
Deep occupancy maps: a continuous mapping
technique for dynamic environments

Ransalu Senanayake1
The University of Sydney

Thushan Ganegedara2
The University of Sydney

Fabio Ramos3
The University of Sydney

Abstract

Learning a model of an environment that is correctly able to distinguish occupied
and unoccupied areas is important for maneuvering robots in unstructured envi-
ronments. A common technique to tackle such problems is to train a classifier
with hand-crafted features that encode occupancy information. However, finding
good features quickly becomes computationally prohibitive and impractical for
complex and large environments. In this paper, we propose a “fully” convolutional
neural network which can build global continuous occupancy maps by learning
from raw local unorganized point cloud data, conveniently captured using a range
sensor such as LIDAR. We propose a novel way of, 1) transforming data into a
grid representation, and 2) perform convolution on robot’s position rather than
on occupancy levels. With this formulation, the map can produce both static and
long-term maps in large environments without altering the model. Since the model
is a function of locations, it is possible to query the occupancy probability at any
position in the environment. Experiments indicate both computationally-efficient
and accurate results over other continuous occupancy mapping techniques that
require manual feature extraction.

1 INTRODUCTION

Intelligent transportation systems are rapidly improving human lifestyle. However, it is a challenging
task to produce efficacious intelligent transportation systems. This can be primarily attributed to
complex and contingent behavior of objects, especially in dynamic environments. Machine learning
has recently been widely used in developing such intelligent transportation systems for modeling
both perceptions and actions [1], ensuring robots work reliably and efficiently. In particular, deep
learning has been successfully applied in many visual learning tasks, due to its rich representation
learning capability enabled by large number of layers. For example, deep learning is widely used
for autonomous driving from pedestrian detection to scene affordance estimation [2] proving to be a
versatile black-box learning tool.

A promising avenue for using deep learning is in understanding occupancy of the 2D or 3D environ-
ments. A reliable occupancy maps is an imperative aspect in path planing and safer navigating in
previously unmapped unstructured environments in both indoor and outdoor settings [3, 4], distin-
guishing dynamic areas from the stationary [5], identifying paths that pedestrians frequently take [6],
etc. LIDAR laser range finders, which are ubiquitous and found in almost all autonomous vehicles as
well as in indoor robotic platforms, are commonly used for building occupancy maps.

1.1 Continuous occupancy mapping

The seminal paper by Elfes [7] proposed a method to model the occupancy level of a static envi-
ronment by dividing the world into a fixed sized grid and then updating the occupancy probability
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of each cell individually. Due to this pre-discretization and independent updates, it not only limits
building maps with different resolutions, but also the resolution directly affects the quality of the map
as the cells can neither be too large nor small. In order to overcome these issues, Gaussian process
occupancy maps (GPOMs) [8] have been proposed. Unlike grid maps, GPOMs produces spatially
continuous occupancy maps—maps with arbitrary resolutions—without having to relearn the model.
Nevertheless, being a Bayesian nonparametric method, the computational complexity of GPOMs
in both the learning phase and querying phase grows cubically with the number of data points N
[9]. Even the fastest implementation of GPOMs, variational sparse dynamic GPOM (VSDGPOM)
[5, 10] has a O(M2N) runtime complexity which curtails using large datasets and mapping large
areas, because in such cases the user selected parameter M needs to be large enough to represent the
entire dataset. In order to build continuous occupancy maps that do not retard the algorithm with
the number of data points, Hilbert maps (HMs) [11, 12, 13] have been proposed. They operate in a
high dimensional feature space and utilizes a logistic regression classifier. However, the number of
features required to build the map increases with the area of the map.

Central to both VSGPOMs and HMs are kernels that operate in RKHS [14]. These kernels mainly
help to capture the longitude-latitude spatial dependencies that are not possible to explicitly learn
with grid maps [7]. In order to capture rich features using kernels, it is required to pre-specify which
areas of the environment are more likely to have complex patterns. Such feature locations are called
inducing points and hinged features in VSDGPOMs and HMs, respectively, and they are typically
guessed by a clustering technique such as density based spatial clustering of applications with noise
(DBSCAN) [5]. In this paper, we propose a technique to use convolutional neural networks (CNNs)
where convolutional filters are used to model longitude-latitude spatial relationships. Importantly,
unlike other continuous occupancy mapping techniques, the proposed method learns features fully
automatically and hence it is not required to pre-specify them.

