
Reproducibility Challenge: Meta-Learning
Representations for Continual Learning

Mihaela Georgieva Stoycheva
KTH Royal Institute of Technology

mgst@kth.se

Sergio Liberman Bronfman
KTH Royal Institute of Technology

liberman@kth.se

Konstantinos Saitas Zarkias
KTH Royal Institute of Technology

kosz@kth.se

Abstract

In this report we briefly introduce the MRCL method presented in Meta-Learning
Representations for Continual Learning by Javed and White [2019] for learning
representations which promote fast model adaptability to new tasks while trying
to minimise catastrophic forgetting, which is the problem of continual learning.
Additionally, we report results of our implementation based on the presented
approach. Based on our level of knowledge in this topic, we found that the article is
not reproducible on its own because several details essential for its implementation
are not explicitly stated in the paper or are misleading. Finally, we discuss the
issues and differences between expected and obtained results. Our implementation
code can be found here: https://github.com/sergiolib/reproduce_oml
using TensorFlow 2, while the original paper’s code is written using PyTorch.

1 Introduction

Continual learning is based on the idea that an agent is being presented with continuous stream of data
and its goal is to learn from it and adapt. The challenge comes from the fact that a model designed
for this task has to exploit all the data to learn fast from few examples whereas at the same time it
needs to retain all the previously acquired knowledge. This is a known shortcoming of deep neural
networks, namely their inability to learn information continuously while keeping the knowledge
from previous examples. The process of forgetting what has already been seen is also known as
catastrophic forgetting and a lot of work has been done to alleviate this problem. The methods that
deal with catastrophic forgetting can be divided into three main groups: generating samples from
previous tasks, changing the online update to retain the knowledge and using sparse semi-distributed
representations.

Meta learning, on the other hand, aims to find a good initialisation of a set of parameters based on a
set of tasks related to, but not exactly the one that the model addresses. The idea is to be able to find
the best parameters from a small amount of training data, given that a big amount of data from others
tasks is available. Methods based on the work presented in Finn et al. [2017] are the current state of
the art for Meta learning.

Meta-learning Representations for Continual Learning Javed and White [2019], or MRCL, tries to
address Continual learning problems with Meta learning based solutions. The idea is to not find the
best initial parameters, but rather find the best optimal trajectories of the parameters in their space in
a Meta-learning fashion. The best optimal trajectories are defined either as perpendicular or parallel
to all tasks. This way, in a perfectly pretrained model, every time a new task is learnt the previously

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/sergiolib/reproduce_oml


learnt ones are not forgotten. In practical terms, MRCL finds good representations for every related
task with considerably few non zero representation terms so that only those related to the specific
task get updated during the online updates and the rest remain untouched.

2 Method

The method Meta-learning Representations for Continual Learning consists of two sub-models,
namely a representation learning network (RLN) and a task learning network (TLN). The network
is set up so that it is possible to train only part of the parameters in each of the training steps using
different objectives. Additionally, there are two sets of continual data, namely one used for pretraining
and one used for online training. It is suggested to divide the pretraining dataset into two mutually
disjoint sets Sremember and Slearn in order to stabilize the training procedure.

During the pretraining procedure the RLN aims at learning a good meta-learning representation that
is later used for the online learning step. First, two datasets are constructed from the pretraining data.
The first consists of a randomly sampled task from Sremember and is denoted as trajectory dataset
Dtraj , while the second is a sequence from a random subset of tasks sampled from Slearn and is
denominated as random dataset Drand. Both datasets correspond to sample sequences of the same
tasks.

The task of finding the best representation is achieved by first making a copy of the initial weights of
the TLN. Then, an inner loop that only updates the weights of the copied TLN is executed. This inner
optimisation uses standard gradient descent and considers only the trajectory datasetDtraj . After that
the weights of both the RLN and the original TLN are updated using a concatenated sequence of the
trajectory dataset and the random data Dmeta = (Drand+Dtraj). In this case the Adam optimiser is
used and the loss is calculated using the output of the copied TLN. The pretraining procedure requires
storing two versions of the TLN in memory.

