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Abstract

Transferring representations from large-scale supervised tasks to downstream tasks1

have shown outstanding results in Machine Learning in both Computer Vision and2

natural language processing (NLP). One particular example can be sequence-to-3

sequence models for Machine Translation (Neural Machine Translation - NMT).4

It is because, once trained in a multilingual setup, NMT systems can translate be-5

tween multiple languages and are also capable of performing zero-shot translation6

between unseen source-target pairs at test time. In this paper, we first investigate7

if we can extend the zero-shot transfer capability of multilingual NMT systems8

to cross-lingual NLP tasks (tasks other than MT, e.g. sentiment classification9

and natural language inference). We demonstrate a simple framework by reusing10

the encoder from a multilingual NMT system, a multilingual Encoder-Classifier,11

achieves remarkable zero-shot cross-lingual classification performance, almost12

out-of-the-box on three downstream benchmark tasks - Amazon Reviews, Stanford13

sentiment treebank (SST) and Stanford natural language inference (SNLI). In order14

to understand the underlying factors contributing to this finding, we conducted15

a series of analyses on the effect of the shared vocabulary, the training data type16

for NMT models, classifier complexity, encoder representation power, and model17

generalization on zero-shot performance. Our results provide strong evidence that18

the representations learned from multilingual NMT systems are widely applicable19

across languages and tasks, and the high, out-of-the-box classification performance20

is correlated with the generalization capability of such systems.21

1 Introduction22

Transfer learning has been shown to work well in Computer Vision where pre-trained components23

from a model trained on ImageNet [1] are used to initialize models for other tasks [2]. In most cases,24

the other tasks are related to and share architectural components with the ImageNet task, enabling the25

use of such pre-trained models for feature extraction. With this transfer capability, improvements26

have been obtained on other image classification datasets and on other tasks such as object detection,27

action recognition, image segmentation, etc [3]. Analogously, we propose a method to transfer a28

pre-trained component - the multilingual encoder from an NMT system - to other NLP tasks.29

In NLP, initializing word embeddings with pre-trained word representations obtained from30

Word2Vec [4] or GloVe [5] has become a common way of transferring information from large31

unlabeled data to downstream tasks. Recent work has further shown that we can improve over this32

approach significantly by considering representations in context, i.e. modeled depending on the33

sentences that contain them, either by taking the outputs of an encoder in MT [6] or by obtaining34

representations from the internal states of a bi-directional language model (LM) [7]. There has also35

been successful recent work in transferring sentence representations from resource-rich tasks to36
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improve resource-poor tasks [8], however, most of the above transfer learning examples have focused37

on transferring knowledge across tasks for a single language, in English.38

Zero-shot classification over the languages is one of the most interesting cross-lingual or multilingual39

NLP tasks, the task of transferring knowledge from one language to another, without any training40

data in the target language. This serves as a good test bed for evaluating various transfer learning41

approaches in a multilingual setup. For cross-lingual NLP, the most widely studied approach is to42

use multilingual embeddings as features in neural network models, and recent research has shown43

that representations learned in context are more effective [6, 7]. On the other hand, recent progress44

in multilingual NMT provides a compelling opportunity for obtaining contextualized multilingual45

representations, as multilingual NMT systems are capable of generalizing to an unseen language46

direction, i.e. zero-shot translation, and there is also evidence that the encoder of a multilingual47

NMT system learns language agnostic, universal interlingua representations, which can be further48

exploited [9].49

In this paper, we explore the zero-shot classification performance of representations obtained from50

a multilingual NMT system. We first show that, by simply reusing the encoder of a multilingual51

NMT system, remarkably high zero-shot cross-lingual classification performance can be reached (i.e.52

classification task in a language that the classifier is not trained on). Next, we provide upper bound53

systems for zero-shot classification by bridging methods, where test data is translated into English54

(language that the classifier is trained on) and employ English classifiers on them. We demonstrate that,55

multilingual NMT representations achieve surprisingly close zero-shot classification performance56

compared to the provided bridging upper bounds on three different tasks - Amazon Reviews, SST,57

and SNLI. Finally, we carefully analyze how and why cross-lingual knowledge transfer works in the58

zero-shot setup, and study the effect of various factors on high zero-shot classification performance.59

