
Under review as a conference paper at ICLR 2019

THE EFFECTIVENESS OF PRE-TRAINED
CODE EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Word embeddings are widely used in machine learning based natural language
processing systems. It is common to use pre-trained word embeddings which pro-
vide benefits such as reduced training time and improved overall performance.
There has been a recent interest in applying natural language processing tech-
niques to programming languages. However, none of this recent work uses pre-
trained embeddings on code tokens. Using extreme summarization as the down-
stream task, we show that using pre-trained embeddings on code tokens provides
the same benefits as it does to natural languages, achieving: over 1.9x speedup,
5% improvement in test loss, 4% improvement in F1 scores, and resistance to
over-fitting. We also show that the choice of language used for the embeddings
does not have to match that of the task to achieve these benefits and that even em-
beddings pre-trained on human languages provide these benefits to programming
languages.

1 INTRODUCTION

One of the initial steps in a machine learning natural language processing (NLP) pipeline is con-
verting the one-hot encoded RV tokens into dense RD representations, with V being the size of the
vocabulary, D the embedding dimensions and V << D. This conversion is usually done with a
single layer neural network, commonly called an embedding layer.

The parameters of the embedding layer can either be initialized randomly or initialized via ”pre-
trained” parameters obtained from a model such as word2vec (Mikolov et al., 2013b;a), GloVe
(Pennington et al., 2014) or a language model (McCann et al., 2017; Howard & Ruder, 2018; Peters
et al., 2018).

It is common to use pre-trained parameters (most frequently the GloVe embeddings), which act as
a form of transfer learning (Mou et al., 2016) similar to that of using pre-trained parameters for the
convolutional kernels in a machine learning computer vision task (Huh et al., 2016; Kornblith et al.,
2018). These parameters in the embedding layer are then fine-tuned whilst training on the desired
downstream task.

The use of these pre-trained embeddings over random initialization allows machine learning models
to: train faster, achieve improved overall performance (Kim, 2014), increase the stability of their
training, and reduce the amount of over-fitting (Mou et al., 2016).

Recently there has been an increased interest in applying NLP techniques to programming languages
and software engineering applications (Vechev & Yahav, 2016; Allamanis et al., 2017a), the most
common of which involves predicting the names of methods or variables using surrounding source
code (Raychev et al., 2014; 2015; Allamanis et al., 2015; 2017b; Alon et al., 2018b;a).

Remarkably, none of this work takes advantage of pre-trained embeddings created on source code.
From the example below in table 1, we can see how semantic knowledge (provided by the pre-trained
code embeddings) of the method body would help us predict the method name, i.e. knowing how
pi and radius are used to calculate an area and how height and width are used to calculate an aspect
ratio.

1



Under review as a conference paper at ICLR 2019

float getSurfaceArea (int radius) {
return 4 * Math.PI * radius * radius;

}

float getAspectRatio (int height, int width) {
return height / width;

}

Table 1: Examples showing how the semantics of the variable names within a method can be used
to reason about the name of the method body

This semantic knowledge is available to us as even though computers do not need to understand the
semantic meaning of a method or variable name, they are mainly chosen to be understood by other
human programmers (Hindle et al., 2012).

In this paper, we detail experiments using pre-trained code embeddings on the downstream task
of predicting a method name from a method body. This task is known as extreme summarization
(Allamanis et al., 2016b) as a method name can be thought of as a summary of the method body.
Our experiments are focused on answering the following research questions:

1. Do pre-trained code embeddings reduce training time?
2. Do pre-trained code embeddings improve performance?
3. Do pre-trained code embeddings increase stability of training?
4. Do pre-trained code embeddings reduce over-fitting?
5. How does the choice of corpora used for the pre-trained code embeddings affect all of

the above?

To answer RQ5, we gather a corpus of C, Java and Python code and train embeddings for each
corpus separately, as well as comparing them with embeddings trained on natural language. We
then test each of these on the same downstream task, extreme summarization, which is in Java. We
also release the pre-trained code embeddings. 1

As far as we are aware, this is the first study on the effectiveness of pre-trained code embeddings
applied to an extreme (code) summarization task.

2 MODELS

2.1 LANGUAGE MODEL

We train our embeddings using a language model (LM). We choose a LM over the word2vec or
GloVe models as LMs have shown to capture long-term dependences (Linzen et al., 2016) and
hierarchical relations (Gulordava et al., 2018). We believe both of these properties are essential for
predicting a method name from method body. The long-term dependencies are required due to the
average length of the method body over 72 tokens2. The hierarchical relations are needed due to the
way data flows through variables within the method body, starting from the method argument(s) (at
the top of the hierarchy) to the return value(s) (at the bottom of the hierarchy).