CNNs are also capable of modeling non-linear patterns that are otherwise captured by RKHS kernels
in continuous occupancy maps. For instance, in VSDGPOMs, a kernel function is evaluated between
data points to build a prior distribution for the Bayesian model, where as in HMs, a kernel function
is used to project longitude-latitude pairs into a very high (i.e. finitely many) dimensional feature
map. In contrast, since a neural network is the weighted sum of some functions that passes through
activation functions, they inherently are non-linear classifiers. Considering the recent success in
different application domains, we limit the discussion on nonlinear classifiers to deep neural networks
and kernel methods [15], although other non-linear classification techniques such as decision trees or
ensemble methods exist [16].

1.2 Fully Convolutional Neural Networks (FCNNs)

CNNs are behind the recent leap of image recognition tasks in autonomous vehicles [1, 2, 17].
However, most of these tasks have straightforward and well-understood objectives, e.g. classifying a
given image into a category (e.g. vehicle, person) using a set of convolution layers followed by a set of
densely connected layers [18, 19, 20]. However, our objective is to generate a global occupancy map
from sample of local patches of occupancy. Since fully connected (densely connected) neural network
layers consider interactions between all pixels, they would vitiate the pixel-wise correspondence
between adjacent layers [21] and lose spatial information. For the same reason, we do not use pooling
as this would cause to ignore certain pixels (i.e. max-pooling) or average them (i.e. average-pooling)
during both inference and prediction phases. Following this reasoning, we utilize a fully convolutional
neural network [21] where the network constitutes of only convolutional layers.

For the best of our knowledge, [22] is the only instance where deep learning has previously been
used for a continuous occupancy mapping related task. However, it uses a variational autoencoder
for image completion with the intention of reinforcing features in Hilbert maps, and the map is built
completely using the RKHS kernel based Hilbert mapping technique discussed in Section 1.1. In
contrast, our method generate the map as the output of the neural network and the features are learned
solely from the neural network, thus removing any bias induced by hand-crafted features.

The proposed method method,

1. Produces spatially smooth continuous occupancy maps

2. Produces long-term occupancy maps (the average occupancy in an area over time) in
dynamic and complex environments efficiently
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3. Learns features fully automatically
4. Can update the occupancy map as new laser scans are captured in an online manner (if

needed)
5. Can adapt to large environments without any modifications to the existing architecture
6. Does not rely on auxiliary motion models or object trackers

2 Deep occupancy maps (DOMs)

In this section, we present how to represent the occupancy as a function. Firstly, in Section , how
to create a dataset to train the fully convolutional neural network is described. Unlike CNNs used
for typical computer vision applications where the input is an image and the output is another image
or a label, the inputs to the proposed CNN are logitude-latitude virtual grids. This virtual meshgrid
generation from raw laser scans is described in Section 2.1. Details of where these data are used
in the CNN is provided in section 2.2, and finally, how to train and query the CNN is described in
Section 2.3.

2.1 Data generation and virtual grids

Figure 1: Data generation (a) An example of an environment. Obstacles are indicated in yellow and
the paths the robot traverses is indicated in black (b) A virtual grid around the area the robot can
see is created and occupancy levels are indicated by three colors {blue,green,red} = {−1, 0, 1} =
{free,unknown,occupied} (c) Longitudes and latitudes are separated into two meshgrids and labels
into another grid. Note that all three matrices have the same size.

As in [8, 11], we assume that a 2D lidar range sensor mounted on a moving robot is used to collect data
and the robot’s pose (longitude, latitude, and direction) is known from an external sensor. Figure 1 (a)
shows a sample path the robot maneuvers to collect laser hit points with respect to the robot’s pose.
There, at an arbitrary pose, the laser beams are shown in blue and laser hit points are shown in red.

The first step is to create input-output pairs for training the CNN, and this data can be generated at
each pose on the fly while the robot maneuvers. To this end, when the robot is at a given pose, an area
that encloses the entire laser scan of the size 2R×R with maximum laser beam distance equals of R
is delimited. Then, this realm is divided into a fixed size grid which is then used to generate both
classifier inputs and labels for training the CNN. However, although is method also uses a fixed size
grid, the proposed method does not suffer from the limitations of occupancy grid mapping discussed
in Section 1.1, because i) grids are to merely provide an input to the CNN which will capture spatial
relationships, ii) the world is not discretized before the robot starts mapping and the virtual grid
changes in the global coordinate system with different viewpoints depending on the location of the
robot.
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As illustrated in Figure 1 (c), the center points of the grid cells that lie in the 2D Cartesian plane are sep-
arated into two “meshgrids,” one for latitudes and the other for longitudes. That is, for grid cell indices
i and j, {c(i)(j), (x(i)(j)lon , x