Javed and White [2019] present a problem formulation of the continual learning prediction problem,
that assumes the input consists of infinite samples in the form

(X1, Y1), (X2, Y2), ..., (Xt, Yt), ... (1)

where Xt is input and Yt is the associated output for a specific pair and belong to sets X and Y .
The marginal distribution that defines how often a specific task is seen is defined by the density
function µ : X → [0,∞). The authors point out that assuming such distribution results in correlated
sequences, a setup in which usual learning algorithms that work well on iid data would most likely
fail.

With this notation in mind, the goal of continual learning is similar to most supervised classification
problems, that is to find a function f : X → Y that can infer y from x. In the context of the
method presented by Javed and White [2019] that is presented later in this report, the function f is
parameterised with θ and W and is defined in Equation 2

fθ,W (x) = gW (φθ(x)), φθ(x) : X → Rd, gW (x) : Rd → Y (2)

In the equation above φθ(x) is a shared representation function and gW (x) is task-specific. The
objective, like in most supervised problems, is to minimise the expectation of the error `(f(x), y),
where f(x) is the predicted label and y is the true label. The objective is defined as shown in Equation
3.

CLP (θ,W ) = E[`(f(X), Y )] =

∫ [∫
`(fθ,W (x), y)p(y|x)dy

]
µ(x)dx (3)

As mentioned, although the objective resembles the one of a standard supervised classification task,
since the data might be correlated, the iid assumption fails in this setting. This makes the problem
more difficult to solve with standard classification algorithms.

In order to tackle this issue, Javed and White [2019] propose the following objective of MRCL (OML)
as defined in Equation 4.

OML(θ,W )
def
=

∫
E
[
CLP

(
U(θ,W, {(Xt+1, Yt+1)}ki=1)

)
|Xt = x

]
µ(x)dx. (4)

2



For a set of different tasks (Xt, Yt) and a parameter space (θt,Wt) at a given timestep, the
update of the objective with stochastic gradient descent after k steps can be formulated as
U(θt,Wt, {(Xt+1, Yt+1)}ki=1) to produce (θt+k,Wt+k). In the context of OML, during the on-
line updates, the θ parameter is fixed and only the W changes. The idea of this approach is that θ will
be optimised for a better overall prediction accuracy but under the constraints of the online updates
which is based on the representation of the meta-objective.

Once the model is pretrained, an online learning procedure is performed by freezing the RLN
parameters and fine-tuning only the TLN using a training data stream of previously unseen examples.
Later, an evaluation dataset should be reserved to evaluate the effectiveness of the training.

3 Datasets

In this article, two popular datasets for evaluating meta-learning algorithms are used. In this context,
datasets that consist of multiple tasks, or classes, are more favourable in order to evaluate how well
the algorithms can adapt to new information.

3.1 Incremental Sine Waves (ISW)

To evaluate the performance of MRCL in regression tasks, a set of randomly sampled sine waves
varying in amplitude and phase were used. We followed closely the instructions of the paper to
sample the data sequences and the network set up. Each of the sine functions has a one hot encoded
identifier, a fixed phase (φ ∼ U(0, π)) and an amplitude (A ∼ U(0.1, 5.0)). Its support is also
randomly sampled (z ∼ U(−5, 5)).
In each epoch, K = 10 functions were sub sampled. The identifiers for each of these functions
were reassigned from k = 0 to k = 9 and assigned to each pair (z, y) where y = sink(z). For each
function, 40 sequences are sampled for the pretraining and 50 for the evaluation. To avoid excessive
interference, the network is set up considering not only the support z but also the identifier k in the
one hot encoding as inputs, and y as output.