A language model is a probability distribution over sequences of tokens. Each token, x, is repre-
sented by a one-hot vector x ∈ RV , with V being the size of the vocabulary. The probability given
to a sequence of tokens x1, ...,xT can be calculated as:

p(x1, ...,xT ) =

T∏
t=1

p(xt|xt−1, ...,x1)

1Code and embeddings to be released at a later date.
2We use a token to refer to an atomic part of a sequence of code.

2



Under review as a conference paper at ICLR 2019

We model this probability distribution with a recurrent neural network trained to predict the next
token in a sequence of given tokens. Specifically, we use the AWD-LSTM-LM model (Merity et al.,
2017; 2018) due to its performance at modeling natural languages and open source implementation.
3

2.2 CONVOLUTIONAL ATTENTION MODEL

The extreme summarization task uses the Copy Convolutional Attention Model from Allamanis
et al. (2016a). Briefly, the model takes a series of code tokens from the method body, c, as input
and outputs the code tokens that form the method name, m. It generates the method name one
token at a time, using a recurrent hidden state, ht, provided by a Gated Recurrent Unit (GRU) (Cho
et al., 2014) and a series of convolutional filters over the embeddings of the tokens c, which produce
attention (Bahdanau et al., 2014) features, Lfeat. It also has a mechanism to directly copy tokens
from the body to the output.

This model was chosen as it is the state-of-the-art on the extreme summarization dataset used and
provided a clear improvement over baseline models. It also has an open source implementation. 4

3 EXPERIMENTAL SETUP

3.1 EMBEDDING DATASET

The dataset used for the pre-trained code embeddings was gathered from GitHub. To ensure the
quality of the data we only used projects with over 10,000 stars and manually checked each project’s
suitability, i.e. did not use projects which were tutorials or guides.

After scraping the appropriate projects for each of the three languages (C, Java and Python) we to-
kenized each, converting each token to lowercase as well as splitting each token into subtokens on
camelCase and snake case, e.g. getSurfaceArea becomes get, surface and area.
This was done to match the tokenization of the extreme summarization dataset. There are approxi-
mately 100 million tokens across 20 million lines of code for each language. Each of the embeddings
has their own distinct vocabulary, e.g. not all tokens that appear in the C corpus appear in the Java
corpus.

For the natural language embeddings we used the WikiText-103 dataset Merity et al. (2016), as it
contains a comparable 103 million tokens.

3.2 LANGUAGE MODEL

The AWD-LSTM-LM model was trained with all default parameters from the open source imple-
mentation, with the exception of: the embedding dimension changed to 128 and the hidden dimen-
sion changed to 512. The embedding dimension was changed to match that of the original Copy
Convolutional Attention Model, and the hidden dimension was changed to fit in GPU memory.

Tokens that were not in the most 150,000 common or did not appear at least 3 times were converted
into an <unk> token and the model was trained until the validation loss did not decrease for 5
epochs.

3.3 EXTREME SUMMARIZATION DATASET

The extreme summarization task dataset is detailed in Allamanis et al. (2016a). Briefly, it consists
of 10 Java projects selected for their quality and diversity in application. For each project, all full
Java methods are extracted with the method body used as the input and the method name used as the
target. Each project has their own vocabulary, e.g. tokens that appear in one project may not appear
in any others.

All tokens are formatted the same as the embedding dataset to ensure maximum vocabulary overlap
between each pre-trained embeddings and each Java project.

3https://github.com/salesforce/awd-lstm-lm
4http://groups.inf.ed.ac.uk/cup/codeattention/

3



Under review as a conference paper at ICLR 2019

3.4 CONVOLUTIONAL ATTENTION MODEL

The Copy Convolutional Attention Model was trained with all default parameters from the open
source implementation, and was trained for 25 epochs.

The model was trained on each project separately and was run 5 times on each project for each of
the embeddings. The results were then averaged together for each project.

4 RESULTS

Table 2 shows the rank 1 F1 scores achieved for each of the embeddings. On average, we achieve a
4% relative improvement in F1 scores for each of the embeddings.

