. IEEE
transactions on pattern analysis and machine intelligence
31(5):855–868.
Gregory, P., and Lindsay, A. 2016. Domain model acquisi-
tion in domains with action costs. In Twenty-Sixth Interna-
tional Conference on Automated Planning and Scheduling.
Haigh, K. Z., and Veloso, M. M. 1999. Learning situation-
dependent rules: Improving task planning for an incom-
pletely modelled domain. In 1999 AAAI Spring Symposium
on Search Techniques for Problem Solving under Uncer-
tainty and Incomplete Information.
Helmert, M. 2008. Changes in pddl 3.1. Unpublished sum-
mary from the IPC-2008 website.
Helmert, M. 2009. Concise finite-domain representations
for pddl planning tasks. Artificial Intelligence 173(5-6):503–
535.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Howe, J. 2008. Crowdsourcing: How the power of the crowd
is driving the future of business. Random House.
Jilani, R.; Crampton, A.; Kitchin, D. E.; and Vallati, M.
2014. Automated knowledge engineering tools in planning:
state-of-the-art and future challenges.
Jiménez, S.; De la Rosa, T.; Fernández, S.; Fernández, F.;
and Borrajo, D. 2012. A review of machine learning for
automated planning. The Knowledge Engineering Review
27(4):433–467.
Jiménez, S.; Fernández, F.; and Borrajo, D. 2008. The pela
architecture: integrating planning and learning to improve
execution. In National Conference on Artificial Intelligence
(AAAI2008).
Jiménez, S.; Fernández, F.; and Borrajo, D. 2013. Integrat-
ing planning, execution, and learning to improve plan exe-
cution. Computational Intelligence 29(1):1–36.
Jourdan, J.; Dent, L.; McDermott, J.; Mitchell, T.; and
Zabowski, D. 1993. Interfaces that learn: A learning appren-

tice for calendar management. In Machine learning methods
for planning. Elsevier. 31–65.
Kambhampati, S. 2007. Model-lite planning for the web
age masses: The challenges of planning with incomplete
and evolving domain models. In Proceedings of the Na-
tional Conference on Artificial Intelligence, volume 22,
1601. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999.
Konidaris, G. D.; Kaelbling, L.; and Lozano-Perez, T. 2014.
Constructing symbolic representations for high-level plan-
ning. In Proceedings of the Twenty-Eighth Conference on
Artificial Intelligence.
Kovács, D. L. 2012. A multi-agent extension of pddl3. 1.
Lanchas, J.; Jiménez, S.; Fernández, F.; and Borrajo, D.
2007. Learning action durations from executions. In Pro-
ceedings of the ICAPS Workshop on AI Planning and Learn-
ing (AIPL).
Lindsay, A.; Read, J.; Ferreira, J. F.; Hayton, T.; Porteous, J.;
and Gregory, P. 2017. Framer: Planning models from natu-
ral language action descriptions. In Twenty-Seventh Interna-
tional Conference on Automated Planning and Scheduling.
Long, D., and Fox, M. 2002. Progress in ai planning re-
search and applications. UPGRADE: The European Journal
for the Informatics Professional 3(5):10–25.
McCluskey, T. L., and Vallati, M. 2017. Embedding auto-
mated planning within urban traffic management operations.
In Twenty-Seventh International Conference on Automated
Planning and Scheduling.
McCluskey, T. L.; Richardson, N. E.; and Simpson, R. M.
2002. An interactive method for inducing operator descrip-
tions. In AIPS, 121–130.
McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. En-
gineering knowledge for automated planning: Towards a no-
tion of quality. In Proceedings of the Knowledge Capture
Conference, 14. ACM.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl-the
planning domain definition language.
McDermott, D. 2003a. Pddl2. 1–the art of the possible?
commentary on fox and long. Journal of Artificial Intelli-
gence Research 20:145–148.
McDermott, D. V. 2003b. Reasoning about autonomous pro-
cesses in an estimated-regression planner. In ICAPS, 143–
152.
McDermott, D. 2005. Opt manual version 1.7. 3 (reflects
opt version 1.6. 11)* draft.
Mitchell, T. M.; Mabadevan, S.; and Steinberg, L. I. 1990.
Leap: A learning apprentice for vlsi design. In Machine
learning. Elsevier. 271–289.
Nakauchi, Y.; Okada, T.; and Anzai, Y. 1991. Groupware
that learns. In [1991] IEEE Pacific Rim Conference on Com-
munications, Computers and Signal Processing Conference
Proceedings, 688–691. IEEE.
Nejati, N.; Langley, P.; and Konik, T. 2006. Learning hierar-
chical task networks by observation. In Proceedings of the