2 Proposed Method60

We propose a multilingual Encoder-Classifier model, where the Encoder, leveraging the representa-61

tions learned by a multilingual NMT model, converts an input sequence x into a set of vectors C, and62

the Classifier predicts a class label y given the encoding of the input sequence, C.63

2.1 Multilingual Representations Using NMT64

Although there has been a large body of work in building multilingual NMT models which can trans-65

late between multiple languages at the same time [9–12], zero-shot capabilities of such multilingual66

representations have only been tested for MT [9]. We propose a simple yet effective solution - reuse67

the encoder of a multilingual NMT model to initialize the encoder for other NLP tasks. To be able68

to achieve promising zero-shot classification performance, we consider two factors: (1) The ability69

to encode multiple source languages with the same encoder and (2) The ability to learn language70

agnostic representations of the source sequence. Based on the literature, both requirements can be71

satisfied by training a multilingual NMT model having a shared encoder [9, 13] that jointly maps72

multiple languages into a shared representation and a separate decoder (each having a separate73

attention mechanism) for each target language [11] in a multi-task framework [14]. After training74

such a multi-task multilingual NMT model, the decoder and the corresponding attention mechanisms75

(which are target-language specific) are discarded, while the multilingual encoder is used to initialize76

the encoder of our proposed mutlitlingual Encoder-Classifier model.77

2.2 Multilingual Encoder-Classifier78

Encoder. In order to leverage pre-trained multilingual representations introduced in Section 2.1,79

our encoder strictly follows the structure of a regular recurrent neural network (RNN) based NMT80

encoder [15] with a stacked layout [16]. Given an input sequence x = (x1, x2, . . . , xTx
) of length81

Tx, our encoder contextualizes or encodes the input sequence into a set of vectors C by first applying82

a bi-directional RNN [17], followed by a stack of uni-directional RNNs. The hidden states of the final83

layer RNN, hli, form the set C = {hli}
Tx
i=1 of context vectors which will be used by the classifier,84

where l denotes the number of RNN layers in the stacked encoder.85
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Classifier. The task of the classifier is to predict a class label y given the context set C. To ease this86

classification task given a variable length input set C, a common approach in the literature is to extract87

a single sentence vector q by making use of pooling over time [18]. Further, to increase the modeling88

capacity, the pooling operation can be parameterized using pre- and post-pooling networks. Formally,89

given the context set C, we extract a sentence vector q in three steps, using three networks, (1)90

pre-pooling feed-forward network fpre, (2) pooling network fpool and (3) post-pooling feed-forward91

network fpost, which is defined as q = fpost(fpool(fpre(C))). Finally, given the sentence vector q, a92

class label y is predicted by employing a softmax function.93

3 Experimental Design94

3.1 Corpora95

We evaluate the proposed method on three common NLP tasks: Amazon Reviews, SST and SNLI.96

We utilize parallel data to train our multilingual NMT system, as detailed below.97

Machine Translation. For the MT task, we use the WMT 2014 En↔Fr parallel corpus. The dataset98

contains 36 million En→Fr sentence pairs. We swapped the source and target sentences to obtain99

parallel data for the Fr→En translation task. We use these two datasets (72 million sentence pairs)100

to train a single multilingual NMT model to learn both these translation directions simultaneously.101

We generated a shared sub-word vocabulary [19, 20] of 32K units from all source and target training102

data. We use this sub-word vocabulary for all of our experiments below.103

Amazon Reviews. The Amazon Reviews dataset [21] is a multilingual sentiment classification104

dataset, providing data for four languages - English (En), French (Fr), German (De), and Japanese.105

We use the English and French datasets in our experiments. The dataset contains 6,000 documents in106

the train and test portions for each language. Each review consists of a category label, a title, a review,107

and a star rating (5-point scale). We only use the review text in our experiments. Following [21], we108

mapped the reviews with lower scores (1 and 2) to negative examples and the reviews with higher109

scores (4 and 5) to positive examples, thereby turning it into a binary classification problem. Reviews110

with score 3 are dropped. We split the training dataset into 10% for development and the rest for111

training, and we truncate each example and keep the first 200 words in the review. Note that, since112

the data for each language was obtained by crawling different product pages, the data is not aligned113

across languages.114

SST. The sentiment classification task proposed in [22] is also a binary classification problem115

where each sentence and phrase is associated with either a positive or a negative sentiment. We116

ignore phrase-level annotations and sentence-level neutral examples in our experiments. The dataset117

contains 6,920 examples for training, 872 examples for development, and 1,821 examples for testing.118