Project Name Description Random F1 C F1 Java F1 Python F1 English F1
cassandra Distributed Database 48.1 51.7 50.4 50.7 51.1
elasticsearch REST Search Engine 31.7 31.5 31.8 31.9 32.1
gradle Build System 36.3 39.8 40.1 39.6 39.5
hadoop-common Map-Reduce Framework 38.4 41.7 42.5 40.9 41.4
hibernate-orm Object/Relational Mapping 58.7 59.8 59.9 59.3 59.9
intellij-community IDE 33.8 36.8 36.1 35.3 35.1
liferay-portal Portal Framework 65.9 66.1 68.2 65.4 66.4
presto Distributed SQL Query Engine 46.7 47.9 48.3 47.1 47.6
spring-framework Application Framework 36.8 38.3 38.6 38.5 39.3
wildfly Application Server 44.7 45.0 45.9 45.2 45.2

Table 2: Rank 1 F1 scores for each of the embeddings.

Figure 1 shows the validation losses achieved on all 10 Java projects. Randomly initialized embed-
dings are shown in purple, Java embeddings in green, C in blue, Python in red and English in orange.
It can be seen that for most projects the pre-trained embeddings train faster, achieve lower losses,
are more stable and over-fit less.

Table 3 shows overlap, speedup and improvement in test loss for each project-embedding combina-
tion compared to random embeddings. Overlap is the percentage of tokens in the project vocabulary
that also appear in the embedding vocabulary. Speedup is calculated as:

S = Nr/Ne

Nr is the number of epochs taken by the random embedding to reach its best validation loss and Ne

is the number of epochs taken by a non-random embedding to reach that same validation loss.

Improvement is calculated as:
I = Lr/Le

Lr is the test loss achieved using random embeddings and Le is the test loss achieved using a non-
random embedding. An I of 1.05 would indicate a 5% relative performance improvement in test
loss over random embeddings.

C Java Python English
Project Name Overlap Speedup Improvement Overlap Speedup Improvement Overlap Speedup Improvement Overlap Speedup Improvement
cassandra 0.54 2.2 1.11 0.58 1.8 1.09 0.52 2.75 1.1 0.53 2.75 1.11
elasticsearch 0.38 0.43 0.99 0.45 0.75 1 0.36 1.1 1 0.38 1.0 1.0
gradle 0.63 4.5 1.13 0.74 4.5 1.14 0.64 4.5 1.14 0.65 4.49 1.14
hadoop-common 0.38 1.14 1.01 0.4 1.6 1.01 0.33 1.6 1.01 0.34 1.95 1.01
hibernate-orm 0.46 1.6 1.06 0.54 0.8 1.04 0.48 1.33 1.03 0.52 1.51 1.06
intellij-community 0.33 1.17 1.05 0.4 2.33 1.05 0.32 1.75 1.04 0.36 1.41 1.07
liferay-portal 0.37 0.75 1.01 0.46 1.2 1.04 0.37 1.0 1.02 0.39 1.50 1.03
presto 0.54 2.0 1.05 0.62 1.71 1.04 0.54 2.0 1.04 0.54 2.41 1.05
spring-framework 0.36 1.5 1.05 0.46 2.0 1.04 0.35 1.5 1.05 0.37 1.5 1.05
wildfly 0.5 2.8 1.05 0.56 2.8 1.05 0.48 2.0 1.06 0.51 2.71 1.06

Table 3: Results relative to random embeddings for each project-embedding combination. Overlap
is the percentage of tokens within the embedding vocabulary that also appear in the project. Speedup
is relative speedup of convergence compared to random embeddings. Improvement is relative im-
provement in test loss compared to random embeddings.

4



Under review as a conference paper at ICLR 2019

(a) Validation loss for cassandra project (b) Validation loss for elasticsearch project

(c) Validation loss for gradle project (d) Validation loss for hadoop-common project

(e) Validation loss for hibernate-orm project (f) Validation loss for intellij-community project

(g) Validation loss for liferay-portal project (h) Validation loss for presto project

(i) Validation loss for spring-framework project (j) Validation loss for wildfly project

Figure 1: Validation losses for each of the 10 projects, averaged across 5 runs. Randomly initialized
embeddings shown in purple, Java in green, C in blue, Python in red, and English in orange.

5



Under review as a conference paper at ICLR 2019

We notice that some projects, particularly the elasticsearch project (figure 1b), did not achieve any
benefits from using the pre-trained embeddings and in fact experienced a slow down when using
the C embeddings. To explore this further, we plotted speedup and improvement against overlap in
figure 2.