3.2 Split-Omniglot

In the case of classification, the Omniglot [Lake et al., 2015] dataset was used. It consists of images
illustrating hand-written characters from 50 alphabets. We use the standard split of 9641 classes over
30 alphabets in the background dataset and 659 classes over 20 alphabets in the evaluation dataset.
All classes contain 20 samples each. The background dataset is used entirely for pretraining in the
context of MRCL, whereas the evaluation dataset is used for online training. Additionally, each class
in the evaluation dataset is divided into 15 samples for training and 5 samples for testing.

In the context of the MRCL method the background dataset is split into two disjoint subsets, namely
Slearn from which we sample Dtraj and Sremember from which we sample Drand. The split is done
by dividing the 964 classes in two where the first half is used for Slearn and the second one for
Sremember. For pretraining we randomly select a single class and we use all 20 samples for that class
to create Dtraj . On the other hand, for constructing Drand we choose 10 random classes and take
one random sample from each class. Note that this strategy is not described in the original work by
Javed and White [2019] but it is used in their official repository. For the online-training procedure we
use the split of 15/5 of the evaluation dataset by selecting a random class and using the 15 samples to
construct Dtraj and 5 samples for Drand.

4 Baselines

The results that Javed and White [2019] present consist of the proposed method MRCL, compared
with 4 other approaches, namely Scratch, Pretraining, SR-NN, Oracle. They test all these models on
the two datasets mentioned above.

1In their work Javed and White [2019] claim there are 963 classes in the background set, which is incorrect.

3



4.1 Scratch

Description: This method is simply the MRCL algorithm without the pretraining procedure. Thus,
the model starts with a random initialisation of the RLN and TLN network and tries to learn online
class by class. Expectations: This is expected to perform quite poorly in any setting since the tasks
are fed sequentially and there are only limited samples per task. More importantly, the network
needs to be tuned in just one epoch with a small number of samples per class and keep learning new
classes without forgetting the old ones. This methodology would require higher learning rates than
the usual online training. For example, a bad performance is expected at the start of online training for
Omniglot since the model will try to optimise for one class with 20 samples and then a new class will
be introduced thus potentially overriding the progress of the network for the previous task learned.

4.2 Pretraining

Description: Another simplistic method they compare their results with is building a neural network
with similar architecture trained with standard gradient descent. The data are shuffled and considered
IID and this time the model does not have a meta-learning objective but simply tries to optimise
for the loss of the mean-squared error (MSE) for regression or cross-entropy for classification. In
the online training phase, the first few layers of the network are fixed and the rest are trained as
normal. To find exactly how many layers to fix in online training, Javed and White [2019] do an
architecture search by fixing different number of layers at each time, and picking the best one based
on a validation set. 2 For the regression task, this network becomes a Multi-Layer Perceptron (MLP)
with 300 units in each layer and a single node output layer to predict the next step of the function.
All the other hyper-parameters are used as stated in Table 1 of Javed and White [2019]3. For the
classification task, doing an architecture search is more difficult since it consists of convolutional
layers which need to be initialised with a specific number of filters and output size. Since Javed and
White [2019] do not mention any information on how this architecture search was carried out we used
the standard architecture of MRCL. Expectations: Although slightly better than the scratch method
described earlier, the pretraining baseline should behave well when the amount of learnt classes is
low, but it should be rapidly overthrown by MRCL as the ability of learning new classes would cause
interference with already seen ones.

4.3 SR-NN

Description: This is a method described by Liu et al. [2019] which aims at learning a sparse
representation to achieve a better and more stable performance on the objective. Additionally, an
extra hyper-parameter β can control how sparse the representation of the network should be when
training. In their work Javed and White [2019] mention that they do a search for the best value of β
and report the results of that but without stating how this search was done or which was the actual best
β value. Expectations: In the original paper of SR-NN, the method is just used for reinforcement
learning tasks so there is no clear expectation on how it should perform in regression or classification
tasks.