Since SST does not provide a multilingual test set, we used the public translation engine Google119

Translate1 to translate the SST test set to French. Previous work by Agić and Schluter [23] has shown120

that replacing the human translated test set with a synthetic set (obtained by using Google Translate)121

produces only a small difference of around 1% absolute accuracy on their human-translated French122

SNLI test set. Therefore, the performance measured on our ‘pseudo’ French SST test set is expected123

to be a good indicator of zero-shot performance.124

Multilingual SNLI. Natural language inference is a task that aims to determine whether a natural125

language hypothesis h can justifiably be inferred from a natural language premise p. SNLI [24] is126

one of the largest datasets for a natural language inference task in English and contains multiple127

sentence pairs with a sentence-level entailment label. Each pair of sentences can have one of three128

labels - entailment, contradiction, and neutral, which are annotated by multiple humans. The dataset129

contains 550K training, 10K validation, and 10K testing examples. To enable research on multilingual130

SNLI, Agić and Schluter [23] chose a subset of the SNLI test set (1,332 sentences) and professionally131

translated it into four major languages - Arabic, French, Russian, and Spanish. We use the French test132

set for evaluation in Section 4 and 5.133

1https://translate.google.com as of October, 2017.
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3.2 Model and Training Details134

Here, we first describe the model and training details of the base multilingual NMT model whose135

encoder is reused in all other tasks. Then we provide details about the task-specific classifiers. For136

each task, we provide the specifics of fpre, fpool and fpost nets that build the task-specific classifier.137

All the models in our experiments are trained using the Adam optimizer [25] with label smoothing138

[26]. Unless otherwise stated below, layer normalization [27] is applied to all LSTM gates and139

feed-forward layer inputs. We apply L2 regularization to the model weights and dropout to layer140

activations and sub-word embeddings. Hyper-parameters, such as mixing ratio λ of L2 regularization,141

dropout rates, label smoothing uncertainty, batch sizes, learning rate of optimizers and initialization142

ranges of weights are tuned on the development sets provided for each task separately.143

NMT Models. Our multilingual NMT model consists of a shared multilingual encoder and two144

decoders, one for English and the other for French. The multilingual encoder uses one bi-directional145

LSTM, followed by three stacked layers of uni-directional LSTMs in the encoder. Each decoder146

consists of four stacked LSTM layers, with the first LSTM layers intertwined with additive attention147

networks [15] to learn a source-target alignment function. All uni-directional LSTMs are equipped148

with residual connections [28] to ease the optimization both in the encoder and the decoders. LSTM149

hidden units and the shared source-target embedding dimensions are set to 512.150

Similar to [11], the multilingual NMT model is trained in a multi-task learning setup, where each151

decoder is augmented with a task-specific loss, minimizing the negative conditional log-likelihood of152

the target sequence given the source sequence. During training, mini-batches of En→Fr and Fr→En153

examples are interleaved. We picked the best model based on the best average development set BLEU154

score on both of the language pairs.155

Amazon Reviews and SST. The multilingual Encoder-Classifier model here uses the encoder156

defined previously. With regards to the classifier, the pre- and post-pooling networks (fpre, fpost) are157

both one-layer feed forward networks to cast the dimension size from 512 to 128 and from 128 to 32,158

respectively. We used max-pooling operator for the fpool network to pool activation over time.159