23rd international conference on Machine learning, 665–
672. ACM.
Pan, S. J., and Yang, Q. 2010. A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engineering
22(10):1345–1359.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains. Journal of
Artificial Intelligence Research 29:309–352.
Pednault, E. P. 1989. Adl: Exploring the middle ground
between strips and the situation calculus. Kr 89:324–332.
Pozanco, A.; Fernandez, S.; and Borrajo, D. 2018. Dis-
tributed planning and model learning for urban traffic con-
trol.
Ramı́rez, M., and Geffner, H. 2010. Probabilistic plan
recognition using off-the-shelf classical planners. In Twenty-
Fourth AAAI Conference on Artificial Intelligence.
Rampasek, L., and Goldenberg, A. 2016. Tensorflow: Biol-
ogys gateway to deep learning? Cell systems 2(1):12–14.
Raykar, V. C.; Yu, S.; Zhao, L. H.; Valadez, G. H.; Florin,
C.; Bogoni, L.; and Moy, L. 2010. Learning from crowds.
Journal of Machine Learning Research 11(Apr):1297–1322.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine learning 62(1-2):107–136.
Riddle, P. J.; Holte, R. C.; and Barley, M. W. 2011. Does
representation matter in the planning competition? In Ninth
Symposium of Abstraction, Reformulation, and Approxima-
tion.
Sak, H.; Senior, A.; and Beaufays, F. 2014. Long short-term
memory recurrent neural network architectures for large
scale acoustic modeling. In Fifteenth annual conference of
the international speech communication association.
Sanner, S. 2010. Relational dynamic influence diagram lan-
guage (rddl): Language description. Unpublished ms. Aus-
tralian National University 32.
Say, B.; Wu, G.; Zhou, Y. Q.; and Sanner, S. 2017. Nonlinear
hybrid planning with deep net learned transition models and
mixed-integer linear programming. In IJCAI, 750–756.
Segre, A. M. 2012. Machine learning of robot assembly
plans, volume 51. Springer Science & Business Media.
Segura-Muros, J. A.; Perez, R.; and Fernandez-Olivares,
J. 2018. Learning Numerical Action Models from Noisy
and Partially Observable States by means of Inductive Rule
Learning Techniques. In Proceedings of the ICAPS Work-
shop on Knowledge Engineering for Planning and Schedul-
ing (KEPS).
Tate, A.; Wickler, G.; McCluskey, L.; and Chrpa, L. 2012.
Machine learning and adaptation of domain models to sup-
port real time planning in autonomous systems. HEdLAMP–
Huddersfield+ Edinburgh: Learning and Adaptation of
Models for Planning, University of Edinburgh.
Tecuci, G., and Dybala, T. 1998. Building Intelligent Agents:
An Apprenticeship, Multistrategy Learning Theory, Method-
ology, Tool and Case Studies. Morgan Kaufmann.
Vallati, M., and McCluskey, T. L. 2018. Towards a frame-

work for understanding and assessing quality aspects of au-
tomated planning models.
Vallati, M.; Chrpa, L.; Grześ, M.; McCluskey, T. L.; Roberts,
M.; Sanner, S.; et al. 2015. The 2014 international planning
competition: Progress and trends. Ai Magazine 36(3):90–98.
WEI, Y.; Zhang, Y.; Huang, J.; and Yang, Q. 2018. Transfer
learning via learning to transfer. In Dy, J., and Krause, A.,
eds., Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine
Learning Research, 5085–5094. Stockholmsmssan, Stock-
holm Sweden: PMLR.
Wu, G.; Say, B.; and Sanner, S. 2017. Scalable planning
with tensorflow for hybrid nonlinear domains. In Advances
in Neural Information Processing Systems, 6273–6283.
Yeh, W. W.-G. 1985. Reservoir management and operations
models: A state-of-the-art review. Water resources research
21(12):1797–1818.
Younes, H. L.; Littman, M. L.; Weissman, D.; and Asmuth,
J. 2005. The first probabilistic track of the international
planning competition. Journal of Artificial Intelligence Re-
search 24:851–887.
Zhang, H.; Law, E.; Miller, R.; Gajos, K.; Parkes, D.; and
Horvitz, E. 2012. Human computation tasks with global
constraints. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 217–226. ACM.
Zhuo, H. H., and Kambhampati, S. 2013. Action-model
acquisition from noisy plan traces. In Twenty-Third Interna-
tional Joint Conference on Artificial Intelligence.
Zhuo, H. H., and Yang, Q. 2014. Action-model acquisi-
tion for planning via transfer learning. Artificial intelligence
212:80–103.
Zhuo, H.; Yang, Q.; Hu, D. H.; and Li, L. 2008. Transferring
knowledge from another domain for learning action models.
In Pacific Rim International Conference on Artificial Intelli-
gence, 1110–1115. Springer.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence 174(18):1540–1569.
Zhuo, H.; Yang, Q.; and Li, L. 2009. Transfer learning action
models by measuring the similarity of different domains. In
Pacific-Asia Conference on Knowledge Discovery and Data
Mining, 697–704. Springer.
Zhuo, H. H. 2015. Crowdsourced Action-Model Acquisition
for Planning. In Proceedings of the AAAI Conference on
Artificial Intelligence.
Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: looking back, taking stock, go-
ing forward. AI Magazine 24(2):73–73.


