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Abstract

In this work, I explore the use of super-
vised learning in distinguishing mainstream
and fringe scientific papers. This work
has two goals. The first is to determine
whether mainstream and fringe scientific
papers can be reliably distinguished through
automated means. The second is to deter-
mine whether classifiers trained using sty-
lometric features, such as word count, av-
erage word and sentences lengths, and fre-
quencies of part-of-speech sequences, can
outperform conventional n-gram document
models in classifying papers across scien-
tific topics. I conduct a systematic study of
the ability of classifiers to distinguish main-
stream and fringe scientific papers across
topics, for example by training a classifier
on biophysics papers and testing it against
cosmology papers. The term-based and
style-based approaches both perform signif-
icantly better than chance, with neither ap-
proach consistently outperforming the other.
Classifiers trained using the combined fea-
ture set (i.e., n-gram frequencies and sty-
lometric features) perform little better than
those trained only on one or the other feature
set, suggesting that the two feature sets are,
in aggregate, highly correlated. Overall, the
results of this work suggest that mainstream
and fringe scientific papers are readily dis-
tinguishable by conventional text classifica-
tion methods.

1 Introduction

The detection of fringe and poor-quality scientific
papers remains an outstanding problem in science
and scientific publishing (Bohannon, 2013; Labbé
and Labbé, 2013; Moher et al., 2017). Top re-
searchers may occasionally fall prey to predatory
journals (Seethapathy et al., 2016; Moher et al.,
2017), suggesting that the proliferation of preda-
tory journals and poor-quality research online may

be especially troublesome for those researchers
who are not well connected to the mainstream sci-
entific community in their field (Seethapathy et al.,
2016). To the extent that scientists intentionally
publish in so-called “pay-for-play” journals, an
automated, scalable means of identifying regular
publishers of poor-quality scientific writing could
help to discourage such behavior.

Automated text classification methods have
been applied toward classifying a variety of doc-
ument types (Sebastiani, 2002), including spam
email (Guzella and Caminhas, 2009; Ren and Ji,
2017), fake news (Shu et al., 2017; Tacchini et al.,
2017), hate speech (Saleem et al., 2017), and sen-
sitive government documents (McDonald et al.,
2015). Text classification has also been used ex-
tensively for authorship attribution and charac-
terization (Abbasi and Chen, 2005; Kucukyilmaz
et al., 2008; Cheng et al., 2011; Brocardo et al.,
2013). With some exception, this often involves
the use of document models derived from n-gram
frequencies (Tamboli and Prasad, 2013).

So far, attempts at automated identification of
unreliable information such as poor quality scien-
tific papers often rely on compiling lists of authors
or publishers designated as suspicious1,2. These
require that human judgments be made on a paper-
by-paper or journal-by-journal basis. Kelk and
Devine (2012) find average differences in several
author and paper attributes between mainstream
and fringe scientific papers. This result, along
with the success of authorship characterization
and other text classification efforts in other fields,
suggest that it may be possible to automate the
process of identifying fringe or unreliable scien-
tific work. This in turn could aid in the identifica-
tion of predatory journals at scale, as well as fa-
cilitate the curation of papers on pre-print servers
that lack peer review but also wish to maintain a

1https://beallslist.weebly.com/
2http://bsdetector.tech/
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certain minimum of scientific standards.
In the current work, I explore the feasibility

of automating the identification of fringe scien-
tific papers. Specifically, I use supervised learn-
ing methods to determine whether fringe scientific
writing can be red-flagged based on either or both
of two types of paper attributes: one based on the
frequencies of words and short phrases (n-grams),
the other based on stylometry (i.e., attributes re-
lated to document structure, sentence structure, us-
age patterns of common words, etc.). I compare
the two kinds of attributes in part to test the hy-
pothesis that classifiers trained on stylometric fea-
tures will perform better when tested across top-
ics (e.g., trained on biophysics papers and tested
against cosmology papers). In Section 2, I discuss
the dataset, feature extraction, and classification
and validation scheme. Results are discussed in
Section 3, and conclusions, including possible av-
enues for future work, are discussed in Section 4.