(a) Overlap vs. speedup over random embeddings. Correlation coefficient of 0.72.

(b) Overlap vs. improvement over random embeddings. Correlation coefficient of 0.73.

Figure 2: Overlap vs. speedup/improvement on all project-embedding combinations. Points are
colored: green for Java embeddings, blue for C embeddings, red for Python embeddings and orange
for English embeddings.

We measure the Pearson correlation coefficient of each, receiving a coefficient of 0.73 for speedup
and 0.73 for improvement, a medium to strong positive correlation for each. This implies that using
more of the pre-trained embeddings provides more of both the speedup and improvement in test loss
benefits.

6



Under review as a conference paper at ICLR 2019

Table 4 shows the overlap, speedup and improvement averaged over all projects. From this, we can
see that we achieve around 1.9x speedup, along with a 5% relative improvement in test loss.

Embedding Overlap Speedup Improvement
C 0.48 1.84 1.05
Java 0.54 1.98 1.05
Python 0.48 1.98 1.05
English 0.49 1.98 1.05

Table 4: Results relative to random embeddings for each of the pre-trained embeddings, averaged
across all 10 projects.

Intuitively, it would make sense that the Java embeddings give the best results as the summarization
task is also in Java. We see this is not the case, and the Java embeddings have the same speedup and
improvement as the Python embeddings and only a small speedup improvement over the C embed-
dings, even though the average overlap using the Java embeddings is higher. Most interesting is the
fact that the English embeddings achieve the comparable speedup and performance improvement,
even though they have only been trained on human languages.

One potential reason for the similar performance between the embeddings that are trained on pro-
gramming languages is that even though C, Java and Python are syntactically different, the extreme
summarization task does not require much of this syntactic information. Consider the examples in
table 5, which are Python versions of the Java examples in table 1. Although the syntax has changed
(dynamic typing, no braces or semicolons, etc.) the available semantic information from the method
body has not. This would imply that the language of the dataset used to pre-train code embeddings
does not matter as much as the quality of the dataset with regards to sensible method and variable
names. This is further solidified in the fact that the English embeddings, which have only been
trained on human languages, achieved similar performance compared to programming languages.

def get surface area (radius):
return 4 * math.pi * radius * radius

def get aspect ratio (height, width):
return height / width

Table 5: Python versions of the Java examples from table 1

We also look at the amount of over-fitting on each project. From figures 1c, 1d, 1f, 1g and 1i we can
see how the random embeddings show a large amount of over-fitting compared to the pre-trained
code embeddings. We measure how much a project over-fits as:

O = Lb/Lf

Lb is the best validation loss achieved and Lf is the final validation loss achieved. We dub this term
the over-fit factor, where an O = 1 would imply the final loss is equal to the lowest loss and thus
has not over-fit at all (this could also mean the model is still converging, however from figure 1 we
can see all project-embedding combinations converge before 25 epochs).

Table 6 shows the over-fit factors for each project-embedding combination. We can see that the
random embeddings show the worst performance on every project. Interestingly, there appears to be
no correlation between the overlap and the amount of over-fitting.

Table 7 shows the over-fit factor averaged across all projects for each embedding. Again, the results
for each of the pre-trained embeddings are similar, showing that the language of the dataset used to
train the embeddings does not have a significant impact on performance.

7



Under review as a conference paper at ICLR 2019

Project Random Over-fit C Over-fit Java Over-fit Python Over-fit English Over-fit
cassandra 0.87 0.99 0.98 0.98 0.98
elasticsearch 0.91 0.97 0.96 0.95 0.96
gradle 0.74 0.97 0.97 0.97 0.97
hadoop-common 0.8 0.94 0.95 0.95 0.96
hibernate-orm 0.8 0.95 0.98 0.99 0.98
intellij-community 0.67 0.85 0.87 0.91 0.88
liferay-portal 0.8 0.94 0.9 0.94 0.92
presto 0.93 0.98 0.98 0.98 0.98
spring-framework 0.67 0.87 0.88 0.9 0.86
wildfly 0.95 0.97 0.98 0.97 0.98

Table 6: Over-fit factor for each project-embedding combination. Higher is better.

Embedding Over-fit
Random 0.81
C 0.94
Java 0.95
Python 0.95
English 0.95

Table 7: Over-fit factor for each embedding averaged across all 10 projects. Higher is better.

5 RELATED WORK

Language models have been used as a form of transfer learning in natural language processing
applications with great success (McCann et al., 2017; Howard & Ruder, 2018; Peters et al., 2018).