4.4 Oracle

Description: Oracle is a method name used in machine learning to represent the highest possible
performance in optimal settings. Expectations: Javed and White [2019] share that Oracle is pre-
trained with independent and identically distributed (IID) data, but they do not explain in details how
the method is implemented. Thus, we assume that the Oracle method is following exactly the same
training procedure as MRCL, as presented in Section 2, but with the only difference on how the data
are fed to the network. However, this implementation did not give results worth presenting in this
report as they significantly deviated from the ones reported in Javed and White [2019]. The achieved
performance was slightly better than random.

2Note that they do not mention how extensive this architecture search is or what the validation set consists of.
3Many parameters did not appear at all in that table, and thus had to be assumed. These included initialisation

methods, amount of epochs and regularisation.

4



5 Results

In this section we report the results we achieved with the subset of experiments we performed from
Javed and White [2019] and point out the observations we found. Further comparison and comments
on the similarities or discrepancies between the results in Javed and White [2019] and our results is
reported in section 6.

5.1 Experiments

In the first version of their original work Javed and White [2019] present the results from multiple
experiments that evaluate the performance of MRCL on both regression and classification tasks
and compare it to a combination of MRCL with other continual learning approaches. However, we
decided to reproduce the results of a subset of those experiments due to time constraints. Following
is a description of this subset, as well as a motivation for our choice.

In the original report, Section 4.4 firstly introduces figure 3a for ISW in which the mean squared
error (MSE) for MRCL and the baselines (pretraining, SR-NN and oracle) are computed for different
number of functions learned in the tasks training. Figure 3b shows the MSE that every task ID got
after training for all the functions on two of the baselines (pretraining and SR-NN). From figure 4a,
the section shows for Omniglot the training set accuracy vs. the number of classes learned for four
baselines (scratch, pretraining, SR-NN and oracle). On figure 4b, they report similar results for the
test set accuracy. Further on, Section 4.5 reports the quality of the representations learnt as sparse
vectors with the most uniform distribution over all the tasks. These are computed just for Omniglot
and depicted on Figure 5.

In Section 5 the authors report their integration of MRCL with baselines of continual learning
techniques. These baselines include (1) Fully online SGD updates one point at a time in the order of
the trajectory, (2) Approximate IID training / SGD updates on a random shuffling of the trajectory for
removing correlation, (3) ER-Reservoir (Chaudhry et al. [2019]), (4) MER (Riemer et al. [2019]) and
(5) EWC (Lee et al. [2017]).

For each of these the authors make 2 setups using the Omniglot dataset. In the first one they run 50
classes in a one-class-per-task fashion, while in the second they set up 20 tasks in a five-classes-per-
task way. For each of these set ups, the authors report 3 experiments: one with standard training and
testing, another using MRCL and a third one using the pretraining baseline.

Our initial goal was to try and reproduce all of the experiments. Due to complications of reproducing
the proposed MRCL method, we prioritised to focus on reproducing the basic experiments of
Section 4. As the described methodology was not completely and successfully re-implemented,
the experiments in Section 4.4 and Section 4.5 were not being reproduced correctly and thus, the
experiments of section 5 were not addressed.

An observation we can do regarding the omitted experiments from Section 5 is that the authors do not
provide a reference or code in their repository to reproduce these values. A researcher has asked the
first author for the implementation of this part of the paper through the issues system in his Github
repository in July 21, 2019.4

From the experiments, the results shown in Section 4.4 for Omniglot are replaced in the newer version
of the paper, released in late October 2019, by different and slightly worse values. Also, another test
is introduced to the Figure 4 which shows the difference in errors between a single pass training (as it
was assumed to be conducted before) and a multiple-pass problem. Also, the previous Figure 5 was
moved into a Figure 6 and the new Figure 5 shows results of tests perpetrated on the MiniImagenet
dataset.