2 Methods

2.1 Dataset
Papers studied in this analysis come from two
websites, arXiv3 and viXra4. The arXiv site is a
preprint server used by professional scientists in
several fields including physics, astronomy, and
mathematics. The viXra site is formatted as a spin-
off site set up by authors rejected by the arXiv’s
moderators 5. Authors who publish on viXra are
less likely to be university-affiliated scientists, and
65% of arXiv papers as opposed to 15% of viXra
papers are published in journals (Kelk and Devine,
2012). Titles found on viXra include

• “Michelson and Morley Experiment Does not
Validate Length Contraction” (refuting Ein-
stein is a common theme among viXra’s
physical science papers);

• “Long Term Stability and the Meaning of
Life”; and

• “The Purpose of Nature is Super - Intelli-
gence”.

Although the terminology of “mainstream” ver-
sus “fringe” scientific writing used in the current
work entails some presumptions about the typi-
cal scientific quality and authorship intent of arXiv

3http://arxiv.org
4http://vixra.org
5http://vixra.org/why

and viXra papers, it must be emphasized that the
analysis carried out in the current work does not
and cannot determine the scientific validity of a
given paper. Rather, the goal of this study is only
to test the hypothesis that arXiv and viXra papers
indeed reflect two or more different populations of
writing style.

As viXra is a spin-off of arXiv, its categoriza-
tion scheme is similar, though not identical, to that
of arXiv, enabling apples-to-apples comparisons
of mainstream and fringe scientific papers for sev-
eral topics. To construct the dataset, I take pa-
pers listed under the following categories, where n
denotes the number of papers selected from each
site:

• biophysics (“bio-ph” on arXiv; “Physics of
Biology” on viXra; n ≈ 300),

• cosmology (“gr-qc” on arXiv; “Relativity and
Cosmology” on viXra; n ≈ 2,100),

• high-energy physics (“hep-ex/hep-lat/hep-
ph/hep-th” on arXiv; “High Energy Particle
Physics” on viXra; n ≈ 1,000), and

• mathematics (“math” on arXiv; “General
Mathematics” on viXra; n ≈ 200).

The number of papers in each category is cho-
sen such that the two sites are evenly represented.
In all four categories, there are fewer papers on
viXra than on arXiv, therefore I retrieved all avail-
able viXra papers for these four categories as of
the time that this dataset was aggregated, and I se-
lected the same number of papers from arXiv that
were published around the same time. A small
handful of papers was excluded from the analy-
sis due to unextractable PDFs or other problematic
features that precluded automated analysis.

The incorporation of multiple scientific topics
in this analysis helps to accommodate the possi-
bility that the arXiv–viXra category pairs given
above are not entirely substantively equivalent. It
could be argued for instance that viXra “Physics
of Biology” papers address different topics than
arXiv “bio-ph” papers; any automated detection
of a difference in writing style could then be at-
tributed to differences in topic. However, if classi-
fiers trained on cosmology papers can effectively
distinguish arXiv and viXra papers in biophysics,
high-energy physics, and mathematics, then that
would be strong evidence that the differences be-
tween arXiv and viXra papers detected in this
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analysis are truly a reflection of different broad
modes of writing style between mainstream and
fringe scientific papers.

2.2 Feature extraction
I calculate two sets of attributes for the papers un-
der consideration and conduct separate classifica-
tion analyses, as well as an analysis in which the
two feature sets are combined. The first feature
set is generated from word n-grams. Specifically,
the top 1,000 n-grams where n ∈ {1, 2, 3} are se-
lected by term frequency–inverse document fre-
quency (TFIDF) value, with the arXiv and viXra
paper sets each constituting a single “master” doc-
ument. That is, an n-gram achieves a high TFIDF
value by being found frequently in arXiv papers
but infrequently in viXra papers, or vice-versa.
Once those features are selected, term frequen-
cies (TF) are tabulated for each document; prelim-
inary experimentation revealed poorer classifica-
tion performance when using TFIDF values com-
pared with TF.

The second feature set is based on a number of
stylometric attributes. The stylometric attributes
calculated for each paper come in four broad cat-
egories, the derivation of which are further de-
scribed below. These categories are

• “general” paper attributes, including number
of authors, number of references to other pa-
pers, average sentence length, average word
size, and average rate of word repetition;

• frequencies of parts of speech and short se-
quences of parts of speech;

• graph metrics based on word co-occurrence
networks; and

• frequencies of character unigrams and bi-
grams, punctuation marks, and common
words.

