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Abstract: Modern optical coherence tomography (OCT) devices used in ophthalmology acquire
steadily increasing amounts of imaging data. Thus, reliable automated quantitative analysis of
OCT images is considered to be of utmost importance. Current automated retinal OCT layer
segmentation methods work reliably on healthy or mildly diseased retinas, but struggle with the
complex interaction of the layers with fluid accumulations in macular edema. In this work, we
present a fully automated 3D method which is able to segment all the retinal layers and fluid-filled
regions simultaneously, exploiting their mutual interaction to improve the overall segmentation
results. The machine learning based method combines unsupervised feature representation and
heterogeneous spatial context with a graph-theoretic surface segmentation. The method was
extensively evaluated on manual annotations of 20,000 OCT B-scans from 100 scans of patients
and on a publicly available data set consisting of 110 annotated B-scans from 10 patients, all with
severe macular edema, yielding an overall mean Dice coefficient of 0.76 and 0.78, respectively.
© 2017 Optical Society of America
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1. Introduction

Macular edema is a swelling or thickening of the macula, the area of the retina responsible for
central vision. It occurs frequently as secondary to age-related macular degeneration (AMD),
diabetic retinopathy (DR) or retinal vein occlusion (RVO). AMD alone is the leading cause of
irreversible blindness in people over 50 years in the developed world [1] while diabetic macular
edema (DME) is one of the leading causes of blindness in the United States [2]. The swelling is
mainly the result of the accumulation of fluid inside (intraretinal fluid - IRF) and underneath the
neurosensory retina (subretinal fluid - SRF), which severely affects the otherwise well defined
layered structure of the retina and can lead to profound loss of vision. An example of an optical
coherence tomography (OCT) slice of a retina with macular edema is shown in Fig. 1, with IRF
depicted in white and SRF depicted in blue.
Intravitreal anti-vascular endothelial growth factor (anti-VEGF) therapy is an effective and

safe treatment option for patients suffering from these conditions [3]. Most physicians employ an
individualized therapeutic regimen, which aims at treating as little as possible to avoid associated
morbidity and cost, but as much as needed to control the chronic disease [4]. Recent studies have
shown that individual retinal morphology has predictive value for treatment requirements and
prognosis, which could lead the way to personalized treatment regimes, reducing the burden
on patients and the health care system [5, 6]. This highlights the need for robust and sensitive
quantitative imaging biomarkers, on which treatment decisions could be reliably based.

Spectral domain OCT [7] is a powerful and widely used modality for 3D imaging of the retina
in vivo with µm resolution. Due to its capability to visualize the retina and its layers with fluid
pockets in fine detail, it plays a vital role in clinical decision making as well as in large scale
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Fig. 1: Left: B-scan of a SD-OCT volume of a patient with pronounced macular edema. Note
the loss of OCT signal below highly absorbing regions such as fluid. Right: Voxel-wise manual
annotation of 14 regions.

clinical trials. Nevertheless, the ever growing amount of image acquisitions together with the
steadily increasing spatial resolution of OCT scans produce an amount of data that makes their
manual analysis prohibitively time-consuming. This creates an unmet need for the development
of fully automated image segmentation methods to quantify the status of retinal layers and fluid
in a streamlined, objective and repeatable way.
An imaging biomarker that has already been proven to be linked with retinal function and

treatment response is the thickness of individual retinal layers [8]. Likewise, the quantification of
IRF and SRF volumes has recently been shown to be clinically relevant [9]. However, while the
retinal layers are easily discernible in healthy and moderately diseased retinas, the presence of
IRF and SRF disrupts their visibility. In addition, highly absorbing materials in the retina (such
as hemorrhage and lipid exudation) result in further degradation of OCT image quality below
such lesions (Fig. 1), making the retinal layers barely distinguishable. Thus, the segmentation
of patients with macular edema remains a very challenging task both for expert readers and
particularly for automated methods.
In terms of related work, both retinal layer segmentation algorithms and fluid segmentation