There has also been recent work on the further analysis of language models (Merity et al., 2018;
2017) and how well they assist in transfer learning (Mou et al., 2016).

The use of probabilistic models for source code originated from Hindle et al. (2012). From that,
work on language models of code began on both the token level (Nguyen et al., 2013; Tu et al.,
2014) and syntax level (Maddison & Tarlow, 2014).

Predicting variable and method names has become a common task for machine learning applications
in recent years. Initial work was on the token level (Raychev et al., 2014; 2015; Allamanis et al.,
2015) but it is beginning to become more common to represent programs as graphs using their
abstract syntax tree (Allamanis et al., 2017b; Alon et al., 2018a;b).

6 DISCUSSION & CONCLUSIONS

We refer back to our research questions.

Do pre-trained code embeddings reduce training time? Yes, tables 3 and 4 show we get an
average of 1.93x speedup. This is correlated with the amount of overlap between the task vocabulary
and the embedding vocabulary, shown in figure 2a.

Do pre-trained code embeddings improve performance? Yes, tables 3 and 4 show we get an
average of 5% relative validation loss improvement. Again, this is correlated with the amount of
overlap between the vocabularies, shown in figure 2b.

Do pre-trained code embeddings increase stability of training? Although this is difficult to
quantify due to how over-fitting interacts with the variance of the validation loss curves, from figures
1a and 1c we can see a clear increase in the variance of the validation loss curves using random
embeddings compared to those using pre-trained embeddings.

Do pre-trained code embeddings reduce over-fitting? Yes, tables 6 and 7 show that the random
embeddings over-fit more than the pre-trained embeddings on every project. However, this does not
seem to have a correlation with the amount of vocabulary overlap and further work is needed to
determine the cause of this.

8



Under review as a conference paper at ICLR 2019

How does the choice of corpora used for the pre-trained code embeddings affect all of the
above? Intuitively, it would seem the best pre-trained embeddings would be those that are trained
on the same language as that of the downstream task, but this is not the case. We hypothesize
through the examples shown in tables 1 and 5 that the differing syntax between the languages is
not as important as sensible semantic method and variable names within the dataset. This semantic
information is also contained in human languages, which explains why the English embeddings also
receive comparable performance.

REFERENCES

Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. Suggesting accurate method
and class names. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pp. 38–49, New York, NY, USA, 2015. ACM. ISBN 978-1-
4503-3675-8. doi: 10.1145/2786805.2786849. URL http://doi.acm.org/10.1145/
2786805.2786849.

Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. A convolutional attention network for ex-
treme summarization of source code. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pp. 2091–2100,
2016a. URL http://jmlr.org/proceedings/papers/v48/allamanis16.html.

Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. A convolutional attention network for ex-
treme summarization of source code. CoRR, abs/1602.03001, 2016b. URL http://arxiv.
org/abs/1602.03001.

Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles A. Sutton. A survey of
machine learning for big code and naturalness. CoRR, abs/1709.06182, 2017a. URL http:
//arxiv.org/abs/1709.06182.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent pro-
grams with graphs. CoRR, abs/1711.00740, 2017b. URL http://arxiv.org/abs/1711.
00740.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed repre-
sentations of code. CoRR, abs/1803.09473, 2018a. URL http://arxiv.org/abs/1803.
09473.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. A general path-based representation for
predicting program properties. CoRR, abs/1803.09544, 2018b. URL http://arxiv.org/
abs/1803.09544.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/
abs/1409.0473.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.
1078.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni. Colorless
green recurrent networks dream hierarchically. CoRR, abs/1803.11138, 2018. URL http://
arxiv.org/abs/1803.11138.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the natural-
ness of software. In Proceedings of the 34th International Conference on Software Engineering,
ICSE ’12, pp. 837–847, Piscataway, NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-1067-3. URL
http://dl.acm.org/citation.cfm?id=2337223.2337322.

Jeremy Howard and Sebastian Ruder. Fine-tuned language models for text classification. CoRR,
abs/1801.06146, 2018. URL http://arxiv.org/abs/1801.06146.