The analysis of Kelk and Devine (2012) sug-
gests that certain attributes of scientific papers
may be useful in distinguishing arXiv and viXra
papers, such as number of authors, number of ref-
erences to other works, and so on. The num-
ber of authors for each paper is determined using
metadata from each website; all other attributes
are derived from the text of each paper. Papers
from both websites are downloaded in PDF form
and converted to ASCII text using version 3.03 of
the “pdftotext” tool in Linux (written by Glyph &

Cog, LLC.), which handles the text extraction very
well. Papers for which PDF extraction fails (e.g.,
due to rasterized PDFs or problematic character
encoding) are identified based on tell-tale features
of the outputs (e.g., by unusually short document
lengths, or by space characters that separate every
letter in a given document) and are discarded from
the dataset. Prior to feature extraction, the water-
mark found on the first page of every arXiv pa-
per is automatically removed. I also calculate the
frequencies of character unigrams and bigrams for
each paper, several punctuation marks, and com-
mon words such as “the,” “and,” and so on, as well
as words common in scientific papers across many
subjects such as “equation,” “table,” and “figure.”

Penn Treebank part-of-speech tags are tagged
for each paper using the Natural Language Toolkit
in Python (Taylor et al., 2003; Loper and Bird,
2002; Bird, 2006). Frequencies of parts of speech
and short sequences of parts of speech up to four
long are calculated for each paper. In order to
limit the dimensionality of the reduced dataset,
part-of-speech sequences two to four in length
are ranked by their tendency to be found either
in arXiv or viXra papers. Specifically, each se-
quence is scored by the difference in its overall
frequency between arXiv and viXra papers (across
all four categories). A strongly positive score re-
flects a part of speech sequence commonly used
in arXiv papers but not in viXra papers, while a
strongly negative score reflects a sequence used
commonly in viXra but not arXiv papers. The se-
quences with the hundred most positive and the
hundred most negative scores are included in the
reduced dataset. All individual parts of speech are
included.

The frequencies of named entities are tabulated
for each paper, separately for people, places, and
organizations, tagged using the spaCy toolkit6.
The TextBlob package7 is used to derive polariza-
tion and subjectivity scores for each sentence; the
mean and standard deviation of sentence polarities
and subjectivities are then calculated for each pa-
per.

For each paper, I generate two graphs where
the nodes represent unique decapitalized words.
In one graph, edges are drawn between words lo-
cated next to each other in a sentence. In the
other graph, edges are drawn between words found

6https://spacy.io/
7https://textblob.readthedocs.io/en/dev/
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in the same sentences. In both graphs, edges
are weighted according to the frequency of co-
occurrence. A number of connectivity and clus-
tering metrics are calculated for these word co-
occurrence graphs using the NetworkX package
(Hagberg et al., 2008).

2.3 Classification and validation

I train classifiers on papers from each of the
four categories under consideration and test them
against papers from each of the other categories.
For comparison, I also train and test classifiers
within each category. This yields 4 × 4 = 16
comparisons total. For each comparison, I use
50–50 train–test splits validation, conducted with
randomized splits six times, both to optimize hy-
perparameters when training within each category
and to estimate the consistency of classification
when testing against another category. Results are
discussed in Section 3.1. I also calculate average
feature importances based on random forest clas-
sifiers (Chen and Guestrin, 2016) trained in this
way. Results are discussed in Section 3.2.1.

In order to explore the relative importances of
the various subsets of stylometric features, I pro-
duce a dataset wherein all four scientific categories
are equally represented, and train and test classi-
fiers within that dataset using the aforementioned
repeat-stratified validation scheme. Results of this
analysis are described in Section 3.2.2.

The classifiers tested in the current work are
XGBoost (Chen and Guestrin, 2016), decision tree
(Breiman et al., 1984), naive Bayes (Manning
et al., 2008), logistic regression (M.D., 1944; Liu
and Nocedal, 1989), and random forest (Breiman,
2001). All of the classifiers used come from the
scikit-learn package8, with the exception of XG-
Boost, which was implemented through its built-in
scikit-learn wrapper.