(i)(j)
lat )}2N−1,N−1i=0,j=0 are separated into three different 2D matrices—longitude

meshgrid {x(i)(j)lon }
2N−1,N−1
i=0,j=0 , latitude meshgrid {x(i)(j)lat )}2N−1,N−1i=0,j=0 , and {c(i)(j)}2N−1,N−1i=0,j=0 . Here,

x
(i)(j)
lon and x(i)(j)lat are the longitude and latitude locations in the global coordinate systems given in ith

and jth cells of the virtual grid. All cells {c(i)(j)}2N−1,N−1i=0,j=0 are filled as occupied = 1, free = −1,
or unknown = 0 based on how laser beams pass through four sides of each cell. If a beam passes
only one side of the cell, then the cell is occupied; if it passes more than one side, then the cell is free;
and if it does not pass through any of the sides of the cell, then the accupancy state is unknown. If
contradictory decisions are taken for a particular cell because of two or more beams passing through
different sides of the same cell, such a cell is also labeled as unknown.

In summary, the content of the two meshgrid matrices are longitude and latitude locations whereas
the the content of the label matrix is the actual occupancy level. In other words, a location in the
environment indicated by the (i, j)th cell of the two meshgrids has a corresponding occupancy level
indicated by the (i, j)th cell of the label matrix. In the next section, let us discuss how to use these
three matrices in the CNN.

2.2 DOM-FCNN architecture

Figure 2: Architecture. Inputs to the neural network are longitude-latitude meshgrids shown in Figure
1 (c). Inputs passes through a series of convolutions and deconvolution, yet maintaining the pixelwise
correspondence. The loss is calculated based on the predicted output and labels from Figure 1 (c).

Unlike in typical CNNs where the input is an image, the proposed architecture takes longitude-
latitude meshgrids generated in Section 2.1 as inputs. The key insight is that we want to capture
local dependencies using filters of the CNN that are otherwise captured by RKHS kernels in the other
occupancy mapping techniques. On the other hand, since we work with a virtual meshgrid system, as
discussed in Section 2.1, the size of the inputs (W = 2R and H = R) to the CNN only depends on
the maximum lidar distance R. This gives the proposed method the capability of mapping arbitrarily
large environments without widening the CNN.

The ith input to the network, xi ∈ IRH,W,C whereH,W, and C are the height, width, and the number
of channels of the input, respectively. Here, C = 2 and the two channels are longitude and latitude
meshgrids. The lth convolution layer, consists of Dl kernels defined as, {K0

l ,K
0
l , . . . ,K

Dl

l }. The
outputs of the lth layer is denoted by gl = {g0l , . . . , g

Dl

l }, where gil = LeakyRelu(gl−1 ∗Ki
l + bil)

with g0 = x, bil ∈ IR is the bias and LeakyRelu is the leaky ReLU activation. The network uses a
stride of 1 and padding the boundary with zeros in order to ensure the output gil ∈ IRH,W,C ,∀l =
{1, . . . , L}, i = {1, . . . , Dl} where L is the number of convolutional layers. The network, however,
shuld not be unnecessarily deep as it might loose pixelwise correspondence.

Next, followed by the L convolution layer, L deconvolution layers, with the lth deconvolution
layer having D̂l kernels, K̂0

l , . . . , K̂
Dl

l is defined. Let the output of the lth deconvolution layer be

ĝl = {ĝ0l , . . . , ĝ
D̂l

l }, where ĝil = LeakyRelu((ĝil−1∗K̂i
l )
>+b̂il),∀l = {1, . . . , L−1}, where ĝ0 = gL

(· ∗ ·)> defines the deconvolution or transposed convolution operation. Note that deconvolutions
should be setup in such a way that the size of the output layer should be as same as the input meshgrid.
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Finally the last layer, i.e. l = L is defined as ĝiL = Tanh((ĝiL−1 ∗ K̂i
L)
>+ b̂iL). This output indicates

the occupancy level ∈ [−1, 1] of a pixel.

2.3 Training and querying

It is important to take into consideration the imbalance in the dataset while calculating the loss.
For example, in the environments shown in Figures 4 and 5, the amount of occupied map points is
relatively smaller compared to the unoccupied map points. Therefore, we use importance reweighing
in the loss function. By representing the neural network as function fw(x) which outputs the
occupancy level of a longitude-latitude pair x anywhere in the space and corresponding labels y,
for a batch of data of size B with B+ occupied data points, B− unoccupied data points, and Bunk

occupancy unknown data points, our objective is to minimize
∑B

i=1 αi(f
W (xi)− yi)2, where,

αi =


1− (B+/B), if yi = 1

1− (B−/B), if yi = −1
1− (Bunk/B), if yi = 0.

(1)

We can now use stochastic gradient descent to learn w of the CNN using the input-label pairs that are
generated in Section 2.1. In other words, the pixel-wise loss is computed for given meshgrid frames.