9

http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://jmlr.org/proceedings/papers/v48/allamanis16.html
http://arxiv.org/abs/1602.03001
http://arxiv.org/abs/1602.03001
http://arxiv.org/abs/1709.06182
http://arxiv.org/abs/1709.06182
http://arxiv.org/abs/1711.00740
http://arxiv.org/abs/1711.00740
http://arxiv.org/abs/1803.09473
http://arxiv.org/abs/1803.09473
http://arxiv.org/abs/1803.09544
http://arxiv.org/abs/1803.09544
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1803.11138
http://arxiv.org/abs/1803.11138
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://arxiv.org/abs/1801.06146


Under review as a conference paper at ICLR 2019

Mi-Young Huh, Pulkit Agrawal, and Alexei A. Efros. What makes imagenet good for transfer
learning? CoRR, abs/1608.08614, 2016. URL http://arxiv.org/abs/1608.08614.

Yoon Kim. Convolutional neural networks for sentence classification. CoRR, abs/1408.5882, 2014.
URL http://arxiv.org/abs/1408.5882.

Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better imagenet models transfer better?
CoRR, abs/1805.08974, 2018. URL http://arxiv.org/abs/1805.08974.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of lstms to learn syntax-
sensitive dependencies. CoRR, abs/1611.01368, 2016. URL http://arxiv.org/abs/
1611.01368.

Chris J. Maddison and Daniel Tarlow. Structured generative models of natural source code. CoRR,
abs/1401.0514, 2014. URL http://arxiv.org/abs/1401.0514.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in translation:
Contextualized word vectors. CoRR, abs/1708.00107, 2017. URL http://arxiv.org/abs/
1708.00107.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. CoRR, abs/1609.07843, 2016. URL http://arxiv.org/abs/1609.07843.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. CoRR, abs/1708.02182, 2017. URL http://arxiv.org/abs/1708.
02182.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural language modeling
at multiple scales. CoRR, abs/1803.08240, 2018. URL http://arxiv.org/abs/1803.
08240.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. CoRR, abs/1301.3781, 2013a. URL http://arxiv.org/abs/
1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed represen-
tations of words and phrases and their compositionality. CoRR, abs/1310.4546, 2013b. URL
http://arxiv.org/abs/1310.4546.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. How transferable are neural
networks in NLP applications? CoRR, abs/1603.06111, 2016. URL http://arxiv.org/
abs/1603.06111.

Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. A statistical
semantic language model for source code. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013, pp. 532–542, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2237-9. doi: 10.1145/2491411.2491458. URL http://doi.acm.
org/10.1145/2491411.2491458.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
2014. URL http://www.aclweb.org/anthology/D14-1162.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word representations. CoRR, abs/1802.05365, 2018.
URL http://arxiv.org/abs/1802.05365.

Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical language models.
SIGPLAN Not., 49(6):419–428, June 2014. ISSN 0362-1340. doi: 10.1145/2666356.2594321.
URL http://doi.acm.org/10.1145/2666356.2594321.

Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties from ”big
code”. SIGPLAN Not., 50(1):111–124, January 2015. ISSN 0362-1340. doi: 10.1145/2775051.
2677009. URL http://doi.acm.org/10.1145/2775051.2677009.

10

http://arxiv.org/abs/1608.08614
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1805.08974
http://arxiv.org/abs/1611.01368
http://arxiv.org/abs/1611.01368
http://arxiv.org/abs/1401.0514
http://arxiv.org/abs/1708.00107
http://arxiv.org/abs/1708.00107
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1803.08240
http://arxiv.org/abs/1803.08240
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1603.06111
http://arxiv.org/abs/1603.06111
http://doi.acm.org/10.1145/2491411.2491458
http://doi.acm.org/10.1145/2491411.2491458
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1802.05365
http://doi.acm.org/10.1145/2666356.2594321
http://doi.acm.org/10.1145/2775051.2677009


Under review as a conference paper at ICLR 2019

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. On the localness of software. In Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2014, pp. 269–280, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3056-5. doi: 10.
1145/2635868.2635875. URL http://doi.acm.org/10.1145/2635868.2635875.

Martin Vechev and Eran Yahav. Programming with ”big code”. Found. Trends Program. Lang.,
3(4):231–284, December 2016. ISSN 2325-1107. doi: 10.1561/2500000028. URL https:
//doi.org/10.1561/2500000028.

11

http://doi.acm.org/10.1145/2635868.2635875
https://doi.org/10.1561/2500000028
https://doi.org/10.1561/2500000028

	Introduction
	Models
	Language Model
	Convolutional Attention Model

	Experimental Setup
	Embedding Dataset
	Language Model
	Extreme Summarization Dataset
	Convolutional Attention Model

	Results
	Related Work
	Discussion & Conclusions