algorithms have been previously proposed. However, up until recently these algorithms segmented
the imaging biomarkers either individually or consecutively (e.g. the retinal layers first and then
IRF in the volume bounded by certain retinal layers). Thus, the simultaneous segmentation of
fluid and layers could exploit their complex interaction and yield improved segmentation results
on severely diseased cases. Nevertheless, the high degree of variability in the appearance of
such cases makes the accurate modeling of this fluid-layer interaction challenging. The layer
segmentation approach proposed in [10] has recently been extended to additionally perform fluid
segmentation [12] in an iterative fashion. However it is performed in 2D, does not differentiate
between the fluid types, and it is limited to eight main layers only. Another notable method is
the graph-theoretic approach proposed in [13] that combines a graph-search layer segmentation
approach [14] with graph-cut fluid segmentation. However, it segments only the inner and outer
boundaries of the retina and does not differentiate between the fluid types. In a similar fashion, a
number of fluid segmentation approaches have been proposed that either require or perform a
prior layer segmentation in order to improve the overall segmentation accuracy [15–18]. The
dynamic programming based approach presented in [19] uses a machine learning algorithm
to predict the cost function for the final segmentation and is evaluated on the same data set as
used in [12]. However, the method does not segment fluid, hence for the validation the layers
inside the fluid areas were created using a linear interpolation, making it hard to compare with
methods that segment both fluid and layers. The method proposed in [20] uses a directional graph



search with a manually constructed cost function for the retinal layer segmentation and employs a
semi-automatic segmentation in cases with large morphologic deformations.

The aim of this work is to develop a fully automated segmentation of retinal structures in the
presence of macular edema using a data-driven approach by learning image and spatial features
from a training set of manually labeled OCT images. In contrast to the related work, in this
paper we propose a method that performs a simultaneous 3D segmentation of all eleven retinal
layers together with the two fluid regions (IRF and SRF). After an initial voxel classification step
the retinal layers are segmented using a graph-theoretic approach [14], and the results are then
iteratively refined by exploiting the complex interaction between different retinal structures using
auto-context methodology [21].

2. Method

2.1. Definitions

OCT acquires a single axial scan (A-scan, Z axis in Fig. 2) at a time and reconstructs a series of
cross sectional slices (B-scans, X/Z axis) by scanning through the volume. We define a surface S
to be a terrain like, continuous boundary that splits the OCT volume into two parts, one above
the surface (called foreground F) and one below the surface (called background B). We further
define a layer (L) to be the volume enclosed by two surfaces (e.g. L5 = [S4, S5]), and two fluid
filled volumes (V0 and V1 corresponding to IRF and SRF, respectively). The definition of the
used surfaces, regions and their structural relationship is determined by the anatomy of the retina
and is provided in Table 1, resulting in 14 regions in total.

X

Z

Y

B − scan

A − scan

Fig. 2: OCT acquisition and the coordinate system. 1D axial scans (A-scan, purple) are combined
to form a 2D cross sectional slice (B-scan, red) by scanning through the volume in a raster scan
pattern (blue). Multiple B-scans are then combined to form a complete OCT volume.

2.2. Workflow overview

The overall workflow (Fig. 3) of the proposed method consists of the following steps: First,
image-based features are extracted from the raw OCT data and are used together with manual
labels to train a base voxel classifier. The resulting probability map is then used to perform
the initial surface segmentation and to extract various context-based features. Second, these
features are used in conjunction with the image-based features to train another classifier. Such
context-based feature extraction and additional classifier training is then iteratively repeated
multiple times in auto-context loop.