In order to prevent overfitting, key hyperparam-
eters for each algorithm are optimized via grid
search over a nominal range of values. Models
are selected by F1,macro, the harmonic mean of the
F1 scores for arXiv and viXra papers. One pa-
rameter tuned for all five algorithms is the per-
centage of features to be used, where features are
selected by ANOVA F-value. Preliminary exper-
iments with dimensionality reduction by ANOVA
F-value filtering and by principal component anal-
ysis showed that dimensionality reduction makes

8http://scikit-learn.org

at most a marginal difference to overall classifier
performance.

3 Results

3.1 Training and testing across topics

Tables 1–3 show F1,macro and macro-average AU-
ROC score, AUROCmacro, for the best-performing
(highest F1,macro) classifier trained on papers in
each scientific topic when tested against papers in
each other topic. Each of the two tables also shows
the results of testing within each category as an es-
timate of the maximum achievable performance.
Table 1 shows these results for classifiers trained
on the n-gram feature set, Table 2 for the stylo-
metric feature set, and Table 3 for the combined
feature set. For all of the best-performing clas-
sifiers, the accuracy scores (not shown) are very
close to the F1,macro scores, indicating even levels
of precision and recall both for arXiv and viXra
papers.

The best-performing classifiers are a mix of ran-
dom forest, XGBoost, and logistic regression. It
is interesting to note that classifiers trained on the
combined feature set (Table 3) do not significantly
outperform those trained only on n-gram frequen-
cies (Table 1) or only on stylometric attributes (Ta-
ble 2). Ostensibly, there are two plausible hy-
potheses to explain this. One is that some papers
on each site are simply so reminiscent of papers on
the other site that there is a fundamental limit on
the extent to which machine learning techniques
can distinguish them.

The second possibility is that n-gram frequen-
cies and stylometric attributes are overall highly
correlated, and therefore ultimately provide the
same information, which is consistent with their
similar performance. The first hypothesis is un-
likely given that classifiers trained and tested
within categories typically achieve upward of 95%
F1,macro scores, showing that the information is
in principle present for distinguishing arXiv and
viXra papers. It is therefore likely that n-gram
frequencies and stylometric features are, in aggre-
gate, highly correlated. Based on the dataset under
consideration, it seems that stylometric features,
some of which are moderately computationally in-
tensive to calculate, do not provide substantially
greater insight into distinguishing arXiv and viXra
papers compared with n-gram frequencies alone.

The less sophisticated classifiers tested in this
work, naive Bayes and decision tree, showed little

4



Train set Test set Best classifier F1,macro AUROCmacro

Biophysics Biophysics Logistic regression 0.959 (0.018) 0.988 (0.009)
Biophysics Cosmology Random forest 0.890 (0.013) 0.954 (0.008)
Biophysics High-energy Logistic regression 0.894 (0.009) 0.955 (0.007)
Biophysics Math Logistic regression 0.801 (0.045) 0.901 (0.034)
Cosmology Biophysics XGBoost 0.953 (0.009) 0.991 (0.002)
Cosmology Cosmology XGBoost 0.965 (0.007) 0.994 (0.002)
Cosmology High-energy XGBoost 0.914 (0.013) 0.984 (0.005)
Cosmology Math Logistic regression 0.855 (0.048) 0.937 (0.038)
High-energy Biophysics XGBoost 0.935 (0.021) 0.988 (0.005)
High-energy Cosmology XGBoost 0.935 (0.007) 0.982 (0.003)
High-energy High-energy XGBoost 0.965 (0.007) 0.994 (0.002)
High-energy Math XGBoost 0.852 (0.047) 0.927 (0.032)
Math Biophysics XGBoost 0.871 (0.032) 0.918 (0.030)
Math Cosmology XGBoost 0.794 (0.010) 0.900 (0.009)
Math High-energy XGBoost 0.759 (0.010) 0.846 (0.012)
Math Math Logistic regression 0.951 (0.025) 0.986 (0.016)

Table 1: Best F1,macro and AUROCmacro scores among classifiers trained across scientific subjects, using the n-gram
feature set. Numbers in parentheses represent 2σ values based on repeated 50–50 train–test splits.