5.2 ISW

The results obtained on the figures 1 are not a reproduction of those in Javed and White [2019]. The
errors represented are, in average 12 times larger and their standard deviation is similarly increased.
The errors obtained for validating the Pretraining Baseline were also very uneven compared to those
of figure 3b. Despite of that, the main results commented in that article can be observed in the

4The issue can be found in the link https://github.com/khurramjaved96/mrcl/issues/1

5

https://github.com/khurramjaved96/mrcl/issues/1


(a) Mean of MSE loss
of MRCL and Pretrain-
ing Baseline over 50 eval-
uations on different tasks.
Each time a full class was
trained, it was immediately
tested on unseen data.

(b) MSE loss for testing
on MRCL only data classes
learnt so far during online
training on unseen data. Er-
ror bars show 95% confi-
dence after 50 runs on dif-
ferent tasks.

(c) MSE loss for testing
on Pretraining Baseline only
data classes learnt so far
during online training on
unseen data. Error bars
show 95% confidence after
50 runs on different tasks.

Figure 1: Although the losses achieved are higher than in the paper, the experiments the main points
of it: the lower MSE errors on Baseline Pretraining are always the last seen classes, and the error of
classes seen before increases.

(a) Omniglot training accuracy (b) Omniglot testing accuracy

Figure 2: Comparison of the methods in the online training and testing accuracy

plots. The last classes learnt have a lower error than those learnt previously, and MRCL shows great
resilience to forgetting the first tasks.

Figure 2a shows also that MRCL achieves a lower error per class than that of Basic Pretraining. In
this plot, the SR-NN method was omitted because the evaluation of the sole MRCL was prioritised.
Also, the authors do not provide code for testing SR-NN against MRCL as performed in the original
figure 3 of Javed and White [2019] which means that we do not have the β parameter used in plotting
this figure.

5.3 Omniglot

Similarly, for the Omniglot experiment, we did not manage to reproduce the performance of MRCL
in comparison with the other methods. Specifically, as seen in figures 2, both the online training
accuracy and the online testing accuracy of SR-NN outperforms all the other methods. With the
exception of MRCL, the performance of the compared methods is similar to what is reported by
Javed and White [2019] but slightly worse. This might be due to implementation differences for
which we report in section 6. An important note here is that the fact that the performance of our
implementation of the basic pretraining approach is comparable by the one achieved in the original
work makes us believe that our online training procedure is correct. Thus, we speculate that the
learned representation for MRCL is incorrect and this could be due to number of implementation
details that are missing from the description in the original paper. For example, when choosing the
random dataset Drand it is not specified how large is it or how should it be constructed. Additionally,
it is not mentioned for how long the network should be pretrained and if there use any method to
detect over-fitting.

Figure 3 illustrates the learned representation for 3 randomly selected samples and the average
activations for the whole Omniglot dataset for the MRCL, Pretraining and SR-NN method. The
representations have length 2304 and similarly to the original paper we reshape them into 32x72 plots.
The results for the three random samples for MRCL are comparable to the ones presented in the work

6



of Javed and White [2019] where they report high sparsity on the learned representations. However,
the average activations over the background and evaluation sets for MRCL is contradictory to the
original results. In the plot 3d we can see that there is a high number of dead neurons, whereas in the
results presented by Javed and White [2019] they achieve a representation without dead neurons. This
result supports our claim that the reimplementation of the representation learning method is incorrect.
On the other hand, the representations learned by SR-NN are less sparse then the ones acquired by
MRCL. Additionally the activations that are reported for the Pretraining model are considerably more
dense then the results of the other approaches. More specifically, we report an average activation
sparsity of 98% for MRCL, 95% for SR-NN and 70% for Pretraining.