2.3. Base voxel classification using unsupervised representation

In order to predict for each voxel in the OCT volume the probability that it belongs to each of
the 14 regions we use a random forest machine learning algorithm [22]. The individual surfaces



Table 1: Structural relationship between surfaces and regions (layers and fluids), where F denotes
the foreground and B the background.
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Fig. 3: Overview of the workflow of the proposed method consisting of a base voxel classification
stage and a subsequent auto-context loop.
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Fig. 4: The amount of variance in the original data that can be explained by a given number
of PCA components. Markers show the number of components used for various scales in the
proposed method.

are then extracted from the resulting probability maps using a 3D graph-theoretic segmentation
approach. A voxel-wise binary segmentation of the fluid volumes is achieved by assigning a
voxel to the fluid class if the probability provided by the classifier was the maximum for that
class. In the following paragraphs the method used to find suitable image feature descriptors and
perform the 3D surface segmentation are described.

PCA image features In contrast to other methods (e.g. [12]) we did not manually define image
features, instead we generated convolution kernels in an unsupervised manner similar to the
approach shown in [23]. We randomly pick voxels out of each OCT volume in the training set
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(approx. 10,000 voxels per volume, equally distributed among the regions) and extract a cubic
patch around them at various scales (53, 113, 213, 413 and 613). For each scale an incremental
principal component analysis (IPCA [24]) is then performed and the first 40 eigenvectors are
computed. In order to reduce the amount of convolution kernels only the first n PCA components
were used. We reconstructed the patches by using all 40 eigenvectors and then chose n so that
95% of the variability in the patches could be explained by the first n eigenvectors (Fig. 4). The
selected eigenvectors are used as convolution kernels on the raw intensity data to compute the
image features. As can be seen in Fig. 5 these kernels extracted from the training data resemble
Gaussian and edge detection kernels.

Surface segmentation The surfaces are extracted by summing up the probabilities of the
foreground regions and background regions, and using these two volumes as region costs
in the graph-theoretic approach proposed in [14]. We only use this regional information
and do not include any edge information or explicit feasibility constraints. Given the non-
negativity of probability maps the topological ordering of the surfaces is preserved due to
the foreground/background definition seen in Table 1. We do not impose constraints on the
minimum/maximum distance between surfaces and we use a smoothness constraint of ±10 px
between neighboring A-scans. This rather loose constraint allows the graph-search to segment
along the edges of fluid regions while relying on the smoothness of the probability maps to ensure
a smooth inter-layer boundary.

2.4. Auto-context loop

In order to improve the results of the method described in the previous subsection we implemented
an auto-context loop. Auto-context, first proposed in [21], is an iterative approach that includes
spatial context extracted from previous classifications to refine the prediction result in the next
iteration.
The first iteration step is to train a classifier Cbase on image based features fimg and the

corresponding labels (Fig. 1). The resulting probability map Pbase is then used to extract spatial
context features fctxbase

. This context features are then used together with the image features to
train a new classifier Cctx0 . This process is then repeated for further improvements.
In order to be able to use auto-context we need a realistic probability prediction for each

sample A in our training set. If we would simply use the trained classifier Cbase to make this
prediction we would get unrealistic results since A would be part of the data on which Cbase

was trained. In order to avoid this, we trained a temporary classifier Ctemp on all samples in the
training set, except A and used Ctemp to get a prediction Pbase for A. We repeated this step for



each sample in our training set and thus got a realistic prediction for each sample. This process
has to be repeated for each iteration of the auto-context loop as seen in Eq. (1).

Cbase : train( fimg, labels) → predict(Cbase) → extract( fctxbase
)

Cctx0 : train( fimg + fctxbase
, labels) → predict(Cctx0 ) → extract( fctx0 )

Cctx1 : train( fimg + fctx0, labels) → predict(Cctx1 ) → extract( fctx1 )
...

Cctxn : train( fimg + fctxn−1, labels) → predict(Cctxn ) → extract( fctxn )

(1)

The following paragraphs explain the two generic methods and the two methods specific to the
retinal layer segmentation task we used to extract fctxn from Pn−1.

Context locations One approach to include the probability maps of one stage into the feature
vector of the next stage is to use the raw probability around each training example as a feature.
In [21] this is done by extending eight rays in 45◦ intervals around each pixel and sampling
the probability map at given intervals yielding between 5,000 and 20,000 additional context
features. Instead of extending 45◦ rays we randomly selected 150 sample locations following a
3D Gaussian distribution (Fig. 6) around each pixel resulting in a denser sampling closer to the
pixel and sparser sampling farther away.
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Fig. 6: 150 relative context locations sampled using a Gaussian distribution (σ = 15 px). For
each voxel the samples are taken from the probability map and used as context features.