Train set Test set Best classifier F1,macro AUROCmacro

Biophysics Biophysics XGBoost 0.955 (0.020) 0.991 (0.006)
Biophysics Cosmology Random forest 0.898 (0.006) 0.966 (0.002)
Biophysics High-energy XGBoost 0.872 (0.015) 0.953 (0.007)
Biophysics Math Random forest 0.743 (0.058) 0.859 (0.050)
Cosmology Biophysics XGBoost 0.951 (0.010) 0.992 (0.004)
Cosmology Cosmology XGBoost 0.960 (0.006) 0.992 (0.003)
Cosmology High-energy XGBoost 0.912 (0.016) 0.981 (0.006)
Cosmology Math Random forest 0.833 (0.019) 0.925 (0.017)
High-energy Biophysics XGBoost 0.953 (0.025) 0.992 (0.006)
High-energy Cosmology XGBoost 0.948 (0.005) 0.987 (0.002)
High-energy High-energy XGBoost 0.949 (0.012) 0.989 (0.005)
High-energy Math Random forest 0.819 (0.041) 0.898 (0.040)
Math Biophysics Random forest 0.806 (0.025) 0.879 (0.028)
Math Cosmology Random forest 0.816 (0.010) 0.900 (0.006)
Math High-energy Random forest 0.749 (0.016) 0.810 (0.019)
Math Math Logistic regression 0.936 (0.040) 0.983 (0.015)

Table 2: Best F1,macro and AUROCmacro scores among classifiers trained across scientific subjects, using the stylo-
metric feature set. Numbers in parentheses represent 2σ values based on repeated 50–50 train–test splits.
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Train set Test set Best classifier F1,macro AUROCmacro

Biophysics Biophysics Logistic regression 0.959 (0.023) 0.987 (0.008)
Biophysics Cosmology XGBoost 0.898 (0.009) 0.965 (0.005)
Biophysics High-energy XGBoost 0.896 (0.016) 0.970 (0.006)
Biophysics Math Logistic regression 0.801 (0.044) 0.901 (0.032)
Cosmology Biophysics XGBoost 0.960 (0.015) 0.995 (0.004)
Cosmology Cosmology XGBoost 0.969 (0.005) 0.995 (0.002)
Cosmology High-energy XGBoost 0.929 (0.011) 0.989 (0.003)
Cosmology Math Logistic regression 0.861 (0.029) 0.940 (0.018)
High-energy Biophysics XGBoost 0.958 (0.019) 0.995 (0.003)
High-energy Cosmology XGBoost 0.953 (0.006) 0.990 (0.002)
High-energy High-energy XGBoost 0.967 (0.011) 0.995 (0.002)
High-energy Math XGBoost 0.843 (0.039) 0.928 (0.025)
Math Biophysics XGBoost 0.829 (0.024) 0.889 (0.015)
Math Cosmology XGBoost 0.798 (0.011) 0.901 (0.010)
Math High-energy XGBoost 0.749 (0.028) 0.824 (0.031)
Math Math Logistic regression 0.948 (0.037) 0.982 (0.010)

Table 3: Best F1,macro and AUROCmacro scores among classifiers trained across scientific subjects, using the com-
bined feature set. Numbers in parentheses represent 2σ values based on repeated 50–50 train–test splits.

difference in performance between the two feature
sets. The only exception is that, when training and
testing against mathematics papers, naive Bayes
classifiers perform moderately better when using
the n-grams feature set compared with the stylo-
metric feature set. This indicates that the stylomet-
ric features, in addition to not providing any over-
all advantage in terms of maximum achievable
performance, do not appear to provide any com-
putational advantage in terms of allowing for less
computationally intensive algorithms to be used.

3.2 Stylometric features

3.2.1 Feature importances

It is worth examining which stylometric features
are most informative as to the differences between
arXiv and viXra papers discerned by the trained
classifiers discussed in Section 3.1. Using the ran-
dom forest classifiers trained within each scientific
topic, I calculate the importance of each feature,
the value of which is derived as follows. In each
tree generated by each instance of the algorithm,
the importance of a feature is equal to the Gini im-
purity at a given node that splits on that feature,
weighted by the number of data points handled by
that node. For each feature, this value is averaged
over all of the trees, then normalized so that the
total importance of all of the features is equal to
unity. The overall importance of each feature is
finally derived by averaging its importance within

the multiple train–test splits done for each topic,
then taking the average of its importance across
the four topics that is weighted by the number
of papers in each topic. The top 25 features are
shown in Table 4, along with the website having
the higher average value of each of those features.