Multilingual SNLI. We extended the proposed multilingual Encoder-Classifier model to a multi-160

source model [29] since SNLI is an inference task of relations between two input sentences, “premise"161

and “hypothesis". For the two sources, we use two separate encoders, which are initialized with162

the same pre-trained multilingual NMT encoder, to obtain their representations. Following our163

notation, the encoder outputs are processed using fpre, fpool and fpost nets, again with two separate164

network blocks. Specifically, fpre consists of a co-attention layer [30] followed by a two-layer165

feed-forward neural network with residual connections. We use max pooling over time for fpool and166

again a two-layer feed-forward neural network with residual connections as fpost. After processing167

two sentence encodings using two network blocks, we obtain two vectors representing premise168

hpremise and hypothesis hhypothesis. Following [31], we compute two types of relational vectors with169

h− = |hpremise − hhypothesis|, and h× = hpremise � hhypothesis, where � denotes the element-170

wise multiplication between two vectors. The final relation vector is obtained by concatenating171

h− and h×. For both “premise" and “hypothesis" feed-forward networks, we used 512 hidden172

dimensions.173

For Amazon Reviews, SST and SNLI tasks, we picked the best model based on the highest develop-174

ment set accuracy.175

4 Zero-Shot Classification Results176

In this section, we explore the zero-shot classification task in French for our systems. We assume177

that we do not have any French training data for all the three tasks and test how well our proposed178

method can generalize to the unseen French language without any further training. A reasonable179

upper bound to which zero-shot performance should be compared to is bridging - translating a French180

test text to English and then applying the English classifier on the translated text. If we assume the181

translation to be perfect, we should expect this approach to perform as well as the English classifier,182

hence constituting an upper bound.183
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Table 1: Zero-Shot performance on all French test sets.

Model Amazon (Fr) SST (Fr) SNLI (Fr)
Bridged Zero-Shot Bridged Zero-Shot Bridged Zero-Shot

Encoder-Classifier 73.30 51.53 79.63 59.47 74.41 37.62
+ Pre-trained Encoder 79.23 75.78 84.18 81.05 80.65 72.35
+ Freeze Encoder 83.10 81.32 84.51 83.14 81.26 73.88

Table 2: Comparison of our best zero-shot result on the French SNLI test set to other baselines. See
text for details.

Model SNLI (Fr)
Our best zero-shot Encoder-Classifier 73.88
INVERT [32] 62.60
BiCVM [33] 59.03
RANDOM [34] 63.21
RATIO [34] 58.64

The Amazon Reviews and SNLI tasks have a French test set available, and we evaluate the perfor-184

mance of the bridged and zero-shot systems on each French set. However, the SST dataset does185

not have a French test set, hence the ‘pseudo French’ test set described in Section 3.1 is used to186

evaluate the zero-shot performance. The bridged system in the SST column reports the classification187

performance of the English classifier on the original English test set, as a high quality proxy for the188

SST bridged system. We do this since translating the ‘pseudo French’ back to English will result in189

two distinct translation steps and hence more errors.190

Table 1 summarizes all of our zero-shot results for French classification on the three tasks. It can be191

seen that just by using the pre-trained NMT encoder, the zero-shot performance increases drastically192

from almost random to within 10% of the bridged system. Freezing the encoder further pushes this193

performance closer to the bridged system. On the Amazon Review task, our zero-shot system is194

within 2% of the best bridged system. On the SST task, our zero-shot system obtains an accuracy of195

83.14%, which is within 1.5% of the bridged equivalent (in this case the English system).196

Finally, on SNLI, we compare our best zero-shot system with bilingual and multilingual embedding197

based methods evaluated on the same French test set in [23]. As illustrated in Table 2, our best198

zero-shot system obtains the highest accuracy of 73.88%. INVERT [32] uses inverted indexing199

over a parallel corpus to obtain crosslingual word representations. BiCVM [33] learns bilingual200

compositional representations from sentence-aligned parallel corpora. In RANDOM [34], bilingual201

embeddings are trained on top of parallel sentences with randomly shuffled tokens using skip-gram202

with negative sampling, and RATIO is similar to RANDOM with the one difference being that the203

tokens in the parallel sentences are not randomly shuffled. Our system significantly outperforms all204

methods listed in the second column by 10.66% to 15.24% and demonstrates the effectiveness of our205

proposed approach.206

5 Analyses207

In this section, we try to analyze why our simple multilingual Encoder-Classifier system is effective208

at zero-shot classification. We perform a series of experiments to better understand this phenomenon.209

In particular, we study (1) the effect of shared sub-word vocabulary, (2) the amount of multilingual210

training data to measure the influence of multilinguality, (3) encoder/classifier capacity to measure211

the influence of representation power, and (4) model behavior on different training phases to assess212

the relation between generalization performance on English and zero-shot performance on French.213