Probability map convolution Instead of only using the sampled probability, Tu et al. also
used the mean of a 3 × 3 window around each sample. This operation can be expressed as a
convolution of the probability map with a 3 × 3 uniform convolution kernel. Rather than using
uniform kernels we compute convolution kernels using the ground truth labels by taking samples
from region class A and counting how often region class B appears at each position in a small
window around the sample. In Fig. 7 this counts are shown for the pair L10 and L8 in which it
can be seen that the latter appears mostly a certain distance above the former. After normalization
these maps are used as convolution filters on the probability maps generated by the classifier.

Distance features In addition to the general context information described above we included
context information specific to the retinal layer segmentation problem. For each surface we
calculated the distance of each voxel to the corresponding foreground and background (both in
1D along the Z axis and in 3D) and the minimum 3D distance to the fluid regions.
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Fig. 8: Fovea position estimation.Left: Fovea distance prediction;Right: Predicted fovea position,
with highlighted points in the distance map that are agreeing with the predicted position.

Fovea estimation Within the foveal region the configuration of the layers is vastly different
from other regions of the retina. In order to encode this property in our training features, we
compute the distance of each voxel to the fovea in the XY plane. To get an estimate of the fovea
position, we calculate for each A-scan the thickness of each region and use this as a feature
vector to train a random forest regressor on the XY distance to the manually annotated fovea
location. On the test set we then predict the fovea distance for each A-scan resulting in a distance
prediction map (Fig. 8). While the majority of the predicted distance map shows only small
prediction errors, some parts are predicted incorrectly. In order to find the fovea center we used a
random sample consensus (RANSAC) algorithm that is robust to such outliers. We randomly
choose an A-scan as the fovea position and count the amount of points in the distance map that
would agree with this fovea position (i.e. whose predicted distance matches the actual distance
to the chosen fovea position). After repeating this step a number of times the fovea position for
which most of the A-scans agree with is chosen as the final position.

3. Evaluation and results

The proposed approach is first evaluated on a very large data set consisting of 100 OCT volumes
(macula centered, 1024 × 200 × 200 voxels, covering 2 × 6 × 6 mm3, Cirrus, Carl Zeiss Meditec,
Inc., Dublin, CA) of patients with central and branch RVO. To generate the ground truth, the



retinal scans were segmented using the method described in [14] and each B-scan was then
manually corrected by trained graders resulting in a total of 20,000 annotated B-scans. In addition
to the layers, the graders also annotated the IRF and SRF voxel regions as reported previously [9]
and marked the location of the fovea.

In addition to the RVO data set, the algorithm was also evaluated on a publicly available data
set (see [12]) containing 10 OCT volumes (macula centered, 496 × 768 × 61 voxels, covering
approx. 1.9 × 8.6 × 7.4 mm3, Spectralis, Heidelberg Engineering, Heidelberg, Germany) of
patients with diabetic macular edema (DME). In each of the 10 volumes, manual annotation of 8
retinal layers is available in 11 B-scans within the central 6 mm. For the same set of B-scans,
manual fluid annotation (containing both IRF and SRF as one class) is available as well. Thus,
110 fully annotated B-scans are used. Given the different nature of the data sets, the evaluation
was performed on each set individually as described below.

Lastly, we inspect the role of the individual features used by the method on the results. We
use the importance measure implemented within the random forest classifier, which relies on
permuting the values of a feature and measuring how much the permutation decreases the
classification accuracy of the model. Important features can then be detected as those where the
permutation decreases the classification accuracy the most.