0.0

0.2

0.4

0.6

0.8

1.0

(a) MRCL 1
0.0

0.2

0.4

0.6

0.8

1.0

(b) MRCL 2
0.0

0.2

0.4

0.6

0.8

1.0

(c) MRCL 3
0.0

0.2

0.4

0.6

0.8

1.0

(d) MRCL Average

0.0

0.2

0.4

0.6

0.8

1.0

(e) SR-NN 1

0.0

0.2

0.4

0.6

0.8

1.0

(f) SR-NN 2

0.0

0.2

0.4

0.6

0.8

1.0

(g) SR-NN 3

0.0

0.2

0.4

0.6

0.8

1.0

(h) SR-NN Average

0.0

0.2

0.4

0.6

0.8

1.0

(i) Pretraining 1
0.0

0.2

0.4

0.6

0.8

1.0

(j) Pretraining 2
0.0

0.2

0.4

0.6

0.8

1.0

(k) Pretraining 3
0.0

0.2

0.4

0.6

0.8

1.0

(l) Pretraining Average

Figure 3: Learned representations by the MRCL, SR-NN and Pretraining models for three random
samples.

6 Discussion

There were multiple omissions or vague statements in the paper that made the reimplementation of
the method a difficult task. Firstly, we tried reproducing the results presented in the paper only with
the knowledge and information provided in the work but soon a lot of questions arose. In order to
solve these issues we made some assumptions and at times we had to inspect the authors’ code.

6.1 Dataset issues

Additional to the issues already presented, there are problems related to the used datasets that should
have been justified and corrected by the authors in order to make the method reproducible.

ISW: Although not specified in the paper, the ISW dataset should contain a certain number of pairs
(x, y) for each of the samples functions and for each of the sampled repetitions of pretraining. This is
exactly the case of the official code repository, in which the authors generate 32 samples per function
repetition. This higher number allows the pretraining to converge faster to a good result as a higher
amount of data available for pretraining allows learning better representations for similar tasks, but
can also make the network learn correlations in an epoch that are harmful for the actual learning of
representations for Continual Learning.

Omniglot: In their paper they do not state the pretraining procedure they followed for the methods
of Pretraining and SR-NN, other that the data are shuffled and IID. After a quick inspection on their
published code, we observed that they did not use the same amount of pretraining data as they did for
their own MRCL method. Specifically, we report that for the Pretraining and the SR-NN methods
they train with 900 classes instead of 964 (as MRCL) and instead of 20 samples per class, they use
15. This means that the MRCL method is pretrained with 964 * 20 = 19.280 samples whereas the
Pretraining and the SR-NN are pretrained with 900 * 15 = 13.500 samples. This difference can
significantly decrease the evaluation performance of these two models.

7



6.2 Hyper-parameter omissions

When presenting the setup or reporting results for MRCL and all the baseline methods, Javed and
White [2019] do not report all the hyper-parameters used or they contradict previous statements. For
example, they do not mention the amount of passes through the meta learning loop and in the online
training of MRCL. After some empirical experimentation we choose the amount of epochs in meta
learning to be 20000 and just one pass over the training data on the online training. Additionally, the
number of epochs for the compared methods is not mentioned. Thus, after a hyper-parameter search
for different number of epochs we choose 30 for SR-NN, 1000 for basic pretraining on Omniglot and
40000 for basic pretraining on MRCL.

For the networks used in the Omniglot dataset, Table 3 in the original paper reports the number RLN
and TLN layers and how many of convolutional kernels in each RLN layer but omits the number of
units in the fully connected layers 5. Moreover, when the architecture used for MRCL is described
for the ISW dataset in section 4.2, they state "We use six layers for the RLN and two layers for the
TLN." but in their appendix in Table 2 which contains the hyper-parameter values of MRCL for the
ISW dataset they write "Total layers in the fully connected NN = 9". For this issue we assumed that 6
layers would go to the RLN, 2 hidden ones to the TLN and a final one for the output.