Effect of Shared Sub-Word Vocabulary. As mentioned in Section 3.2, we use a shared sub-word214

vocabulary which can encode both English and French text in all of our models. In this subsection,215

we analyze how much using a shared sub-word vocabulary can help the model generalize to a new216

language. To verify the effectiveness of just the sub-word vocabulary on generalization, we picked the217

German test set from the Amazon Review task. Since German shares many sub-words with English218

and French, the out-of-vocabulary (OOV) rate for the German test set using our vocabulary is just219

0.078%. We design this experiment as a control to understand the effect of having a shared sub-word220
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Table 3: Results of the control experiment on zero-shot performance on the Amazon German test set.

Model Amazon (De)
Zero-shot Encoder-Classifier 52.33
+ Pre-trained Encoder 52.98
+ Freeze Encoder 57.72

Table 4: Effect of MT data over our proposed multilingual Encoder-Classifier on the SNLI tasks.
The results of SNLI (Fr) shows the zero-shot performance of our system.

Parallel data type for NMT SNLI (En) SNLI (Fr)
Symmetric data (full) 84.13 73.88
Symmetric data (half) 80.79 66.72
Asymmetric data (half) 81.15 67.63

vocabulary which can encode the language but for which no translation data was seen while training221

the multilingual NMT encoder.222

From Table 3, we can see that despite the very low OOV rate, the ability of our system to perform223

zero-shot classification on German is close to random, i.e. around 50% accuracy. The third row in the224

table shows the small deviation of 7% over random, which is likely obtained from common sub-words225

having similar meaning across languages. This control experiment suggests that although having a226

shared sub-word vocabulary is necessary, we still need to train the NMT system on parallel data from227

the language of interest so that the system can perform zero-shot classification.228

Effect of Translation Data. We explore two dimensions that could affect zero-shot performance229

related to our training data in the multilingual NMT model. First, we investigate the effect of using230

symmetric training data to train both directions in the multilingual NMT system. We conduct an231

experiment where we take half of the sentences from the En→Fr training set and use the swapped232

version of the other half of the sentences for training the model. Second, we want to see the effect of233

training data size, so we run an experiment where we use only half of the training set in a symmetric234

fashion. From Table 4, we can see that halving the training data size significantly lowers the zero-shot235

accuracy on the French SNLI test set by 7.16%. However, both the symmetric and asymmetric236

versions of the data perform comparably on both tasks. This shows that the multilingual NMT system237

is able to learn an effective interlingua even without the need of symmetric data across the language238

pairs involved.239

Effect of Encoder/Classifier Capacity. We study the effect of the capacity of the two parts of our240

model on the final accuracies. Specifically, we experimented with two variants of the classifier - a241

simple linear classifier where we set fpre and fpost networks to identity2 and a complex classifier242

(details provided in Section 3.2). Next, we experimented with only reusing different parts of the243

multilingual encoder in a bottom-up fashion. Table 5 summarizes all of our experiments with respect to244

model capacity. As expected, going from a simple linear classifier to a complex classifier significantly245

improves both English and zero-shot French performance on the SNLI tasks, while even a simple246

linear classifier can achieve significant zero-shot performance when provided with rich enough247

encodings (49.66 to 61.61 accuracy). However, changing the encoder capacity tells an interesting248

story. As we selectively reuse parts of the encoder from the embedding layer to the top, we notice that249

the English performance only increases by about 2% whereas the zero-shot performance increases by250

about 18% in the complex classifier. This means that the additional layers in the encoder are essential251

for the proposed system to model a language agnostic representation (interlingua) which enables it to252

perform better zero-shot classification. Moreover, it should be noted that best zero-shot performance253

is obtained by using the complex classifier and up to layer 3 of the encoder. Although this gap is not254

big enough to be significant, we hypothesize that top layer of the encoder could be very specific to255

the MT task and hence might not be best suited for zero-shot classification.256

Effect of Early vs Late Phases of the Training. Figure 1 shows that as the number of training257

steps increases, the test accuracy goes up whereas the test loss on the SNLI task increases slightly,258

2We empirically found that for simple classifiers using mean pooling for fpool performs considerably better
over max-pooling (67.26 vs 61.19 test accuracies respectively) on the SNLI task.