3.1. Retinal vein occlusion data set

Fig. 9: Qualitative results on example image shown in Fig. 1. Left: Segmentation result of the
proposed method after one auto-context iteration. Right: Corresponding 3D visualization (data
was processed for visualization purposes)

For the segmentation evaluation, the data set was split into 10 subsets, one of which was used
as test set, the rest alternating for training the auto-context loop as described in Section 2.4.
Examples of results are shown qualitatively in Fig. 9 and Fig. 10. It can be observed that the correct
layer ordering is preserved and that the resulting layers are smooth despite loose segmentation
constraints.
Performance of the layer segmentation was measured using the unsigned distance from the

ground truth along the Z axis (Fig. 11). It can be seen that the errors on the training data are
comparable to the errors on the dedicated test set, since due to the way the auto-context classifier
is trained one sample is never used to train the classifier which is used to segment it. Furthermore
it can be seen that auto-context improved the segmentation result for each surface when compared
to the base classifier.
In order to evaluate the region segmentation performance, we calculated the Dice coefficient

for each region as defined in Eq. (2)

Dice =
2 ∗ TP

|true| + |predicted | =
2 ∗ TP

(TP + FN ) + (TP + FP)
=

2 ∗ TP

2 ∗ TP + FN + FP
(2)



Fig. 10: Qualitative results on RVO data set. Left: Raw intensity image; Middle: Manually
annotated ground truth; Right: Output of the proposed method.

Fig. 11: Results of surface segmentation on RVO data set for training and test sets. Mean absolute
error of individual surfaces without (base) and with auto-context.



Table 2: Results of region segmentation on RVO data set. Dice coefficients (mean ± std) without
(base) and with auto-context.

L0 L1 L2 L3 L4 L5 L6
base 0.99±0.01 0.72±0.09 0.61±0.08 0.65±0.09 0.62±0.09 0.68±0.09 0.84±0.08
context 0.99±0.00 0.79±0.09 0.69±0.09 0.76±0.08 0.71±0.09 0.75±0.07 0.89±0.06

L7 L8 L9 L10 L11 V0 V1
base 0.66±0.12 0.71±0.15 0.62±0.18 0.40±0.13 0.98±0.01 0.34±0.25 0.10±0.13
context 0.74±0.08 0.80±0.07 0.73±0.11 0.62±0.10 0.99±0.00 0.41±0.25 0.24±0.20

with TP and TN being the true positives and negatives (i.e. the correctly classified voxels), FP

and FN being the false positives and negatives (i.e. the incorrectly classified voxels), |true| the
number of voxels that belong to the region according to the ground truth and |predicted | the
number of voxels belonging to the region according to the algorithm. Dice is the most used metric
in validating medical volume segmentations [11] and takes into account equally the false positive
and the false negatives as defined by Eq. 2. The quantitative results can be seen in Table 2. Even
though the coefficients for the fluid filled regions (i.e. V0 and V1) are relatively low it can be
seen that the segmentation does improve due to the auto-context approach.
Finally, in order to quantitatively evaluate the fovea position estimation we computed the

absolute Euclidean distance from the ground truth resulting in a mean error of µ = 10.0 px,
σ = 5.5 px, median= 8.4 px (results of 10-fold cross validation, Fig. 12).
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Fig. 12: Result of fovea estimation. Histogram of the absolute Euclidean distance between the
predicted fovea position and the manually annotated fovea position on 100 OCT volumes in the
RVO data set.

3.2. Diabetic macular edema data set

The data set provided by [12] has only 8 surfaces and one fluid class annotated, hence the
surface/region definitions given in Table 1 had to be adapted accordingly (Table 3). Furthermore
since the provided scans have a highly anisotropic voxel size (i.e. approx 3.9 × 11.3 × 125 µm3

in contrast to 1.9 × 30.2 × 30.2 µm3 in the RVO data set) the PCA image features described in
section 2.3 were recomputed in 2D (see Fig. 13). Since the manual annotation was not available
for every B-scan, the probability map convolution described in section 2.4 could not be performed
for this evaluation. Finally, since a manual fovea position annotation is not available on this data
set, the fovea position was computed in an unsupervised manner as described in [12].
We computed the Dice coefficients for each region in the parts of the volumes where manual

annotations were available. As shown in Table 4, the proposed method performs comparably
to the method proposed in [12] for most regions and even outperforms it in some (in bold). In
addition, we computed the mean region thickness as in [12] and compared the absolute difference
to the manual annotation. It can be observed from Fig. 14 that the methods show comparable



Table 3: Structural relationship, surfaces and regions defined for the data set provided in [12].
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Fig. 13: 2D PCA eigenvectors computed on DME data set at various scales.