The best β value of SR-NN, that is, the one that gave the highest accuracy is not reported in the
original work. They do report they did a hyper-parameter search to find the best value but do not
explicitly mention what was that value or how extensive the search was. Instead, the value β = 0.05
is reported as the one that gave the lowest sparsity level in their figure 4. To deal with this, we did
our own hyper-parameter search for β (see in Appendix) and we report that the value that gave the
highest accuracy was β = 0.1. In the pretraining baseline method, no details are given about the
architecture search setup. This includes no mentioning of how many layers and nodes are tested. Nor
is mentioned how they make the validation set for the search. After exploring a few combinations
of hyperparameters in a grid search, the preliminary results obtained suggested that using the same
architecture as in MRCL was in fact optimal. For the learning rates we search which one minimises
the validation loss. In the case of ISW, the best LR was 1e-06, while in Omniglot it was 1e-03. For
the validation set in Omniglot, the split was done as in the pretraining: leaving 5 samples per class for
validation, and the rest in training. As for the ISW task the split for MRCL is done as in pretraining
where we generate 40 times 10 functions of samples of length 32 for the training set. The validation
set is constructed by sampling the same 10 functions only 32 samples for each.

6.3 Method description and code mismatches

We found several differences between the settings stated by Javed and White [2019] and those used
in the official code. Most of these settings have never been modified in the official repository’s
history and thus we can assume that these differences have been introduced since the design of the
method. One example is that the representation length of ISW is not mentioned, although the official
code repository assumes a representation of 900 outputs. This number is understood as the total
amount of different functions that the network will end up seeing and learning from, and thus a
perfect representation should average across all the classes a uniformly dense area. This issue is more
profound when observing that in Table 1 the amount of layers and width of each layer is reported,
thus one can imply that the representation has the same width as the rest of the layers as well. This
case was initially considered and the results were incorrect.

6.4 Other issues

In Section 4.1 of the original paper where the Omniglot dataset is described, the authors mention
“Moreover, we use the “single-pass through the data” protocol used by Lopez-Paz and Ranzato [2017].”
However, in Lopez-Paz and Ranzato [2017] there is no such protocol mentioned. Additionally, they
do not report any results achieved by the Scratch baseline method for the ISW dataset, and no
justification is done on this matter. We can only presume that the results were not satisfactory and
worth presenting. Finally, in Section 5 of their work the authors mention they compare their results
with a method called EWC and they cite the paper Lee et al. [2017] which is not related to EWC but
proposes another method called IMM.

5In their official code they use 1024 and 1000 units for the 1st and 2nd layer in the TLN respectively

8



References
A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ranzato.

Continual learning with tiny episodic memories. arXiv preprint arXiv:1902.10486, 2019.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1126–1135. JMLR. org, 2017.

K. Javed and M. White. Meta-learning representations for continual learning. NIPS, abs/1905.12588,
2019.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332–1338, 2015. doi: 10.1126/science.aab3050.

S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang. Overcoming catastrophic forgetting by
incremental moment matching. In Advances in neural information processing systems, pages
4652–4662, 2017.

V. Liu, R. Kumaraswamy, L. Le, and M. White. The utility of sparse representations for control
in reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 4384–4391, 2019.

D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. In Advances in
Neural Information Processing Systems, pages 6467–6476, 2017.

M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, , and G. Tesauro. Learning to learn without
forgetting by maximizing transfer and minimizing interference. In International Conference on
Learning Representations, 2019.

A Additional Experiments

As mentioned in 6, the authors do not report what type of hyper-parameter search they implemented
to find the best β value for SR-NN so we did a search with the values β = [0.5, 0.1, 0.05, 0.01, 0.005]
and report the results in figure 4 and the best value β = 0.1.

(a) Training during evaluation (b) Testing during evaluation

Figure 4: Results for the β value search.

9


	Introduction
	Method
	Datasets
	Incremental Sine Waves (ISW)
	Split-Omniglot

	Baselines
	Scratch
	Pretraining
	SR-NN
	Oracle

	Results
	Experiments
	ISW
	Omniglot

	Discussion
	Dataset issues
	Hyper-parameter omissions
	Method description and code mismatches
	Other issues

	Additional Experiments