6



Table 5: Zero-shot analyses of classifier network model capacity. The SNLI (Fr) results report the
zero-shot performance.

Encoder components Simpler classifier Complex classifier
SNLI (En) SNLI (Fr) SNLI (En) SNLI (Fr)

Embeddings only 65.18 49.66 82.43 56.66
+ bi-directional layer 1 67.99 58.19 83.40 64.74
+ layer 2 67.00 61.01 83.63 72.81
+ layer 3 67.26 60.55 84.17 74.33
+ layer 4 67.26 61.61 84.41 74.11

Figure 1: Correlation between test-loss, test-accuracy (the English SNLI) and zero-shot accuracy (the
French SNLI test set).

Table 6: Effect of parameter smoothing on the English SNLI test set and zero-shot performance on
the French SNLI test set.

Smoothing Range (steps) SNLI (En) SNLI (Fr)
1 84.41 74.11

400 84.62 75.02
1K 84.67 75.48

20K 84.65 75.93
35K 84.46 75.63

hinting at over-fitting on the English task. As expected, choosing checkpoints which are before the259

onset of the over-fitting seems to benefit zero-shot performance on the French SNLI test set. This260

suggests that over-training on the English task might hurt the ability of the model to generalize to a261

new language and also motivated us to conduct the next set of analysis.3262

Effect of Parameter Smoothing. Parameter smoothing (checkpoint averaging [35]) is a technique263

which aims to smooth point estimates of the learned parameters by averaging n steps from the training264

run and using it for inference. This is aimed at improving generalization and being less susceptible to265

the effects of over-fitting at inference. We hypothesize that a system with enhanced generalization266

might be better suited for zero-shot classification since it is a measure of the ability of the model to267

generalize to a new task. Table 6 validates our hypothesis by showing that although the average of268

20k steps only improves the English SNLI score by 0.24%, it improves the corresponding French269

zero-shot score by 1.82%.270

3We observe that test loss better correlates with zero-shot accuracy than test accuracy.
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6 Related Work271

Word and Sentence Representations. Pre-trained word representations, which leverage large272

scale unlabeled data [4, 5], have been shown to be a key ingredient in many standard NLP tasks. The273

tasks include sentiment analysis [22], entailment [24], summarization [36], question answering [37],274

and semantic role labeling [38]. However, these representations are usually learned from unsupervised275

data sources which are often unrelated to the downstream task.276

Contextualized Representations. Several studies have overcome the fact that these representations277

are context-independent by proposing contextualized word embeddings. Representations obtained278

from an LM have been shown to obtain effective contextualized word representations [7, 39]. There279

has also been work in enriching these word representations using sub-word information [40, 41]. MT280

naturally lends itself as a suitable task for obtaining contextualized embeddings since the encoder281

has to encode units in context so as to decode them into another language. Hill et al. [42] show the282

effectiveness of representations obtained from an NMT model in semantic similarity tasks. They283

further report that the representations obtained from the NMT model are better than those obtained284

from LMs. McCann et al. [6] showed that using the representations obtained from the encoder of285

an NMT system as context vectors in downstream NLP tasks significantly improves performance286

over using only unsupervised word or character n-gram vectors. To learn multilingual representations287

over multiple languages, Yu et al. [43] combined similarity constraints with a sequence-to-sequence288

model and reported its effectiveness on cross-lingual and zero-shot document classification tasks.289

Finally, there has been a large body of work on obtaining transferable sentence representations.290

Conneau et al. [8] obtain representations from the supervised SNLI task and show that these are291

effective for transferring to other tasks. Their method outperforms other similar approaches to292

obtain representations like FastSent [44] and SkipThought [45]. Arora et al. [46] show that a simple293

average of word embeddings approach is competitive with more complex methods like SkipThought294

representations.295

Cross-lingual or Multilingual Representations. Previous approaches to cross-lingual or multi-296

lingual representations have fallen into three categories. Obtaining representations from word level297

alignments - bilingual dictionaries or automatically generated word alignments - is the most popular298

approach [4, 47, 48]. The second category of methods try to leverage document level alignment like299