Table 4: Results of region segmentation on DME data set. Dice coefficients (mean ± std) for
method without (base), with auto-context, inter-reader and the method in [12].

region base auto-context inter-reader KR + GTDP [12]
VITREOUS 0.98 ± 0.02 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
NFL 0.77 ± 0.09 0.81 ± 0.05 0.86 ± 0.02 0.85 ± 0.02
GCL-IPL 0.80 ± 0.07 0.85 ± 0.04 0.89 ± 0.03 0.88 ± 0.02
INL 0.68 ± 0.09 0.75 ± 0.05 0.77 ± 0.04 0.73 ± 0.05
OPL 0.67 ± 0.08 0.73 ± 0.05 0.69 ± 0.06 0.70 ± 0.06
ONL-ISM 0.84 ± 0.05 0.86 ± 0.04 0.82 ± 0.06 0.80 ± 0.07
ISE 0.86 ± 0.04 0.88 ± 0.02 0.85 ± 0.04 0.86 ± 0.03
OS-RPE 0.68 ± 0.06 0.78 ± 0.03 0.82 ± 0.02 0.80 ± 0.04
BELOW-OS-RPE 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
FLUID 0.52 ± 0.16 0.60 ± 0.15 0.63 ± 0.10 0.53 ± 0.15
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Fig. 14: Results of layer segmentation on DME data set. Mean absolute error of individual layer
thicknesses for the method without (base), with auto-context, inter-reader and the method in [11].



performance. Similarly to the RVO data set, an improvement due to the auto-context loop is
evident in all cases.
It is interesting to note that the performance on the DME data set is consistently better than

on the RVO data set even though fewer auto-context features and only 2D PCA features were
used. This can be attributed to the better signal to noise ratio in Spectralis scans (achieved
through temporal oversampling) and the slightly less demanding segmentation task (RVO patients
generally have higher volumes of SRF present than DME patients).

Fig. 15: Segmentation results of subject #1 in the DME data set. Top: Central B-scan and the
manual annotations; Bottom: Results of the proposed method and the method presented in [12].

3.3. Feature importance

Results in Tables 2 and 4 show that auto-context loop consistently improves the segmentations. In
the evaluation of the feature importance reported by the random forest shown in Fig. 16, it can be
seen that the newly proposed context-based features have a high impact on the final result. In our
analysis, the distance features show up as the most important ones, even outperforming the image
based features after one auto-context loop. Similarly, the fovea distance and the probability map
convolution filter also demonstrate a high impact. In contrast, the random sampling of context
locations does not show consistently good results. While some highly informative locations are
randomly chosen, the vast majority of sampled locations convey only limited information.
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Fig. 16: Relative feature importance reported by the random forest classifier after one auto-context
iteration.



4. Discussion

Automated segmentation of retinal layers and fluid is a fundamental task for quantifying and
characterizing macular edema in an objective and repeatable way. The main problem when
segmenting severely diseased scans is the high variability in the shape and location of fluid filled
regions. As can be seen in Fig. 10, fluid can appear in most retinal layers, but can also span
multiple layers and/or be “stacked” above other fluid filled regions. This makes it very difficult to
manually encode or model all the possible interactions between fluids and retinal layers.