Interestingly, the most informative stylomet-
ric features for distinguishing arXiv and viXra
papers come from different categories: part-of-
speech sequence frequencies, frequencies of cer-
tain common words, and miscellaneous attributes
like number of authors and number of references.
Summing over the importance values listed, these
25 features account for ∼40% of the total feature
importance.

Perhaps not surprisingly, arXiv papers have
more authors, references to other papers, and
words overall than viXra papers. Papers on viXra,
on the other hand, are for instance more likely
to use apostrophes and question marks. This
may reflect a less formal style where contractions
are more frequently used, and where scientific
or guiding questions are more frequently posed
as literal questions. A sampling of sentences in
viXra papers that end with question marks in-
cludes, “How is DNA searched to arrive at a tran-
scription pattern?” “When I was in my twenties I
worked on the problem: What is Life?” and “Does
this Gaian perspective represent a return to pa-
ganism, the worship of natural rather than spiri-
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Feature Importance
Site with higher

avg. value
Number of authors 0.0540 arXiv
Apostrophe frequency 0.0242 viXra
Number of references 0.0235 arXiv
“s” word frequency 0.0211 arXiv
POS frequency: CC-NNP-NNP 0.0206 arXiv
“d” word frequency 0.0201 arXiv
POS frequency: NNP-CC-NNP-NNP 0.0199 arXiv
POS frequency: POS 0.0183 viXra
POS frequency: NNP-NNP-CC-NNP 0.0167 arXiv
“J” character frequency 0.0141 arXiv
Question mark frequency 0.0131 viXra
POS frequency: CC-NNP-NNP-NNP 0.0123 arXiv
Personal entity frequency 0.0122 arXiv
“http” word frequency 0.0118 viXra
“we” word frequency 0.0118 arXiv
POS frequency: NNP-NNP-NNP-CC 0.0116 arXiv
POS frequency: NNP-POS 0.0113 viXra
POS frequency: CD-JJ-NNP-NNP 0.0113 arXiv
“ht” character frequency 0.0100 viXra
POS frequency: CC-NNP 0.0096 arXiv
Number of words 0.0094 arXiv
Sentence co-occurrence graph transitivity 0.0092 viXra
“m” word frequency 0.0088 arXiv
“xr” character frequency 0.0087 viXra
POS frequency: SYM 0.0085 arXiv

Table 4: Top 25 features by feature importance, averaged over random forest models trained within each scientific
topic.
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tual forces?” Within viXra papers, there is a mod-
erately bimodal distribution in the frequency of
question mark usage, indicating that certain pa-
pers, and perhaps certain authors, tend to pose
many questions, whereas other viXra papers are
more conventional in their technical writing style
in this regard, asking few or no questions.

The diversity of attribute types that are useful in
distinguishing arXiv and viXra papers is tentative
evidence that a number of stylometric analytic ap-
proaches may be useful in distinguishing various
types of documents in other domains. This is im-
portant in domains where certain approaches may
not be available or may not be as useful. For in-
stance, authorship attribution or other classifica-
tion tasks for social media posts where there are
built-in word limits will not likely make use of at-
tributes like number of words, but other attributes
based on parts of speech or sentiment analysis may
still hold useful.

3.2.2 Feature subsets
In order to help further determine which stylomet-
ric features are the most informative, I use the
combined dataset in which all four categories of
scientific paper are equally represented to perform
classification analysis within four separate feature
subsets: general attributes (such as number of au-
thors, number of words, and number of references
to other papers); frequencies of part-of-speech
sequences; character, punctuation, and common
word frequencies; and word co-occurrence graph
metrics. For comparison, I also perform the same
analysis using the full attribute set.

Table 5 shows F1,macro and AUROCmacro scores
for the best-performing classifiers on each subset
of stylometric features, along with the full stylo-
metric feature set. Random forest and XGBoost
are the strongest performers. The likelihood of
misclassification for the various algorithms tested
is fairly even for all four categories and both web-
sites, with a slight tendency for math papers to be
most commonly misclassified.