parallel Wikipedia articles to generate cross-lingual representations [32, 34]. The final category of300

methods use sentence level alignments in the form of parallel translation data to obtain cross-lingual301

representations. Hermann and Blunsom [33] propose a deep neural model named BiCVM which302

compares two sentence representations at the final layer and forces them into the same intermediate303

sentence representation. BilBOWA [49] is a simpler model which extends skip-gram with negative304

sampling [4] to optimize each word’s similarity with its context in both the current language and305

the other parallel language. Luong et al. [50] also propose obtaining cross-lingual representations306

using a similar approach. Ammar et al. [51] propose two algorithms, multiCluster and multiCCA, for307

learning multilingual representations from a set of bilingual lexical data.308

Here we combined the best of both worlds by learning contextualized representations which are309

multilingual in nature and explored its performance in the zero-shot classification tasks. We demon-310

strated that using the encoder from a multilingual NMT system as a pre-trained component in other311

downstream NLP tasks allows us to conduct cross-lingual transfer learning for an unseen language,312

i.e. French and supported our findings with further analysis.313

7 Conclusion314

In this paper, we have demonstrated a simple yet effective approach to perform zero-shot cross-lingual315

transfer learning using representations from a multilingual NMT model. Our proposed approach316

of reusing the encoder from a multilingual NMT system as a pre-trained component enables us to317

perform surprisingly competitive zero-shot classification on an unseen language and outperforms318

cross-lingual embedding base methods. Finally, we end with a series of analyses which shed light319

on the factors that contribute to the zero-shot phenomenon. We hope that these results showcase320

the efficacy of multilingual NMT to learn transferable contextualized and linguistically generalized321

representations for many downstream tasks.322
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A Supplementary Materials476

A.1 Results on Transfer Learning477

Here, we report the results of the proposed multilingual Encoder-Classifier for the three cross-lingual478

tasks - Amazon Reviews (English and French), SST, and SNLI, to investigate how effective the479

multilingual representations learned from the multilingual NMT model are. For each task, we first480

build a baseline system using the proposed Encoder-Classifier architecture described in Section 2481

where the encoder parameters is initialized randomly and trained. Next, we experiment with using the482

pre-trained multilingual NMT encoder to initialize the system as described in Section 2.1. Finally, we483

perform an experiment where we freeze the encoder after initialization and only update the classifier484

component of the system.485

Table 7 summarizes the accuracy of our proposed system for these three different approaches and486

the state-of-the-art results on all the tasks. The first row in the table shows the baseline accuracy of487

our system for all four datasets. The second row shows the result from initializing with a pre-trained488

multilingual NMT encoder. It can be seen that this provides a significant improvement in accuracy,489

an average of 4.63%, across all the tasks. This illustrates that the multilingual NMT encoder has490

successfully learned transferable contextualized representations that are leveraged by the classifier491

component of our proposed system. These results are in line with the results in [6] where the authors492

used the representations from the top NMT encoder layer as an additional input to the task-specific493

system. However, in our setup we reused all of the layers of the encoder as a single pre-trained494

component in the task-specific system. The third row shows the results from freezing the pre-trained495

encoder after initialization and only training the classifier component. For the Amazon English and496

French tasks, freezing the encoder after initialization significantly improves the performance further.497

We hypothesize that since the Amazon dataset is a document level classification task, the long input498

sequences are very different from the short sequences consumed by the NMT system, and hence499

freezing the encoder seems to have a positive effect. This hypothesis is also supported by the SNLI500

and SST results, which contain sentence-level input sequences, where we did not find any significant501

difference between freezing and not freezing the encoder.

Table 7: Transfer learning results of the classification accuracy on all the datasets. Amazon (En) and
Amazon (Fr) are the English and French versions of the task, training the models on the data for each
language. The state-of-the-art results are cited from [52] for both Amazon Reviews tasks and [6] for
SST and SNLI.

Model Amazon (En) Amazon (Fr) SST (En) SNLI (En)
Proposed model: Encoder-Classifier 76.60 82.50 79.63 76.70
+ Pre-trained Encoder 80.70 83.18 84.18 84.42
+ Freeze Encoder 84.13 85.65 84.51 84.41
State-of-the-art Models 83.50 87.50 90.30 88.10

502
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