The main contribution of this work is that the proposed method is able to learn this interaction
from the training data set using a machine learning approach. In addition to simultaneously
obtaining both layer and fluid segmentations the two fluid types were also differentiated. In
contrast to other layer segmentation methods (e.g. [14]) the proposed method requires only
high level information about the known anatomical ordering of the retinal layers (see Tables 1
and 3). As a consequence, it can be trained on data sets of different (albeit similar) pathologies
without the need for manual adaptation. Similarly, the computation of the convolutional filters
used as image features obtained with unsupervised representation (PCA) enables the application
of the same method on different data sets with different spatial resolutions, image to noise
ratios, and acquisition modes (with and without spatial oversampling), without the need of prior
normalization.

Even though the proposed method achieved moderate performance in segmenting fluid regions,
the segmentation still helps to “push” the surface segmentation closer to the correct position.
This surface segmentation could later be used for an improved fluid segmentation - in much the
same way as a pre-existing fluid segmentation could be used to improve the surface segmentation.
Such a pre-existing segmentation could be used as input for the auto-context approach which
enables the classifier to learn the long range spatial relations between objects in the image beyond
the size of the convolution filters.
The problem of accurately segmenting retinal fluid in severely diseased cases is challenging

even for qualified human readers, as noted in [12] and seen in the relatively poor inter-reader
overlap shown in Table 4. Further difficulties are caused by the poor signal to noise ratio in the
RVO scans used for the validation, and by the presence of large SRF volumes obscuring the
retinal layers as well as the distinction between the two fluid classes. Nevertheless, while the fluid
segmentation on the low-quality Cirrus scans in the RVO data set is relatively poor, the proposed
method shows comparable or better performance to other methods on the Spectralis scans in the
DME data set. The results could be further improved by using e.g. a more sophisticated graph-cut
segmentation instead of the voxel-wise estimation, or a morphological post-processing of the
segmentation results.
A limitation of our machine-learning method is the reliance on large amounts of manually

labeled ground truth data in order to accurately learn the high variability present in OCT scans
with severe macular edema. Nevertheless the extensive effort invested in obtaining such labeled
data was rewarded with increased segmentation performance. Providing more training data
especially for regions that are represented by relatively few samples in the training data (e.g. NFL
in the vicinity of the fovea) would help the machine learning algorithm to learn their variance in
appearance and further improve the segmentation performance. As can be seen in e.g. Fig. 10
the voxel-wise estimation of the fluid classes in the proposed method tends to over segment the
retinal fluid classes which leads to a lower segmentation performance in the surrounding layers.
Regarding the computational resources, due to the way the auto-context loop is trained the

algorithm requires a significant amount of processing time during the training phase (in order of
a few days). For the segmentation, the algorithm requires on average 7.2 minutes for the PCA
image feature extraction and 6.6 minutes per auto-context loop, on an Intel Core i7 (3770K @
3.50GHz x 8) with 32GB RAM.



5. Conclusion

In this work we have introduced a novel fully automated 3D layer and fluid segmentation
method based on unsupervised representation, auto-context and graph-theoretic segmentation.
The proposed method simultaneously segments the layers and the two fluid related regions and
learns their mutual interaction to aid the retinal segmentation. To the best of our knowledge, this
is the first retinal layer and fluid segmentation to employ an iterative improvement approach
yielding reasonable results even on highly pathologic cases. Furthermore, we have shown that the
introduction of spatial context using auto-context and the domain specific context features improve
the segmentation results. In particular the distances to surface segmentations of the previous
iteration were shown to be important new features that improved the segmentation accuracy. Such
a methodology has further potential to be adapted to other medical image segmentation problems.
The method’s performance was extensively evaluated on a very large real world data set

consisting of 100 fully annotated OCT volumes that show signs of severe macular edema, yielding
a mean unsigned surface position error of only 5.26 ± 18.75 px and a mean overall Dice coefficient
of 0.76. A second evaluation was performed on a publicly available data set, yielding a mean
absolute thickness error of 2.87 ± 3.60 px and a mean overall Dice coefficient of 0.78 on the
retinal regions. Such an accurate automated segmentation of retinal layers in highly pathological
SD-OCT scans can be used as starting point for more accurate fluid segmentations or as an
important imaging biomarker in itself.
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