Unlike grid maps where probabilities of the discretized space are stored as the map, here we store
weights of the CNN as the map which can be query at anytime. The required query locations (W ×H
area) should be in the same form as the two meshgrids in Section 2.1. On the other hand, because
the map is merely represented as a function, irrespective of the intermediate discretization process,
DOM-FCNN can predict occupancy of any location, i.e. continuous maps. To visualize large maps,
fw can be queried with a moving meshgrid window. Note that the outermost query points of the
W ×H window can be distorted because of padding and they can be easily re-evaluated using a
different query window.

3 Experiments

Two different datasets have been used in the following experiments to demonstrate the key features
of DOM-FCNN;

1. Large Environments (Figure 4 (a)): Dataset 1 is collected by a robot with a 60 m lidar that
traverses in the environment in a random trajectory. To map the 600× 300 m2 area, we only
used 1300 robot poses. We query the map with a 1 m resolution.

2. Dynamic Environments (Figure 5 (a)): Dataset 2 is obtained using a stationary robot which
has a 100 m lidar. Dynamic objects constantly move in a road across the robot’s view. That
is, at a given time, the occupancy of a point in this trajectory (road) is a value between −1
and 1. Since the dataset is sequentially collected over 330 time steps, the deep occupancy
map provides the average map—long-term map. This is the same environment used in [5].

Table 1: Configuration of DOM-FCNN. Each con-
volution and deconvolution layer is denoted by
Conv (i × j) × k where i × j is the convolution
filter size and k is the channel depth. All layers
used a stride of 1.

Layer Specifications
W ×H × 2 Input

Conv1 (3× 3)× 16 (LeakyRelu)
Conv2 (1× 1)× 16 (LeakyRelu)
Conv3 (3× 3)× 32 (LeakyRelu)
Conv4 (1× 1)× 32 (LeakyRelu)
Conv5 (3× 3)× 32 (LeakyRelu)
Conv6 (1× 1)× 32 (LeakyRelu)

Deconv3 (1× 1)× 32 (LeakyRelu)
Deconv2 (1× 1)× 16 (LeakyRelu)
Deconv1 (1× 1)× 1 (Tanh)

Figure 3: The learning curve for dataset 1.
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The parameters of DOM-FCNN are summarized in Table 1. W × H = 60 × 30 and W × H =
100 × 50 for datasets 1 and 2, respectively. The algorithm was implemented in TensorFlow and
the [batch_size,height,width,n_channels]. Here, n_channels = 2 are the longitude and latitude
channels shown in Figure 2. Although experiments were run on a 10 GB Nvidia-K40c, using a simple
CPU would not thwart learning in a feasible time.

Table 2: Average performance metrics
Accuracy (%) AUC Training Time (s) Query Time (ms)

Method Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2
DOM-FCNN 94.9 98.2 0.997 1.000 268 25.28 1.519 0.441
VSDGPOM 72.4 88.5 0.827 0.949 1126 3440 4.355 9.48

Figure 4: Dataset 1. (a) A static environment with obstacles. (b) DOM-FCNN map

Figure 5: Dataset 2. (a) The robot resides at (0, 0). Laser beams and laser hit points at a given time
are shown in blue and red, respectively. The path of moving objects is shown in magenta. Note that
there are three parked vehicles the background occluding the static walls. (b) DOM-FCNN map

The 600× 300 static map and the long-term map are shown in Figures 4 (b) and 5 (b), respectively.
Since sigmoid(x) ≡

(
tanh(x/2) + 1

)
/2, log odds of occupancy can be denoted as exp(fw(x)).

Hence, the average occupancy probability (i.e. the long-term probability) along the trajectory of
moving vehicles is between 0 and 1. We also can conclude that the probability beyond the trajectory
is clearly slightly lower than the fully observable area as sometimes the former area is partially
occluded. The occupancy behind the three parked vehicles is also low. We used manually labeled
points as the test dataset. The comparison of DOM-FCNN with VSDGPOM which requires feature
extraction minimally is given in Table 2. Clearly, the proposed method is not only more accurate, but
also it is faster.

4 Conclusions and future work

In this paper, we proposed an end-to-end learning technique, DOM-FCNN, that is capable of learning
the topographical occupancy of large and dynamic environments without hand-crafted features. From
a macroscopic view, one may think the whole framework as a collection of virtual occupancy grid
maps being reprocessed into a parametric function which can be evaluated to produce continuous
occupancy maps. We demonstrated the key properties of the method using simulated datasets. As the
immediate step, we will use real-world datasets. As this is a sequential learning task, we also plan to
adapt the neural network architecture according to the data distribution on the fly [23] to further cope
with complex patterns with a minimal budget.
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