Classifiers trained on each of these four feature
subsets perform nearly as well as those trained on
the full stylometric attribute set. The subset of at-
tributes based on word co-occurrence graphs con-
tains fewer attributes than the other subsets, and
provides only general insight into sentence and
document structure, which may help to explain the
relatively poor performance of classifiers trained
on this subset compared with the others. For all of

the feature subsets, the classifiers achieve nearly
even rates of precision and recall for papers from
both sites.

4 Conclusions and future work

The results of this work demonstrate that main-
stream and fringe scientific writing are readily
distinguishable through a number of types of at-
tributes. While stylometric attributes are effective
in this classification task, they prove to be no more
effective than more conventional methods (i.e., n-
gram document modeling). Stylometric attributes
also show no indication of enabling greater com-
putational efficiency, in that they do not perform
any better than n-gram models for simpler algo-
rithms like naive Bayes and decision tree.

It should be reiterated that to the extent that
the methods used in this work successfully distin-
guish mainstream and fringe scientific writing, it
is not because these methods have provided any
direct assessment of the reliability of claims be-
ing made in any given paper. The attributes used
in the above analysis are likely relevant to distin-
guishing arXiv and viXra papers for a variety of
reasons. Certain jargon or aspects of writing style
may reflect ideological attitudes or goals, while
others might reflect an author’s experience level
with technical writing, education level, or depth
of familiarity with some given subject matter.

One limitation on the extensibility of the cur-
rent results is that the examples of fringe scien-
tific papers are drawn only from a single website.
While the similarity in organization between arXiv
and viXra makes for convenient comparisons, and
while viXra’s papers are written across a range of
topics by many authors, it is possible that viXra’s
papers are only limitedly representative of fringe
scientific writing in general. The relatively narrow
range of scientific subject matter of papers ana-
lyzed in the current work is another limitation. Fu-
ture work should explore the utility of stylometric
analysis in classifying papers across topics more
disparate than, say, cosmology and high-energy
physics, where term frequencies may become less
reliable for distinguishing mainstream and fringe
papers.

In addition to the classification of individual pa-
pers, the methods used in this study may prove
useful for identifying predatory and other poor-
quality journals, as well as automatically flagging
unwanted submissions on pre-print servers like
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Feature subset Best classifier F1,macro AUROCmacro

All XGBoost 0.970 (0.014) 0.995 (0.004)
General Random forest 0.925 (0.054) 0.978 (0.028)
Parts of speech Random forest 0.955 (0.008) 0.991 (0.003)
Characters XGBoost 0.967 (0.015) 0.994 (0.005)
Graph Random forest 0.872 (0.060) 0.951 (0.039)

Table 5: F1,macro and AUROCmacro scores for best-performing classifiers (by F1,macro) trained on subsets of stylo-
metric features in a dataset where all four categories are equally represented. Numbers in parentheses represent 2σ
values based on repeated 50–50 train–test splits.

arXiv. In the future, automated tools may help re-
searchers to identify journals that regularly pub-
lish papers with writing styles corresponding with
those published on websites like viXra. One in-
teresting area of future research would be to ap-
ply automated algorithms such as those discussed
in this work to papers published by journals and
publishers identified as predatory, such as those in-
cluded in Beall’s List9.

Identifying author attributes and attitudes
through writing style may be of interest to con-
sumers and decision makers in domains outside of
academic science. It is conceivable for instance
that fake news articles reflect different modes of
writing style compared with ordinary news articles
in similar ways to those observed in viXra papers
in the current work. It is possible that fake news
articles written with certain political goals in mind
are more likely to contain superlative adjectives
and exclamation marks. The quite generic nature
of the attributes used in this study leaves open the
possibility that they can be used to distinguish fake
news and other unreliable writing that might be re-
vealed through proxies of author attitudes, subject
matter background, and so on. Future work should
explore the question of whether stylometric docu-
ment models have an advantage over more directly
topic-based models like n-grams in domains that
span a wider range of subject matter than that cov-
ered by the four categories of scientific paper ex-
amined in the current work.
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